Using Relative Projection Density for Classification of Terrestrial Laser Scanning Data with Unknown Angular Resolution
Abstract
:1. Introduction
- (1)
- Angular resolution is an important parameter in many density-adaptive methods, indicating how close two adjacent points are under a given distance. However, most current methods assume that it is a known parameter and directly take it into calculation [28,30,41,42,48]. Although the angular resolution can be obtained directly from the scanner settings, the condition with the unknown angular resolution is unavoidable, limiting the generality of the current methods.
- (2)
- Among the object extraction methods, many density-adaptive methods are designed for specific objects. The target objects are distinguished from other objects in the scene by defining a set of rules that take the geometric features into account, such as buildings [32,34,49,50], vehicles [29], or trees [36]. There is still a lack of feature design considering density variation in multi-class classification.
- (I)
- Focusing on the case when angular resolution is unknown, we present a stable method to estimate the angular resolution of TLS data, called the neighborhood analysis of randomly picked points (NARP), and
- (II)
- Based on the estimated angular resolution, we propose a grid-based feature called relative projection density, to adapt to the density variation in TLS data. In contrast to the commonly used projection density in previous studies [19,30,31,32,33,34,49], the relative projection density can weaken the effect of density variation and strengthen the relationship between projection density and object geometry.
2. Methodology
2.1. Estimation of Angular Resolution with NARP
2.2. Using Relative Projection Density in Classification
2.2.1. Neighborhood Selection
2.2.2. Extraction of Commonly Used Features
2.2.3. Relative Projection Density
3. Experimental Results and Results
3.1. Effectiveness of the NARP Method
3.1.1. Dataset
3.1.2. Comparison of the Point Spacing-Based Method
3.2. Effectiveness of Relative Projection Density
3.2.1. Dataset
3.2.2. Evaluation Metrics
3.2.3. Comparison with Traditional Projection Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Skidmore, A.K.; Darvishzadeh, R.; Niemann, K.O.; Liu, J.; Shi, Y.F.; Wang, T.J. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 43–50. [Google Scholar] [CrossRef]
- Tan, K.; Ke, T.; Tao, P.; Liu, K.; Duan, Y.; Zhang, W.; Wu, S. Discriminating Forest Leaf and Wood Components in TLS Point Clouds at Single-Scan Level Using Derived Geometric Quantities. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, W.W.; Du, L.M.; Zhang, Z.J.; Liang, X.J.; Li, Y.N.; Wang, Z.Y. Nystrom-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation. Int. J. Digit. Earth 2021, 14, 1452–1476. [Google Scholar] [CrossRef]
- Rozsa, Z.; Szirany, T. Obstacle Prediction for Automated Guided Vehicles Based on Point Clouds Measured by a Tilted LIDAR Sensor. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2708–2720. [Google Scholar] [CrossRef] [Green Version]
- Lafarge, F.; Mallet, C. Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation. Int. J. Comput. Vis. 2012, 99, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, C.; Li, J.; Zhang, W.M.; Xi, X.H.; Wang, C.L.; Dong, P.L. Building segmentation and modeling from airborne LiDAR data. Int. J. Digit. Earth 2015, 8, 694–709. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, Y.Q.; Wang, D.L.; Chen, A.R.; Ye, Z. Three-Dimensional Reconstruction of Structural Surface Model of Heritage Bridges Using UAV-Based Photogrammetric Point Clouds. Remote Sens. 2019, 11, 1204. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lu, Y.; Wu, T.; Yuan, T. An Improved Local Descriptor based Object Recognition in Cluttered 3D Point Clouds. Int. J. Comput. Commun. Control. 2018, 13, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Zhang, L.Q.; Tong, X.H.; Du, B.; Wang, Y.B.; Zhang, L.; Zhang, Z.X.; Liu, H.; Mei, J.; Xing, X.Y.; et al. A Three-Step Approach for TLS Point Cloud Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5412–5424. [Google Scholar] [CrossRef]
- Xu, Y.S.; Ye, Z.; Yao, W.; Huang, R.; Tong, X.H.; Hoegner, L.; Stilla, U. Classification of LiDAR Point Clouds Using Supervoxel-Based Detrended Feature and Perception-Weighted Graphical Model. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 72–88. [Google Scholar] [CrossRef]
- Pirotti, F.; Guarnieri, A.; Vettore, A. Ground filtering and vegetation mapping using multi-return terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2013, 76, 56–63. [Google Scholar] [CrossRef]
- Ghamisi, P.; Hofle, B. LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine. IEEE Geosci. Remote Sens. Lett. 2017, 14, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.S.; Dong, Z. A shape-based segmentation method for mobile laser scanning point clouds. ISPRS-J. Photogramm. Remote Sens. 2013, 81, 19–30. [Google Scholar] [CrossRef]
