Monitoring of Hydrological Resources in Surface Water Change by Satellite Altimetry
Abstract
:1. Introduction
- (1)
- Stage of the experiment: The National Aeronautics and Space Administration (NASA) launched the Skylab space station with the radar altimeter S-193 in 1973. Subsequently, altimetry satellites of various countries have also entered space one after another, and a new era of satellite altimetry has begun [24].
- (2)
- Stage of the development: Defined from the TOPEX/Poseidon mission in 1992 [25]. The satellite mission enabled the computation of ionospheric delay corrections by introducing a second altimeter frequency (C-band, 5.3 GHz) and a third frequency for the microwave radiometer (18 GHz). At the same time, the influence of wind speed on the measurement is eliminated. In this way, it has revolutionized satellite altimetry technology [26].
- (3)
- Stage of the future: To be able to monitor land water, the research institute plans to carry out the Surface Water Ocean Topography (SWOT) (https://swot.jpl.nasa.gov (accessed on 1 June 2022)) Mission. SWOT is the world’s first satellite for the global survey of the earth’s surface water. (https://www.aerospace-technology.com/projects/surface-water-and-ocean-topography-swot-satellite/ (accessed on 1 June 2022)).
2. Application and Development
2.1. Applications in Hydrological Resources Monitoring
2.1.1. Hydrological in Solid Form
2.1.2. Hydrological in Liquid Form
2.2. Developments in Altimetry Data and Processing
2.2.1. Availability of Data
2.2.2. Applicability of the Program
3. Challenge and Opportunity
3.1. Limitations of Data and Processing Methods
3.1.1. Spatiotemporal Resolution
3.1.2. Terrain Detection Capability
3.1.3. Root Tracing Algorithm
3.2. Application and Expansion of Multi-Source Data
3.2.1. Prior Information on Inland Lake Monitoring
3.2.2. Combining Deep Learning with Multi-Source Data
3.2.3. Aggregation of Application Areas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATSAT | A MATLAB-based software for multi-satellite altimetry data analysis |
AVISO | CNES data center for Altimetry and DORIS products |
BRAT | Basic Radar Altimetry Toolbox |
CAST | China Academy of Space Technology |
CNES | Centre National d’Etudes Spatiales |
CNSA | China National Space Administration |
COSDSC | China Ocean Satellite Data Service Center |
CSA | Canadian Space Agency |
CTOH | Center for Topographic studies of the Ocean and Hydrosphere |
DAHITI | Database for Hydrological Time Series over Inland Waters |
DGFI-TUM | Deutsches Geodätisches Forschungsinstitut (Deutsches Geodätisches Forschungsinstitut is a research institute of the Technical University of Munich (TUM)) |
ESA | European Space Agency |
EU | European Union |
NASA | National Aeronautics and Space Administration |
GFO | GEOSat Follow-on |
G-REALM | Global Reservoirs and Lakes Monitor |
ISRO | Indian Space Research Organisation |
LEGOS | Laboratory of Space Geophysical and Oceanographic Studies |
ncBrowse | A Graphical netCDF File Browser |
NCO | NetCDF Operator |
NOAA | National Oceanic and Atmospheric Administration |
NSIDC | National Snow and Ice Data Center |
NSOAS | National Satellite Ocean Application Service |
OpenADB | Open Altimeter Database |
RADS | Radar Altimeter Database System |
SASWE | Sustainability, Satellites, Water, And Environment |
UKSA | UK Space Agency |
U.S.Navy | United States Navy |
USDA | U.S. Department of Agriculture |
References
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic Connectivity Constrains Partitioning of Global Terrestrial Water Fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef]
- Cooley, S.; Ryan, J.; Smith, L. Human Alteration of Global Surface Water Storage Variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Graf, T.; Simmons, C. Variable-density Groundwater Flow and Solute Transport in Fractured Rock: Applicability of the Tang et al. [1981] Analytical Solution. Water Resour. Res. 2009, 45, W02425. [Google Scholar] [CrossRef]
- USA. Gov. U.S. Geological Survey. “What is Hydrology and What do Hydrologists Do?”; 2015. Available online: http://water.usgs.gov/edu/hydrology.html (accessed on 15 August 2015).
- Kuraji, K. Long-Term Monitoring and Research in Forest Hydrology: Towards Integrated Watershed Management. Water 2022, 14, 2556. [Google Scholar] [CrossRef]
- Papa, F.; Frappart, F. Surface Water Storage in Rivers and Wetlands Derived from Satellite Observations: A Review of Current Advances and Future Opportunities for Hydrological Sciences. Remote Sens. 2021, 13, 4162. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, H.; Steffen, H.; Qiao, B.; Feng, W.; Jia, L.; Gao, P. Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau. Remote Sens. 2022, 14, 544. [Google Scholar] [CrossRef]
- Lee, H.; Shum, C.; Tseng, K.; Jun-Yi, G.; Chung-Yen, K. Present-day Lake Level Variation from Envisat Altimetry over the Northeastern Qinghai-Tibetan Plateau: Links with Precipitation and Temperature. TAO Terr. Atmos. Ocean. Sci. 2011, 22, 169–175. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Mao, Y.; Ji, B. Evaluation of Evapotranspiration for Exorheic Catchments of China during the GRACE Era: From a Water Balance Perspective. Remote Sens. 2020, 12, 511. [Google Scholar] [CrossRef]
- Zwally, H.; Bindschadler, R.; Brenner, A.; Major, J.; Marsh, J. Growth of the Southern Greenland Ice Sheet: Measurement. Science 1989, 246, 1587–1589. [Google Scholar] [CrossRef]
- Zwally, H.; Giovinetto, M.; Li, J.; Cornejo, H.; Beckley, M.; Brenner, A.; Saba, J.; Yi, D. Mass Changes of the Greenland and Antarctic Ice Sheets and Shelves and Contributions to Sea-level Rise: 1992–2002. J. Glaciol. 2005, 51, 509–527. [Google Scholar] [CrossRef]
- Zwally, H.; Yi, D.; Kwok, R.; Zhao, Y. ICESat Measurements of Sea Ice Freeboard and Estimates of Sea Ice Thickness in the Weddell Sea. J. Geophys. Res. 2008, 113, C02S15. [Google Scholar] [CrossRef]
- Rémy, F.; Parouty, S. Antarctic Ice Sheet and Radar Altimetry: A Review. Remote Sens. 2009, 1, 1212–1239. [Google Scholar] [CrossRef]
- Zwally, H.; Giovinetto, M. Overview and Assessment of Antarctic Ice-sheet Mass Balance Estimates: 1992–2009. Surv. Geophys. 2011, 32, 351–376. [Google Scholar] [CrossRef]
