Oceanic Eddy Detection and Analysis from Satellite-Derived SSH and SST Fields in the Kuroshio Extension
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. SSHA-Based Eddy Identification and Tracking
- (1)
- The SSHA values of all internal grids are greater (less) than that of the outmost contour for anticyclonic (cyclonic) eddies.
- (2)
- The number of internal grids is ≥8 and <1000.
- (3)
- There is only one local SSHA maximum (minimum) for anticyclonic (cyclonic) eddies. The local extremum point is seen as an eddy center.
- (4)
- (5)
- The distance between any two internal grids is <600 km for avoiding enclose elongated region.
2.2.2. SSTA-Based Eddy Identification and Matching
2.2.3. Eddy Subsurface Signal from Argo Profiles
3. The Correlation between SSH and SST Data in Surface Signals of Mesoscale Eddies
3.1. Eddy Signals in SSHA and SSTA Fields
3.2. Eddy Signals in SSHA/SSTA Field and Subsurface Argo Profiles
4. Eddy Result Comparison from SSHA and SSTA Data
4.1. Eddy Number, Lifetime, and Propagation Distances
4.2. Eddy Geographical Distribution and Polarity
4.3. Eddy Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, L.-L.; Cazenave, A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications (Google EBook). In Satellite Altimetry and Earth Sciences A Handbook of Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Robinson, I.S. Discovering the Ocean from Space; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Thonet, H.; Lemonnier, B.; Delmas, R. Automatic Segmentation of Oceanic Eddies on AVHRR Thermal Infrared Sea Surface Images. In Proceedings of the Oceans Conference Record (IEEE), San Diego, CA, USA, 9–12 October 1995; Volume 1. [Google Scholar]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Xu, C.; Shang, X.D.; Huang, R.X. Estimate of Eddy Energy Generation/Dissipation Rate in the World Ocean from Altimetry Data. Ocean Dyn. 2011, 61, 525–541. [Google Scholar] [CrossRef]
- Chaigneau, A.; Eldin, G.; Dewitte, B. Eddy Activity in the Four Major Upwelling Systems from Satellite Altimetry (1992–2007). Prog. Oceanogr. 2009, 83, 117–123. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global Heat and Salt Transports by Eddy Movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Xu, G.; Dong, C.; Liu, Y.; Gaube, P.; Yang, J. Chlorophyll Rings around Ocean Eddies in the North Pacific. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic Mass Transport by Mesoscale Eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef]
- Pascual, A.; Faugère, Y.; Larnicol, G.; le Traon, P.Y. Improved Description of the Ocean Mesoscale Variability by Combining Four Satellite Altimeters. Geophys. Res. Lett. 2006, 33, L02611. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Curchitser, E.N. Gulf Stream Eddy Characteristics in a High-Resolution Ocean Model. J. Geophys. Res. Oceans 2013, 118, 4474–4487. [Google Scholar] [CrossRef]
- le Traon, P.Y.; Dibarboure, G. An Illustration of the Contribution of the TOPEX/Poseidon—Jason-1 Tandem Mission to Mesoscale Variability Studies. Mar. Geodesy 2004, 27, 3–13. [Google Scholar] [CrossRef]
- Stegner, A.; le Vu, B.; Dumas, F.; Ghannami, M.A.; Nicolle, A.; Durand, C.; Faugere, Y. Cyclone-Anticyclone Asymmetry of Eddy Detection on Gridded Altimetry Product in the Mediterranean Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017475. [Google Scholar] [CrossRef]
- Jones, M.S.; Allen, M.; Guymer, T.; Saunders, M. Correlations between Altimetric Sea Surface Height and Radiometric Sea Surface Temperature in the South Atlantic. J. Geophys. Res. Earth Surf. 1998, 103, 8073–8087. [Google Scholar] [CrossRef]
- D’alimonte, D. Detection of Mesoscale Eddy-Related Structures through Iso-SST Patterns. IEEE Geosci. Remote Sens. Lett. 2009, 6, 189–193. [Google Scholar] [CrossRef]