- Zwally, H.; Li, J.; Brenner, A.; Beckley, M.; Cornejo, H.; DiMarzio, J.; Giovinetto, M.; Neumann, T.; Robbins, J.; Saba, J.; et al. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003–07 Versus 1992–2002. J. Glaciol. 2011, 57, 88–102. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting Patterns of Early Twenty-first-century Glacier Mass Change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending Estimates of 2003–2008 Glacier Mass Balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Zwally, H.; Robbins, J.; Luthcke, S.; Loomis, B.; Rémy, F. Mass Balance of the Antarctic Ice Sheet 1992–2016: Reconciling Results from GRACE Gravimetry with ICESat, ERS1/2 and Envisat Altimetry. J. Glaciol. 2021, 672, 533–559. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Geruo, A.; Barletta, V.; Bentley, M.; Bettadpur, S.; Briggs, K.; Bromwich, D.; Forsberg, R.; Galin, N. A Reconciled Estimate of Ice-sheet Mass Balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef]
- The IMBIE team. Mass Balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Gao, H.; Lu, H.; Lettenmaier, D. Remote Sensing: Hydrology. Prog. Phys. Geogr. 2009, 33, 490–509. [Google Scholar] [CrossRef]
- Abdalla, S.; Abdeh Kolahchi, A.; Ablain, M.; Adusumilli, S.; Aich Bhowmick, S.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the Future: Building on 25 Years of Progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Liao, J. Data Processing and Land Application of Spaceborne Radar Altimeter; Science Press: Beijing, China, 2020; ISBN 978-7-03-063979-0. [Google Scholar]
- Grgić, M.; Bašić, T. Radar Satellite Altimetry in Geodesy–Theory, Applications and Recent Developments; IntechOpen: London, UK, 2021; ISBN 978-1-83962-763-7. [Google Scholar]
- Vignudelli, S.; Kostianoy, A.; Cipollini, P.; Benveniste, J. Coastal Altimetry; Springer Science & Business Media: Berlin, Germany, 2011; ISBN 978-3-642-12795-3. [Google Scholar]
- McGoogan, J.; Miller, L.; Brown, G.; Hayne, G. The S-193 Radar Altimeter Experiment. Proc. IEEE 1974, 62, 793–803. [Google Scholar] [CrossRef]
- Stanley, H. The GEOS 3 Project. J. Geophys. Res. Solid Earth 1979, 84, 3779–3783. [Google Scholar] [CrossRef]
- Born, G.; Dunne, J.; Lame, D. Seasat Mission Overview. Science 1979, 204, 1405–1406. [Google Scholar] [CrossRef]
- Douglas, B.; Cheney, R. Geosat: Beginning a New Era in Satellite Oceanography. J. Geophys. Res. 1990, 95, 2833–2836. [Google Scholar] [CrossRef]
- Le Traon, P.; Ogor, F. ERS-1/2 Orbit Improvement Using TOPEX/POSEIDON: The 2 cm Challenge. J. Geophys. Res. Ocean. 1998, 103, 8045–8057. [Google Scholar] [CrossRef]
- Fu, L.; Christensen, E.; Yamarone Jr, C.; Lefebvre, M.; Menard, Y.; Dorrer, M.; Escudier, P. TOPEX/POSEIDON Mission Overview. J. Geophys. Res. Ocean. 1994, 99, 24369–24381. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C. GPD+ Wet Tropospheric Corrections for CryoSat-2 and GFO Altimetry Missions. Remote Sens. 2016, 8, 851. [Google Scholar] [CrossRef]
- Lafon, T. JASON 1: Lessons Learned from the Development and 1 Year in Orbit. Acta Astronaut. 2005, 56, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Louet, J.; Bruzzi, S. ENVISAT Mission and System. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; Volume 3, pp. 1680–1682. [Google Scholar] [CrossRef]
- Schutz, B.; Zwally, H.; Shuman, C.; Hancock, D.; DiMarzio, J. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Lambin, J.; Morrow, R.; Fu, L.; Willis, J.; Bonekamp, H.; Lillibridge, J.; Perbos, J.; Zaouche, G.; Vaze, P.; Bannoura, W.; et al. The OSTM/Jason-2 Mission. Mar. Geod. 2010, 33, 4–25. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, M.; Song, Q. Active and Passive Microwave Remote Sensing Technology of the HY-2A Ocean Satellite Mission. Eng. Sci. 2013, 15, 4–11. [Google Scholar]
- Ren, H.; Li, S. Research Progress of Tiangong-2 Earth Observation Applications. Manned Spacefl. 2019, 25, 825–833. [Google Scholar]
- Verron, J.; Sengenes, P.; Lambin, J.; Noubel, J.; Steunou, N.; Guillot, A.; Picot, N.; Coutin-Faye, S.; Sharma, R.; Gairola, R.M.; et al. The SARAL/AltiKa Altimetry Satellite Mission. Mar. Geod. 2015, 38, 2–21. [Google Scholar] [CrossRef]
- Zawadzki, L.; Ablain, M. Accuracy of the Mean Sea Level Continuous Record with Future Altimetric Missions: Jason-3 Vs. Sentinel-3a. Ocean Sci. 2016, 12, 9–18. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Validation of Sentinel-3A/3B Satellite Altimetry Wave Heights with Buoy and Jason-3 Data. Sensors 2019, 19, 2914. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Xie, L.; Sun, C.; Liu, J.; Li, J.; Xian, D. China-France Oceanography Satellite (CFOSAT) Simultaneously Observes the Typhoon-induced Wind and Wave Fields. Acta Oceanol. Sin. 2019, 38, 158–161. [Google Scholar] [CrossRef]
- Wang, J.; Aouf, L.; Jia, Y.; Zhang, Y. Validation and Calibration of Significant Wave Height and Wind Speed Retrievals from HY2B Altimeter Based on Deep Learning. Remote Sens. 2020, 12, 2858. [Google Scholar] [CrossRef]
- Sun, Z.; Guan, B.; Zhai, Z.; Ouyang, M. Research Progress of Ocean Satellite Altimetry and its Recovery of Global Marine Gravity Field and Seafloor Topography Model. Acta Geod. Cartogr. Sinica 2022, 51, 923–934. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, C.; Zhong, S.; Peng, B.; Zhou, X.; Yan, H.; Zhang, J.; Han, J.; Guo, F.; Chen, R. Analysis of Precise Orbit Determination for the HY2D Satellite Using Onboard GPS/BDS Observations. Remote Sens. 2022, 14, 1390. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, R.; Jia, Y.; Jin, T.; Kong, X. Performance of HaiYang-2 Altimetric Data in Marine Gravity Research and a New Global Marine Gravity Model NSOAS22. Remote Sens. 2022, 14, 4322. [Google Scholar] [CrossRef]
- Quartly, G.; Chen, G.; Nencioli, F.; Morrow, R.; Picot, N. An Overview of Requirements, Procedures and Current Advances in the Calibration/Validation of Radar Altimeters. Remote Sens 2021, 13, 125. [Google Scholar] [CrossRef]
- Fu, L.; Rodriguez, E. High-resolution Measurement of Ocean Surface Topography by Radar Interferometry for Oceanographic and Geophysical Applications; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2004; Volume 150, pp. 209–224. [Google Scholar] [CrossRef]
- Cawley, J. “SWOT Mission Now Targeting Dec. 5”. Surface Water and Ocean Topography (SWOT). 2022. Available online: https://blogs.nasa.gov/swot/author/jjcawley/ (accessed on 6 June 2022).
- Yang, L.; Lin, L.; Fan, L.; Liu, N.; Huang, L.; Xu, Y.; Mertikas, S.P.; Jia, Y.; Lin, M. Satellite Altimetry: Achievements and Future Trends by a Scientometrics Analysis. Remote Sens. 2022, 14, 3332. [Google Scholar] [CrossRef]
- Eldardiry, H.; Hossain, F.; Srinivasan, M.; Tsontos, V. Success Stories of Satellite Radar Altimeter Applications. Bull. Am. Meteorol. Soc. 2022, 103, E33–E53. [Google Scholar] [CrossRef]
- Mertikas, S.; Donlon, C.; Féménias, P.; Mavrocordatos, C.; Galanakis, D.; Tripolitsiotis, A.; Frantzis, X.; Tziavos, I.N.; Vergos, G.; Guinle, T. Fifteen Years of Cal/Val Service to Reference Altimetry Missions: Calibration of Satellite Altimetry at the Permanent Facilities in Gavdos and Crete, Greece. Remote Sens. 2018, 10, 1557. [Google Scholar] [CrossRef]
- Medley, B.; Neumann, T.; Zwally, H.; Smith, B. Forty-year Simulations of Firn Processes over the Greenland and Antarctic Ice Sheets. Cryosphere Discuss. 2020, 1–35. [Google Scholar] [CrossRef]
- Balaguru, B.; Ramakrishnan, S.; Vidhya, R.; Thanabalan, T. A Comparative Study on Utilization of Multi-Sensor Satellite Data to Detect Potential Fishing Zone (PEZ). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL–8, 1017–1026. [Google Scholar] [CrossRef]
- Helm, V.; Humbert, A.; Miller, H. Elevation and Elevation Change of Greenland and Antarctica Derived from CryoSat-2. Cryosphere 2014, 8, 1539–1559. [Google Scholar] [CrossRef]
- Paolo, F.; Fricker, H.; Padman, L. Volume Loss from Antarctic Ice Shelves is Accelerating. Science 2015, 348, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.; Li, J.; Robbins, J.; Saba, J.; Yi, D.; Brenner, A.; Zwally, C. Mass Gains of the Antarctic Ice Sheet Exceed Losses. J. Glaciol. 2015, 61, 1019–1036. [Google Scholar] [CrossRef]
- Treichler, D.; Kääb, A. Snow Depth from ICESat Laser Altimetry—A Test Study in Southern Norway. Remote Sens. Environ. 2017, 191, 389–401. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Huang, Q.; Zhao, F.; Liu, T. Progress and Prospects of Remote Sensing of Lake Ice Thickness. Natl. Remote Sens. Bull. 2022, 26, 1289–1301. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.; Gardner, A.; Medley, B.; Nilsson, J.; Paolo, F.; Holschuh, N.; Adusumilli, S.; Brunt, K.; Csatho, B.; et al. Pervasive Ice Sheet Mass Loss Reflects Competing Ocean and Atmosphere Processes. Science 2020, 368, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.; Goni, G.; Knaff, J.; Forbes, C.; Ali, M. Ocean Heat Content for Tropical Cyclone Intensity Forecasting and Its Impact on Storm Surge. Nat. Hazards 2013, 66, 1481–1500. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Vignudelli, S.; Mitchum, G.T. Evaluation of Altimetry-Derived Surface Current Products Using Lagrangian Drifter Trajectories in the Eastern Gulf of Mexico. J. Geophys. Res. Oceans. 2014, 119, 2827–2842. [Google Scholar] [CrossRef]
- Tournadre, J. Anthropogenic Pressure on the Open Ocean: The Growth of Ship Traffic Revealed by Altimeter Data Analysis. Geophys. Res. Lett. 2014, 41, 7924–7932. [Google Scholar] [CrossRef]
- Tournadre, J.; Girard-Ardhuin, F.; Legrésy, B. Antarctic Icebergs Distributions, 2002–2010. J. Geophys. Res. Ocean. 2012, 117, C05004. [Google Scholar] [CrossRef]
- Cotté, C.; d’Ovidio, F.; Dragon, A.-C.; Guinet, C.; Lévy, M. Flexible Preference of Southern Elephant Seals for Distinct Mesoscale Features within the Antarctic Circumpolar Current. Prog. Oceanogr. 2015, 131, 46–58. [Google Scholar] [CrossRef]
- Ahmad, S.; Hossain, F.; Pavelsky, T.; Parkins, G.; Yelton, S.; Rodgers, M.; Little, S.; Haldar, D.; Ghafoor, S.; Khan, R.H.; et al. Understanding Volumetric Water Storage in Monsoonal Wetlands of Northeastern Bangladesh. Water Resour Res. 2020, 56, e2020WR027989. [Google Scholar] [CrossRef]
- Biswas, N.; Hossain, F.; Bonnema, M.; Lee, H.; Chishtie, F. Towards a Global Reservoir Assessment Tool for Predicting Hydrologic Impacts and Operating Patterns of Existing and Planned Reservoirs. Environ. Model. Softw. 2021, 140, 105043. [Google Scholar] [CrossRef]
- Yuan, C.; Gong, P.; Bai, Y. Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sens. 2020, 12, 770. [Google Scholar] [CrossRef]
- Hossain, F.; Maswood, M.; Siddique-E-Akbor, A.H.; Yigzaw, W.; Mazumdar, L.C.; Ahmed, T.; Hossain, M.; Shah-Newaz, S.M.; Limaye, A.; Lee, H.; et al. A Promising Radar Altimetry Satellite System for Operational Flood Forecasting in Flood-Prone Bangladesh. IEEE Geosci. Remote Sens. Mag. 2014, 2, 27–36. [Google Scholar] [CrossRef]
- Biswas, N.; Hossain, F.; Bonnema, M.; Okeowo, M.; Lee, H. An Altimeter Height Extraction Technique for Dynamically Changing Rivers of South and South-East Asia. Remote Sens. Environ. 2019, 221, 24–37. [Google Scholar] [CrossRef]
- Ahmad Zaman, A.; Hashim, F.; Yaakob, O. Satellite-Based Offshore Wind Energy Resource Mapping in Malaysia. J. Marine. Sci. Appl. 2019, 18, 114–121. [Google Scholar] [CrossRef]
- Jarihani, A.; Callow, J.; Johansen, K.; Gouweleeuw, B. Evaluation of Multiple Satellite Altimetry Data for Studying Inland Water Bodies and River Floods. J. Hydrol. 2013, 505, 78–90. [Google Scholar] [CrossRef]
- Yi, Y.; Kouraev, A.; Shum, C.; Vuglinsky, V.; Crétaux, J.; Calmant, S. The Performance of Altimeter Waveform Retrackers at Lake Baikal. TAO Terr. Atmos. Ocean. Sci. 2013, 24, 513–519. [Google Scholar] [CrossRef]
- Huang, Z. Lake Water Storage Changes over the Qinghai-Tibetan Plateau from Multi-mission Satellite Data and its Influencing Factors Analysis. Acta Geod. Cartogr. Sin. 2019, 48, 1071. [Google Scholar]
- Wan, X.; You, W.; Wang, H.; Fan, D. Terrestrial Water Storage Variations in Lake Victoria Basin from Multi-source Data. Chin. J. Geophys. 2021, 64, 441–454. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L.; Khan, A. Early Twenty-first Century Glacier Mass Losses in the Indus Basin Constrained by Density Assumptions. J. Hydrol. 2019, 574, 467–475. [Google Scholar] [CrossRef]