- Dong, C.; Nencioli, F.; Liu, Y.; McWilliams, J.C. An Automated Approach to Detect Oceanic Eddies from Satellite Remotely Sensed Sea Surface Temperature Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1055–1059. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Chaigneau, A.; Roman-Stork, H.L. Eddy-Induced Temperature and Salinity Variability in the Arabian Sea. Geophys. Res. Lett. 2019, 46, 2734–2742. [Google Scholar] [CrossRef]
- le Goff, C.; Fablet, R.; Tandeo, P.; Autret, E.; Chapron, B. Spatio-Temporal Decomposition of Satellite-Derived SST-SSH Fields: Links between Surface Data and Ocean Interior Dynamics in the Agulhas Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5106–5112. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales. J. Phys. Oceanogr. 2005, 35, 2090–2103. [Google Scholar] [CrossRef]
- Ji, J.; Dong, C.; Zhang, B.; Liu, Y.; Zou, B.; King, G.P.; Xu, G.; Chen, D. Oceanic Eddy Characteristics and Generation Mechanisms in the Kuroshio Extension Region. J. Geophys. Res. Oceans 2018, 123, 8548–8567. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Qiu, B.; Chang, P.; Wu, L.; Wang, S.; Chen, Z.; Yang, Y. Decadal Variability of Eddy Characteristics and Energetics in the Kuroshio Extension: Unstable Versus Stable States. J. Geophys. Res. Oceans 2018, 123, 6653–6669. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Chang, P.; Shan, X.; Wang, S.; Wu, L.; Kurian, J. Mesoscale SST Dynamics in the Kuroshio-Oyashio Extension Region. J. Phys. Oceanogr. 2019, 49, 1339–1352. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I. Characteristics of Mesoscale Eddies in the Kuroshio-Oyashio Extension Region Detected from the Distribution of the Sea Surface Height Anomaly. J. Phys. Oceanogr. 2010, 40, 1018–1034. [Google Scholar] [CrossRef]
- Hausmann, U.; Czaja, A. The Observed Signature of Mesoscale Eddies in Sea Surface Temperature and the Associated Heat Transport. Deep Sea Res. Oceanogr. Res. Pap. 2012, 70, 60–72. [Google Scholar] [CrossRef]
- Leyba, I.M.; Saraceno, M.; Solman, S.A. Air-Sea Heat Fluxes Associated to Mesoscale Eddies in the Southwestern Atlantic Ocean and Their Dependence on Different Regional Conditions. Clim. Dyn. 2017, 49, 2491–2501. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Tan, W.; He, Y. Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sens. 2019, 11, 208. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zheng, Q.; Li, X. Characteristics of Global Ocean Abnormal Mesoscale Eddies Derived From the Fusion of Sea Surface Height and Temperature Data by Deep Learning. Geophys. Res. Lett. 2021, 48, e2021GL094772. [Google Scholar] [CrossRef]
- Ni, Q.; Zhai, X.; Jiang, X.; Chen, D. Abundant Cold Anticyclonic Eddies and Warm Cyclonic Eddies in the Global Ocean. J. Phys. Oceanogr. 2021, 51, 2793–2806. [Google Scholar] [CrossRef]
- Chaigneau, A.; le Texier, M.; Eldin, G.; Grados, C.; Pizarro, O. Vertical Structure of Mesoscale Eddies in the Eastern South Pacific Ocean: A Composite Analysis from Altimetry and Argo Profiling Floats. J. Geophys. Res. Oceans 2011, 116, C11025. [Google Scholar] [CrossRef]
- Yang, G.; Wang, F.; Li, Y.; Lin, P. Mesoscale Eddies in the Northwestern Subtropical Pacific Ocean: Statistical Characteristics and Three-Dimensional Structures. J. Geophys. Res. Oceans 2013, 118, 1906–1925. [Google Scholar] [CrossRef]
- Amores, A.; Melnichenko, O.; Maximenko, N. Coherent Mesoscale Eddies in the North Atlantic Subtropical Gyre: 3-D Structure and Transport with Application to the Salinity Maximum. J. Geophys. Res. Oceans 2017, 122, 23–41. [Google Scholar] [CrossRef]
- Dong, D.; Brandt, P.; Chang, P.; Schütte, F.; Yang, X.; Yan, J.; Zeng, J. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports. J. Geophys. Res. Oceans 2017, 122, 9795–9813. [Google Scholar] [CrossRef]
- AVISO. SSALTO/DUACS User Handbook: MSLA and (M)ADT Near-Real Time and Delayed Time Products. CLS-DOS-NT-06-034, Issue 5.0, Cnes, France, 2016. Available online: https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_duacs.pdf (accessed on 10 January 2021).