- Sheng, Y.; You, W.; Fan, D.; Gao, S. Impact of Glacial Isostatic Adjustment Model on Global Mass Changes. J. Geod. Geodyn. 2020, 40, 1133–1138. [Google Scholar] [CrossRef]
- Zakharova, E.; Agafonova, S.; Duguay, C.; Frolova, N.; Kouraev, A. River Ice Phenology and Thickness from Satellite Altimetry: Potential for Ice Bridge Road Operation and Climate Studies. Cryosphere 2021, 15, 5387–5407. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Huang, Q.; Zhao, F. The State and Fate of Lake Ice Thickness in the Northern Hemisphere. Sci. Bull. 2022, 67, 537–546. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Duan, S.; Tian, M.; Yi, D. Water Level Variation of Lake Qinghai from Satellite and in Situ Measurements under Climate Change. J. Appl. Remote Sens 2011, 5, 053532. [Google Scholar] [CrossRef]
- Brooks, R. Lake Elevation from Satellite Radar Altimetry from a Validation Area in Canada; Report; Geoscience Research, Corporation: Salisbury, MD, USA, 1982. [Google Scholar]
- Birkett, C. Radar Altimetry: A New Concept in Monitoring Lake Level Changes. EOS Trans. Am. Geophys. Union 1994, 75, 273–275. [Google Scholar] [CrossRef]
- Ponchaut, F.; Cazenave, A. Continental Lake Level Variations from Topex/Poseidon (1993–1996). Earth Planet. Sci. 1998, 326, 13–20. [Google Scholar] [CrossRef]
- Birkett, C. Synergistic Remote Sensing of Lake Chad: Variability of Basin Inundation. Remote Sens. Environ. 2000, 72, 218–236. [Google Scholar] [CrossRef]
- Mercier, F.; Cazenave, A.; Maheu, C. Interannual Lake Level Fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with Ocean–atmosphere Interactions over the Indian Ocean. Glob. Planet. Change 2002, 32, 141–163. [Google Scholar] [CrossRef]
- Medina, C.; Gomez-Enri, J.; Alonso, J.; Villares, P. Water Level Fluctuations Derived from ENVISAT Radar Altimeter (RA-2) and In-situ Measurements in a Subtropical Waterbody: Lake Izabal (Guatemala). Remote Sens. Environ. 2008, 112, 3604–3617. [Google Scholar] [CrossRef]
- Plengsaeng, B.; Wehn, U.; van der Zaag, P. Data-Sharing Bottlenecks in Transboundary Integrated Water Resources Management: A Case Study of the Mekong River Commission’s Procedures for Data Sharing in the Thai Context. Water Int. 2014, 39, 933–951. [Google Scholar] [CrossRef]
- Yuan, C.; Gong, P.; Zhang, H.; Guo, H.; Pan, B. Monitoring Water Level Changes from Retracked Jason-2 Altimetry Data: A Case Study in the Yangtze River, China. Remote Sens. Lett. 2017, 8, 399–408. [Google Scholar] [CrossRef]
- Li, P.; Li, H. Monitoring Lake Level Variations in Dongting Lake Basin over 2003-2017 Using Multi-mission Satellite Altimetry Data. Earth Sci. 2020, 45, 1956–1966. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.; Fleischmann, A.; Papa, F.; Paiva, R.; Wongchuig, S.; Melack, J.; Moreira, A.; Pairs, A.; Ruhoff, A.; Barbosa, C.; et al. Amazon Hydrology from Space: Scientific Advances and Future Challenges. Rev. Geophys. 2021, 59, e2020RG000728. [Google Scholar] [CrossRef]
- Bonnema, M.; Hossain, F. Inferring Reservoir Operating Patterns across the Mekong Basin Using Only Space Observations. Water Resour. Res. 2017, 53, 3791–3810. [Google Scholar] [CrossRef]
- Iqbal, N.; Hossain, F.; Lee, H.; Akhter, G. Integrated Groundwater Resource Management in Indus Basin Using Satellite Gravimetry and Physical Modeling Tools. Environ. Monit. Assess. 2017, 189, 128. [Google Scholar] [CrossRef] [PubMed]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-first Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Zaidi, A.; Vignudelli, S.; Khero, Z.; Ghauri, B.; Muzaffer, R.; Naeem, B.; Panhwar, V.; Zafar, S.; Haque, S. Indus River Water Level Monitoring Using Satellite Radar Altimetry. Adv. Space Res. 2021, 68, 641–651. [Google Scholar] [CrossRef]
- Eldardiry, H.; Hossain, F. Understanding Reservoir Operating Rules in the Transboundary Nile River Basin Using Macroscale Hydrologic Modeling with Satellite Measurements. J. Hydrometeorol. 2019, 20, 2253–2269. [Google Scholar] [CrossRef]
- Muala, E.; Mohamed, Y.; Duan, Z.; Van der Zaag, P. Estimation of Reservoir Discharges from Lake Nasser and Roseires Reservoir in the Nile Basin using Satellite Altimetry and Imagery Data. Remote Sens. 2014, 6, 7522–7545. [Google Scholar] [CrossRef]
- Fielding, L.; Najman, Y.; Millar, I.; Butterworth, P.; Garzanti, E.; Vezzoli, G.; Barfod, D.; Kneller, B. The Initiation and Evolution of the River Nile. Earth Planet. Sci. Lett. 2018, 489, 166–178. [Google Scholar] [CrossRef]
- Khaki, M.; Awange, J. Altimetry-derived Surface Water Data Assimilation over the Nile Basin. Sci. Total Environ. 2020, 735, 139008. [Google Scholar] [CrossRef]
- Hwang, C.; Cheng, Y.; Yang, W.; Zhang, G.; Huang, Y.; Shen, W.; Pan, Y. Lake Level Changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat, and Jason-2 Altimeters. Terr. Atmos. Ocean. Sci. 2019, 30, 33–50. [Google Scholar] [CrossRef]
- Deng, X.; Wang, R.; Peng, F.; Yang, Y.; Mo, N. Retracking Cryosat-2 Data in SARIn and LRM Modes for Plateau Lakes: A Case Study for Tibetan and Dianchi Lakes. Remote Sens. 2021, 13, 1078. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. A New Retracking Technique for Brown Peaky Altimetric Waveforms. Mar. Geod. 2018, 41, 99–125. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, H.; Luo, Z.; Shum, C.; Tseng, K.-H.; Zhong, B. Improving Jason-2 Sea Surface Heights Within 10 Km Offshore by Retracking Decontaminated Waveforms. Remote Sens. 2017, 9, 1077. [Google Scholar] [CrossRef]
- Guo, J.; Gao, Y.; Chang, X.; Hwang, C. Optimal Threshold Algorithm of EnviSat Waveform Retracking over Coastal Sea. Chin. J. Geophys. 2010, 53, 807–814. [Google Scholar] [CrossRef]
- Zhai, Z.; Sun, Z. Waveform Retracking Analysis of Jason-2 Altimeter Data in the Four Chinese Sea Area. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 1499–1503. [Google Scholar] [CrossRef]