- Picot, N.; Lachiver, J.M.; Lambin, J.; Poisson, J.C.; Legeais, J.F.; Vernier, A.; Thibaut, P.; Lin, M.; Jia, Y. Towards An Operational Use Of Hy-2a In Ssalto/Duacs: Evaluation Of The Altimeter Performances Using Nsoas S-Igdr Data. In Proceedings of the Ocean Surface Topography Science Team Conference (OSTST), Boulder, CO, USA, 8–11 October 2013. [Google Scholar]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Banzon, V.F.; Reynolds, R.W.; Stokes, D.; Xue, Y. A 1/4°-Spatial-Resolution Daily Sea Surface Temperature Climatology Based on a Blended Satellite and in Situ Analysis. J. Clim. 2014, 27, 8221–8228. [Google Scholar] [CrossRef]
- Yi, J.; Du, Y.; Zhou, C.; Liang, F.; Yuan, M. Automatic Identification of Oceanic Multieddy Structures From Satellite Altimeter Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1555–1563. [Google Scholar] [CrossRef]
- Cui, W.; Yang, J.; Ma, Y. A Statistical Analysis of Mesoscale Eddies in the Bay of Bengal from 22–Year Altimetry Data. Acta Oceanol. Sin. 2016, 35, 16–27. [Google Scholar] [CrossRef]
- Dufau, C.; Orsztynowicz, M.; Dibarboure, G.; Morrow, R.; le Traon, P.Y. Mesoscale Resolution Capability of Altimetry: Present and Future. J. Geophys. Res. Oceans 2016, 121, 4910–4927. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, Z.; Wang, B. Multidecade Trends of Sea Surface Temperature, Chlorophyll-a Concentration, and Ocean Eddies in the Gulf of Mexico. Remote Sens. 2022, 14, 3754. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale Eddies off Peru in Altimeter Records: Identification Algorithms and Eddy Spatio-Temporal Patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Hou, Y. The Features and Interannual Variability Mechanism of Mesoscale Eddies in the Bay of Bengal. Cont. Shelf Res. 2012, 47, 178–185. [Google Scholar] [CrossRef]
- Zhang, C.H.; Li, H.L.; Liu, S.T.; Shao, L.J.; Zhao, Z.; Liu, H.W. Automatic Detection of Oceanic Eddies in Reanalyzed SST Images and Its Application in the East China Sea. Sci. China Earth Sci. 2015, 58, 2249–2259. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Descriptive Physical Oceanography: An Introduction, 6th ed.; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Zheng, S.; Du, Y.; Li, J.; Cheng, X. Eddy Characteristics in the South Indian Ocean as Inferred from Surface Drifters. Ocean Sci. 2015, 11, 361–371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Yang, J.; Jia, Y.; Zhang, J. Oceanic Eddy Detection and Analysis from Satellite-Derived SSH and SST Fields in the Kuroshio Extension. Remote Sens. 2022, 14, 5776. https://doi.org/10.3390/rs14225776
Cui W, Yang J, Jia Y, Zhang J. Oceanic Eddy Detection and Analysis from Satellite-Derived SSH and SST Fields in the Kuroshio Extension. Remote Sensing. 2022; 14(22):5776. https://doi.org/10.3390/rs14225776
Chicago/Turabian StyleCui, Wei, Jungang Yang, Yongjun Jia, and Jie Zhang. 2022. "Oceanic Eddy Detection and Analysis from Satellite-Derived SSH and SST Fields in the Kuroshio Extension" Remote Sensing 14, no. 22: 5776. https://doi.org/10.3390/rs14225776