- Soudarin, L.; Mertz, F.; Rosmorduc, V.; Schgounn, C.; Guinle, T.; Birol, F.; Niño, F. Aviso+: What’s New on the Reference Portal in Satellite Altimetry? EGU Gen. Assem. Conf. Abstr. 2020, 19669. [Google Scholar] [CrossRef]
- Scharroo, R.; Leuliette, E.; Lillibridge, J.; Byrne, D.; Naeije, M.; Mitchum, G. RADS: Consistent Multi-mission Products. In 20 Years of Progress in Radar Altimatry; ESA Communications: Oakville, ON, Canda, 2013; p. 710. [Google Scholar] [CrossRef]
- Scharroo, R.; Leuliette, E.; Naeije, M.; Martin-Puig, C.; Pires, N. RADS Version 4: An Efficient Way to Analyse the Multi-mission Altimeter Database. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume SP-740, pp. 9–13. [Google Scholar]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Göttl, F.; Boergens, E. OpenADB: An Open Altimeter Database Providing High-quality Altimeter Data and Products. In Proceedings of the Ocean Surface Topography Science Team Meeting, Lake Constance, Germany, 28–31 October 2014. [Google Scholar] [CrossRef]
- Berry, P.; Smith, R.; Salloway, M.; Quessou, M.; Benveniste, J. 20 Years of River and Lake Monitoring from Multi-Mission Satellite Radar Altimetry. In 20 Years of Progress in Radar Altimatry; ESA Communications: Oakville, ON, Canda, 2013; ISBN 978-92-9221-274-2. [Google Scholar]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An Innovative Approach for Estimating Water Level Time Series over Inland Waters Using Multi-mission Satellite Altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Kittel, C.; Jiang, L.; Tøttrup, C.; Bauer-Gottwein, P. Sentinel-3 Radar Altimetry for River Monitoring–A Catchment-scale Evaluation of Satellite Water Surface Elevation from Sentinel-3A and Sentinel-3B. Hydrol. Earth Syst. Sci. 2021, 25, 333–357. [Google Scholar] [CrossRef]
- Tourian, M.; Elmi, O.; Shafaghi, Y.; Behnia, S.; Saemian, P.; Schlesinger, R.; Sneeuw, N. HydroSat: Geometric Quantities of the Global Water Cycle from Geodetic Satellites. Earth Syst. Sci. Data 2022, 14, 2463–2486. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Deeb, E.; Ricko, M.; Beckley, B.; Yang, X. G-REALM: A Lake/Reservoir Monitoring Tool for Water Resources and Regional Security Assessment. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Benveniste, J.; Rosmorduc, V.; Niemeijer, S.; Picot, N. Basic Radar Altimetry Toolbox. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 3, pp. III-895–III-898. [Google Scholar] [CrossRef]
- Denbo, D. NcBrowse: A Graphical NetCDF File Browser. In Proceedings of the 17th Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Albuquerque, MX, USA, 14–19 January 2001. [Google Scholar]
- Zender, C. Analysis of Self-describing Gridded Geoscience Data with NetCDF Operators (NCO). Environ. Model. Softw. 2008, 23, 1338–1342. [Google Scholar] [CrossRef]
- Farzaneh, S.; Parvazi, K. ATSAT: A MATLAB-based Software for Multi-satellite Altimetry Data Analysis. Earth Sci. Infor-Matics 2021, 14, 1665–1678. [Google Scholar] [CrossRef]
- Paris, A.; Dias de Paiva, R.; Santos da Silva, J.; Medeiros Moreira, D.; Calmant, S.; Garambois, P.-A.; Collischonn, W.; Bonnet, M.-P.; Seyler, F. Stage-Discharge Rating Curves Based on Satellite Altimetry and Modeled Discharge in the Amazon Basin. Water Resour. Res. 2016, 52, 3787–3814. [Google Scholar] [CrossRef]
- Paiva, R.; Collischonn, W.; Bonnet, M.-P.; de Gonçalves, L.; Calmant, S.; Getirana, A.; Santos da Silva, J. Assimilating in Situ and Radar Altimetry Data into a Large-Scale Hydrologic-Hydrodynamic Model for Streamflow Forecast in the Amazon. Hydrol. Earth Syst. Sci. 2013, 17, 2929–2946. [Google Scholar] [CrossRef]
- Papa, F.; Biancamaria, S.; Lion, C.; Rossow, W. Uncertainties in Mean River Discharge Estimates Associated with Satellite Altimeter Temporal Sampling Intervals: A Case Study for the Annual Peak Flow in the Context of the Future SWOT Hydrology Mission. IEEE Geosci. Remote Sens. Lett. 2012, 9, 569–573. [Google Scholar] [CrossRef]
- Hossain, F.; Bonnema, M.; Srinivasan, M.; Beighley, E.; Andral, A.; Doorn, B.; Jayaluxmi, I.; Jayasinghe, S.; Kaheil, Y.; Fatima, B.; et al. The Early Adopter Program for the Surface Water Ocean Topography Satellite Mission: Lessons Learned in Building User Engagement during the Prelaunch Era. Bull. Am. Meteorol. Soc. 2020, 101, E259–E264. [Google Scholar] [CrossRef]
- GODAE OceanView. New Frontiers in Operational Oceanography; Chassignet, E., Pascual, A., Tintoré, J., Verron, J., Eds.; CreateSpace: Scotts Valley, CA, USA, 2018; ISBN 978-1-72054-997-0. [Google Scholar]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Barth, A.; Alvera-Azcarate, A.; Licer, M.; Beckers, J.-M. DINCAE 1.0: A Convolutional Neural Network with Error Estimates to Reconstruct Sea Surface Temperature Satellite Observations. Geosci. Model Dev. 2020, 13, 1609–1622. [Google Scholar] [CrossRef]
- Song, T.; Jiang, J.; Li, W.; Xu, D. A Deep Learning Method with Merged LSTM Neural Networks for SSHA Prediction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2853–2860. [Google Scholar] [CrossRef]
- Rasp, S.; Dueben, P.; Scher, S.; Weyn, J.; Mouatadid, S.; Thuerey, N. WeatherBench: A Benchmark Dataset for Data-driven Weather Forecasting. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002203. [Google Scholar] [CrossRef]
- Kim, G.; Son, Y.; Hwang, C. Determination of New National Groundwater Monitoring Sites Using Artificial Neural Network Model in South Korea. Geosci. J. 2022, 26, 513–528. [Google Scholar] [CrossRef]
- Abdu, F.; Zhang, Y.; Fu, M.; Li, Y.; Deng, Z. Application of Deep Learning on Millimeter-Wave Radar Signals: A Review. Sensors 2021, 21, 1951. [Google Scholar] [CrossRef]
- Frappart, F.; Minh, K.; l’Hermitte, J.; Cazenave, A.; Ramillien, G.; Le Toan, T.; Mognard-Campbell, N. Water Volume Change in the Lower Mekong from Satellite Altimetry and Imagery Data. Geophys. J. Int. 2006, 167, 570–584. [Google Scholar] [CrossRef]
- Hwang, C.; Cheng, Y.-S.; Han, J.; Kao, R.; Huang, C.-Y.; Wei, S.-H.; Wang, H. Multi-Decadal Monitoring of Lake Level Changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-Family Altimeters: Climate Implication. Remote Sens. 2016, 8, 446. [Google Scholar] [CrossRef]
- Hwang, C.; Yang, Y.; Kao, R.; Han, J.; Shum, C.; Galloway, D.; Sneed, M.; Hung, W.; Cheng, Y.; Li, F. Time-varying Land Subsidence Detected by Radar Altimetry: California, Taiwan and North China. Sci. Rep. 2016, 6, 28160. [Google Scholar] [CrossRef] [PubMed]
- Huynh-The, T.; Doan, V.; Hua, C.; Pham, Q.; Nguyen, T.; Kim, D. Accurate LPI Radar Waveform Recognition with CWD-TFA for Deep Convolutional Network. IEEE Wirel. Commun. Lett. 2021, 10, 1638–1642. [Google Scholar] [CrossRef]
- Xia, M.; Chen, S.; Yang, X. New Optimization Method Based on Neural Networks for Designing Radar Waveforms With Good Correlation Properties. IEEE Access 2021, 9, 91314–91323. [Google Scholar] [CrossRef]
- Geng, Z.; Yan, H.; Zhang, J.; Zhu, D. Deep-learning for Radar: A Survey. IEEE Access 2021, 9, 141800–141818. [Google Scholar] [CrossRef]
- Fu, L.-L. Determining ocean circulation and sea level from satellite altimetry: Progress and challenges. In Oceans From Space; Springer: Berlin/Heidelberg, Germany, 2010; pp. 147–163. [Google Scholar] [CrossRef]
- Mertikas, S.; Donlon, C.; Féménias, P.; Mavrocordatos, C.; Galanakis, D.; Tripolitsiotis, A.; Frantzis, X.; Kokolakis, C.; Tziavos, I.N.; Vergos, G.; et al. Absolute Calibration of the European Sentinel-3A Surface Topography Mission over the Permanent Facility for Altimetry Calibration in West Crete, Greece. Remote Sens. 2018, 10, 1808. [Google Scholar] [CrossRef]
- Mertikas, S.; Tripolitsiotis, A.; Donlon, C.; Mavrocordatos, C.; Féménias, P.; Borde, F.; Frantzis, X.; Kokolakis, C.; Guinle, T.; Vergos, G.; et al. The ESA Permanent Facility for Altimetry Calibration: Monitoring Performance of Radar Altimeters for Sentinel-3A, Sentinel-3B and Jason-3 Using Transponder and Sea-Surface Calibrations with FRM Standards. Remote Sens. 2020, 12, 2642. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, B.; Wang, W.; Yu, D. Limitations of Satellite Altimetry and Future Technology Improvements. J. Geod. Geodyn. 2009, 29, 91–95. [Google Scholar] [CrossRef]
- Wang, H.; Chu, Y.; Huang, Z.; Hwang, C.; Chao, N. Robust, Long-Term Lake Level Change from Multiple Satellite Altimeters in Tibet: Observing the Rapid Rise of Ngangzi Co over a New Wetland. Remote Sens. 2019, 11, 558. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.B.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics from Satellite Altimetry: Progress and Challenges. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, M.; Zhang, H.; Li, J.; Jiang, W.; Zhang, S.; Hu, M. Analysis of Vertical Deflections Determined from One Cycle of Simulated SWOT Wide-swath Altimeter Data. J. Geod. 2022, 96, 30. [Google Scholar] [CrossRef]
- Yang, L.; Lin, M.; Zhang, Y.; Liu, Q.; Pan, D. Improving the Quality of JASON-1 Altimetry Data by Waveform Retracking in Coastal Waters off China. Acta Oceanol. Sin. 2010, 32, 91–101. [Google Scholar]
- Passaro, M.; Rose, S.; Andersen, O.; Boergens, E.; Calafat, F.; Dettmering, D.; Benveniste, J. ALES+: Adapting a Homogenous Ocean Retracker for Satellite Altimetry to Sea Ice Leads, Coastal and Inland Waters. Remote Sens. Environ. 2018, 211, 456–471. [Google Scholar] [CrossRef]
- Borsa, A.; Fricker, H.; Brunt, K. A Terrestrial Validation of ICESat Elevation Measurements and Implications for Global Reanalyses. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6946–6959. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z. Waveform Decontamination for Improving Satellite Radar Altimeter Data Over Nearshore Area: Up-graded Algorithm and Validation. Front. Earth Sci. 2021, 9, 748401. [Google Scholar] [CrossRef]
- Ke, B.; Xu, J.; Yang, L.; Zhang, L.; Zhang, C. Optimal Gaussian Low Pass Filtering Radius Selection for Determining Offshore Sea Surface Height with Jason-2 Data. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1309–1314. [Google Scholar] [CrossRef]
- Gao, X.; Jin, T.; Huang, H. Analysis on the Accuracy of Waveform Retracking for the Coastal Synthetic Aperture Radar Altimeter Data. J. Geod. Geodyn. 2021, 41, 56–61. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. Validation of Sentinel-3A SAR Mode Sea Level Anomalies Around the Australian Coastal Region. Remote Sens. Environ. 2020, 237, 111548. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X. Improving Precision of High-rate Altimeter Sea Level Anomalies by Removing the Sea State Bias and Intra-1-Hz Covariant Error. Remote Sens. Environ. 2020, 251, 112081. [Google Scholar] [CrossRef]
- Peng, F.; Deng, X.; Cheng, X. Australian Coastal Sea Level Trends over 16 yr of Reprocessed Jason Altimeter 20-Hz Data Sets. J. Geophys. Res. Ocean. 2022, 127, e2021JC018145. [Google Scholar] [CrossRef]
- Birkett, C. The Contribution of TOPEX/POSEIDON to the Global Monitoring of Climatically Sensitive Lakes. J. Geophys. Res. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Birkett, C. Contribution of the TOPEX NASA Radar Altimeter to the Global Monitoring of Large Rivers and Wetlands. Water Resour. Res. 1998, 34, 1223–1239. [Google Scholar] [CrossRef]
- Getirana, A.; Peters-Lidard, C. Estimating Water Discharge from Large Radar Altimetry Datasets. Hydrol. Earth Syst. Sci. 2013, 17, 923–933. [Google Scholar] [CrossRef]
- Abileah, R.; Scozzari, A.; Vignudelli, S. Envisat RA-2 Individual Echoes: A Unique Dataset for a Better Understanding of Inland Water Altimetry Potentialities. Remote Sens. 2017, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Biancamaria, S.; Lettenmaier, D.; Pavelsky, T. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2016, 37, 307–337. [Google Scholar] [CrossRef]
- Thakur, P.; Garg, V.; Kalura, P.; Agrawal, B.; Sharma, V.; Mohapatra, M.; Kalia, M.; Aggarwal, S.; Calmant, S.; Ghosh, S.; et al. Water Level Status of Indian Reservoirs: A Synoptic View from Altimeter Observations. Adv. Space Res. 2021, 68, 619–640. [Google Scholar] [CrossRef]
- Dubey, A.; Gupta, P.; Dutta, S.; Singh, R. Water Level Retrieval Using SARAL/AltiKa Observations in the Braided Brahmaputra River, Eastern India. Mar. Geod. 2015, 38, 549–567. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling. Remote Sens. 2013, 5, 4145–4162. [Google Scholar] [CrossRef]
- Dhote, P.; Thakur, P.; Domeneghetti, A.; Chouksey, A.; Garg, V.; Aggarwal, S.; Chauhan, P. The Use of SARAL/AltiKa Altimeter Measurements for Multi-Site Hydrodynamic Model Validation and Rating Curves Estimation: An Application to Brahmaputra River. Adv. Space Res. 2021, 68, 691–702. [Google Scholar] [CrossRef]
- Getirana, A.; Boone, A.; Yamazaki, D.; Mognard, N. Automatic Parameterization of a Flow Routing Scheme Driven by Radar Altimetry Data: Evaluation in the Amazon Basin. Water Resour. Res. 2013, 49, 614–629. [Google Scholar] [CrossRef]
- Coe, M.; Costa, M.; Botta, A.; Birkett, C. Long-Term Simulations of Discharge and Floods in the Amazon Basin. J. Geophys. Res. 2002, 107, LBA-11. [Google Scholar] [CrossRef]
- Frappart, F.; Papa, F.; Santos da Silva, J.; Ramillien, G.; Prigent, C.; Seyler, F.; Calmant, S. Surface Freshwater Storage and Dynamics in the Amazon Basin during the 2005 Exceptional Drought. Environ. Res. Lett. 2012, 7, 044010. [Google Scholar] [CrossRef]
- Melo, D.; Getirana, A. Radar Altimetry as a Proxy for Determining Terrestrial Water Storage Variability in Tropical Basins. Remote Sens. 2019, 11, 2487. [Google Scholar] [CrossRef]
- An, Y.; Zhang, Y.; Yan, X. An Integrated Bayesian and Machine Learning Approach Application to Identification of Groundwater Contamination Source Parameters. Water 2022, 14, 2447. [Google Scholar] [CrossRef]
- Fablet, R.; Verron, J.; Mourre, B.; Chapron, B.; Pascual, A. Improving Mesoscale Altimetric Data from A Multitracer Convolutional Processing of Standard Satellite-derived Products. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2518–2525. [Google Scholar] [CrossRef]
- Gini, F. Grand Challenges in Radar Signal Processing. Front. Signal Process. 2021, 1, 664232. [Google Scholar] [CrossRef]
- Carotenuto, V.; De Maio, A. A Clustering Approach for Jamming Environment Classification. IEEE Trans. Aerosp. Electron. Syst. 2021, 27, 1903–1918. [Google Scholar] [CrossRef]
- Institution of Engineering and Technology. Radar Waveform Design Based on Optimization Theory; Cui, G., De Maio, A., Farina, A., Li, J., Eds.; Scitech Publishing: Stevenage, UK, 2020. [Google Scholar]
- Sun, T.; Cheng, W.; Abdelkareem, M.; Al-Arifi, N. Mapping Prospective Areas of Water Resources and Monitoring Land Use/Land Cover Changes in an Arid Region Using Remote Sensing and GIS Techniques. Water 2022, 14, 2435. [Google Scholar] [CrossRef]
- Biancamaria, S.; Hossain, F.; Lettenmaier, D. Forecasting Transboundary River Water Elevations from Space. Geophys. Res. Lett. 2011, 38, L11401. [Google Scholar] [CrossRef]
- Hossain, F.; Siddique-E-Akbor, A.; Yigzaw, W.; Shah-Newaz, S.; Hossain, M.; Mazumder, L.; Ahmed, T.; Shum, C.; Lee, H.; Biancamaria, S.; et al. Crossing the “Valley of Death”: Lessons Learned from Implementing an Operational Satellite-Based Flood Forecasting System. Bull. Amer. Meteor. Soc. 2014, 95, 1201–1207. [Google Scholar] [CrossRef]
- Yucel, I.; Onen, A.; Yilmaz, K.; Gochis, D. Calibration and Evaluation of a Flood Forecasting System: Utility of Numerical Weather Prediction Model, Data Assimilation and Satellite-Based Rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef]
- Blumstein, D.; Biancamaria, S.; Guérin, A.; Maisongrande, P. A Potential Constellation of Small Altimetry Satellites Dedicated to Continental Surface Waters (SMASH Mission). In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Lopez, T.; Al Bitar, A.; Biancamaria, S.; Güntner, A.; Jäggi, A. On the Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales. Surv. Geophys. 2020, 41, 1461–1487. [Google Scholar] [CrossRef]
- Ovando, A.; Martinez, J.; Tomasella, J.; Rodriguez, D.; von Randow, C. Multi-temporal Flood Mapping and Satellite Altimetry Used to Evaluate the Flood Dynamics of the Bolivian Amazon Wetlands. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 27–40. [Google Scholar] [CrossRef]
- Park, E. Characterizing Channel-floodplain Connectivity Using Satellite Altimetry: Mechanism, Hydrogeomorphic Control, and Sediment Budget. Remote Sens. Environ. 2020, 243, 111783. [Google Scholar] [CrossRef]
- Park, E.; Emadzadeh, A.; Alcântara, E.; Yang, X.; Ho, H. Inferring Floodplain Bathymetry Using Inundation Frequency. J. Environ. Manag. 2020, 273, 111138. [Google Scholar] [CrossRef]
- Chen, J.; Tapley, B.; Wilson, C.; Cazenave, A.; Seo, K.-W.; Kim, J.-S. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements. Geophys. Res. Lett. 2020, 47, e2020GL090656. [Google Scholar] [CrossRef]
- Chen, W.; Zhong, M.; Feng, W.; Wang, C.; Li, W.; Liang, L. Using GRACE/GRACE-FO and Swarm to Estimate Ice-sheets Mass Loss in Antarctica and Greenland during 2002–2020. Chin. J. Geophys. 2022, 65, 952–964. [Google Scholar] [CrossRef]
- Sasgen, I.; Boergens, E.; Dahle, C.; Döhne, T.; Groh, A.; Dobslaw, H.; Reißland, S.; Flechtner, F. GravIS Portal: User-friendly Ice Mass Variations in Greenland and Antarctica from GRACE and GRACE-FO. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-6961. [Google Scholar] [CrossRef]
- Zwally, H.; Robbins, J. New Insights to Antarctic Glacial History and Earth Dynamics from Integration of Satellite Gravimetry and Altimetry Measurements of Mass Changes. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- The Earth Science Communications. NASA Renews Focus on Earth’s Frozen Regions. Global S&T Development Trend Analysis Platform of Resources and Environment. 2018. Available online: https://climate.nasa.gov/news/2701/nasa-renews-focus-on-earths-frozen-regions/ (accessed on 1 June 2022).
- Beckers, J.; Casey, J.; Haas, C. Retrievals of Lake Ice Thickness from Great Slave Lake and Great Bear Lake Using CryoSat-2. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3708–3720. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. Arctic Snow Depth, Ice Thickness, and Volume from ICESat-2 and CryoSat-2: 2018–2021. Geophys. Res. Lett. 2022, 49, e2021GL097448. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Liu, A. Snow Depth Retrieval from Spaceborne LiDAR ICESat-2. J. Glaciol. Geocryol. 2022, 44, 1091–1099. [Google Scholar]
- Sun, M.; Liu, X.; Wang, H.; Yuan, J.; Li, C.; Guo, J. Monitoring Lake Level Change in La-ang Co from 1992 to 2020 Using Multi- altimeter Data. Natl. Remote Sens. Bull. 2022, 26, 126–137. [Google Scholar] [CrossRef]
- Yi, S.; Song, C.; Heki, K.; Kang, S.; Wang, Q.; Chang, L. Satellite-observed Monthly Glacier and Snow Mass Changes in Southeast Tibet: Implication for Substantial Meltwater Contribution to the Brahmaputra. Cryosphere 2020, 14, 2267–2281. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Yao, Z.; Liu, Z. Variations in Glacier Volume and Snow Cover and their Impact on Lake Storage in the Paiku Co Basin, in the Central Himalayas. Hydrol. Process. 2020, 34, 1920–1933. [Google Scholar] [CrossRef]
Satellite | Agency | Service Period | Frequency Used (Band) | Repetitivity (Days) | Inclination (°) | |
---|---|---|---|---|---|---|
Past missions | Skylab [27] | NASA | 1973 | Ku | — | 50 |
GEOS-3 [28] | NASA | 1975–1979 | Ku | 23 | 115 | |
Seasat [29] | NASA | 1978 | Ku | 17 | 108 | |
Geosat [30] | U.S.Navy | 1985–1990 | Ku | 17 | 108.1 | |
ERS-1 [31] | ESA | 1991–2000 | Ku | 35 | 98.52 | |
T/P [32] | NASA/CNES | 1992–2006 | Ku and C | 10 | 66 | |
ERS-2 [31] | ESA | 1995–2011 | Ku | 35 | 98.52 | |
GFO [33] | U.S.Navy /NOAA | 1998–2008 | Ku | 17 | 108 | |
Jason-1 [34] | CNES/NASA | 2001–2013 | Ku and C | 10 | 66 | |
Envisat [35] | ESA | 2002–2012 | Ku and S | 35 | 98.55 | |
ICESat-1 [36] | NASA | 2003–2010 | 1064 nm and 532 nm | 183 | 94 | |
Jason-2 [37] | CNES/NASA/ Eumetsat/NOAA | 2008–2019 | Ku and C | 10 | 66 | |
HY-2A [38] | CAST | 2011–2020 | Ku and C | 14 | 99.34 | |
Tiangong-2 [39] | CAST | 2016–2018 | Ku | — | 42 | |
Current missions | Cryosat-2 [33] | ESA | 2010–now | Ku | 369 | 92 |
Saral [40] | ISRO/CNES | 2013–now | Ka | 35 | 98.55 | |
Jason-3 [41] | CNES/NASA /Eumetsat/NOAA | 2016–now | Ku and C | 10 | 66 | |
Sentinel-3A [41] | ESA | 2016–now | Ku and C | 27 | 98.65 | |
ICESat-2 [36] | NASA | 2018–now | 532 nm | 91 | 92 | |
Sentinel-3B [42] | ESA | 2018–now | Ku and C | 27 | 98.65 | |
CFOSAT [43] | CNSA/CNES | 2018–now | Ku | — | 90 | |
HY-2B [44] | CAST | 2018–now | Ku and C | 14 and 168 | 99.34 | |
HY-2C [45] | CAST | 2020–now | Ku and C | 10 | 66 | |
HY-2D [46,47] | CAST | 2021–now | Ku and C | 10 | 66 | |
Sentinel-6MF [48] | ESA/Eumetsat/EU/ CNES/NOAA/ NASA | 2020–now | Ku and C | 10 | 66 | |
Future missions | SWOT [49] | CNES/NASA/ CSA/UKSA | 5 December 2022 [50] | Ka | 21 | 77.6 |
Data Access | Distributed By | Resources |
---|---|---|
AVISO+ [106] | AVISO, CNES, CTOH | https://www.aviso.altimetry.fr/en/home.html (accessed on 5 June 2022) |
RADS [107,108] | NOAA, Altimetrics | http://rads.tudelft.nl/rads/rads.shtml (accessed on 5 June 2022) |
OpenADB [109] | DGFI-TUM | https://openadb.dgfi.tum.de/en/ (accessed on 5 June 2022) |
Aviso-CNES [106] | AVISO, CNES | https://aviso-data-center.cnes.fr/ (accessed on 5 June 2022) |
COSDSC | NSOAS | https://osdds.nsoas.org.cn/ (accessed on 5 June 2022) |
CTOH [106] | CTOH | http://ctoh.legos.obs-mip.fr/ (accessed on 5 June 2022) |
Products | Resources | Applications |
---|---|---|
River and Lake [110] | http://altimetry.esa.int/riverlake/shared/main.html (accessed on 6 June 2022) | Rivers, lakes, and reservoirs monitoring |
DAHITI [111] | https://dahiti.dgfi.tum.de/en/ (accessed on 6 June 2022) | Rivers and lakes monitoring |
Hydroweb [112] | http://hydroweb.theia-land.fr/ (accessed on 6 June 2022) | Lakes and reservoirs monitoring |
HydroSat [113] | http://hydrosat.gis.uni-stuttgart.de (accessed on 6 June 2022) | Rivers, lakes, and reservoirs monitoring |
G-REALM [114] | https://ipad.fas.usda.gov/cropexplorer/global_reservoir/ (accessed on 6 June 2022) | Lakes and reservoirs monitoring |
Code Access | Resources | Functions | |||
---|---|---|---|---|---|
Preprocessing | Processing | Analysis | Visualization | ||
BRAT [115] | http://www.altimetry.info/ (accessed on 6 June 2022) | × | √ | √ | √ |
ncBrowse [116] | https://www.pmel.noaa.gov/epic/java/ncBrowse/ (accessed on 6 June 2022) | √ | × | × | √ |
Panoply | http://www.giss.nasa.gov/tools/panoply/ (accessed on 6 June 2022) | × | × | × | √ |
NCO [117] | http://nco.sourceforge.net/ (accessed on 6 June 2022) | √ | × | × | × |
ATSAT [118] | https://sglab.ut.ac.ir/software-and-data/ (accessed on 6 June 2022) | × | √ | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xie, X.; Li, W.; van der Meijde, M.; Yan, H.; Huang, Y.; Li, X.; Wang, Q. Monitoring of Hydrological Resources in Surface Water Change by Satellite Altimetry. Remote Sens. 2022, 14, 4904. https://doi.org/10.3390/rs14194904
Li W, Xie X, Li W, van der Meijde M, Yan H, Huang Y, Li X, Wang Q. Monitoring of Hydrological Resources in Surface Water Change by Satellite Altimetry. Remote Sensing. 2022; 14(19):4904. https://doi.org/10.3390/rs14194904
Chicago/Turabian StyleLi, Wei, Xukang Xie, Wanqiu Li, Mark van der Meijde, Haowen Yan, Yutong Huang, Xiaotong Li, and Qianwen Wang. 2022. "Monitoring of Hydrological Resources in Surface Water Change by Satellite Altimetry" Remote Sensing 14, no. 19: 4904. https://doi.org/10.3390/rs14194904
APA StyleLi, W., Xie, X., Li, W., van der Meijde, M., Yan, H., Huang, Y., Li, X., & Wang, Q. (2022). Monitoring of Hydrological Resources in Surface Water Change by Satellite Altimetry. Remote Sensing, 14(19), 4904. https://doi.org/10.3390/rs14194904