- Weinmann, M.; Urban, S.; Hinz, S.; Jutzi, B.; Mallet, C. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas. Comput. Graph. UK 2015, 49, 47–57. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Zhou, J.; Wei, H.; Zhou, G.; Song, L. Separating leaf and wood points in terrestrial laser scanning data using multiple optimal scales. Sensors 2019, 19, 1852. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Brunner, J.; Ma, Z.; Lu, H.; Hollaus, M.; Pang, Y.; Pfeifer, N. Separating tree photosynthetic and non-photosynthetic components from point cloud data using dynamic segment merging. Forests 2018, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3d. net: A new large-scale point cloud classification benchmark. arXiv 2017, arXiv:1704.03847. [Google Scholar]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS-J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality Based Scale Selection in 3D LiDAR Point Clouds. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci. 2012, XXXVIII-5/W12, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Weinmann, M.; Jutzi, B.; Mallet, C. Feature relevance assessment for the semantic interpretation of 3D point cloud data. ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2013, II-5, 313–318. [Google Scholar]
- Chen, M.L.; Liu, X.J.; Zhang, X.Y.; Wang, M.W.; Zhao, L.D. Building Extraction from Terrestrial Laser Scanning Data with Density of Projected Points on Polar Grid and Adaptive Threshold. Remote Sens. 2021, 13, 4392. [Google Scholar] [CrossRef]
- Durrieu, S.; Allouis, T.; Fournier, R.; Véga, C.; Albrech, L. Spatial quantification of vegetation density from terrestrial laser scanner data for characterization of 3D forest structure at plot level. In Proceedings of the SilviLaser 2008, Edinburgh, UK, 17–19 September 2008; pp. 325–334. [Google Scholar]
- Straatsma, M.; Warmink, J.J.; Middelkoop, H. Two novel methods for field measurements of hydrodynamic density of floodplain vegetation using terrestrial laser scanning and digital parallel photography. Int. J. Remote Sens. 2008, 29, 1595–1617. [Google Scholar] [CrossRef]
- Lari, Z.; Habib, A. Alternative methodologies for the estimation of local point density index: Moving towards adaptive LiDAR data processing. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci 2012, 39, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, R.; Virdis, S.G.; Ventura, A.; Ghisu, T.; Duce, P.; Pellizzaro, G. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN. Agric. For. Meteorol. 2018, 262, 434–444. [Google Scholar] [CrossRef]
- Tan, K.; Zhang, W.; Dong, Z.; Cheng, X.; Cheng, X. Leaf and wood separation for individual trees using the intensity and density data of terrestrial laser scanners. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7038–7050. [Google Scholar] [CrossRef]
- Che, E.; Olsen, M.J. Fast ground filtering for TLS data via Scanline Density Analysis. ISPRS J. Photogramm. Remote Sens. 2017, 129, 226–240. [Google Scholar] [CrossRef]
- Ibrahim, S.; Lichti, D. Curb-based street floor extraction from mobile terrestrial LiDAR point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B5. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Pan, J.; Xu, J. Classification of Terrestrial Laser Scanning Data With Density-Adaptive Geometric Features. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1795–1799. [Google Scholar] [CrossRef]
- Sun, H.; Wang, G.; Lin, H.; Li, J.; Zhang, H.; Ju, H. Retrieval and accuracy assessment of tree and stand parameters for Chinese fir plantation using terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1993–1997. [Google Scholar] [CrossRef]
- Fan, H.; Yao, W.; Tang, L. Identifying man-made objects along urban road corridors from mobile LiDAR data. IEEE Geosci. Remote Sens. Lett. 2013, 11, 950–954. [Google Scholar] [CrossRef]
- Cheng, L.; Tong, L.; Wu, Y.; Chen, Y.; Li, M. Shiftable leading point method for high accuracy registration of airborne and terrestrial LiDAR data. Remote Sens. 2015, 7, 1915–1936. [Google Scholar] [CrossRef]
- Hammoudi, K.; Dornaika, F.; Paparoditis, N. Extracting building footprints from 3D point clouds using terrestrial laser scanning at street level. ISPRS/CMRT09 2009, 38, 65–70. [Google Scholar]
- Zheng, H.; Wang, R.; Xu, S. Recognizing street lighting poles from mobile LiDAR data. IEEE Trans. Geosci. Remote Sens. 2016, 55, 407–420. [Google Scholar] [CrossRef]
- Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sens. 2016, 8, 974. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, M.; Tan, C.; Ma, H. Classification of terresrial laser scanning data based on multi-dimensional geometry features. In Proceedings of the International Conference on Smart Transportation and City Engineering 2021, Chongqing, China, 6–8 August 2021; pp. 1404–1410. [Google Scholar]
- Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic forest mapping at individual tree levels from terrestrial laser scanning point clouds with a hierarchical minimum cut method. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wu, B.; Wu, J.; Shu, S.; Liang, H.; Liu, M.; Badenko, V.; Fedotov, A.; Yao, S.; Yu, B. Mapping 3D visibility in an urban street environment from mobile LiDAR point clouds. GISci. Remote Sens. 2020, 57, 797–812. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, W.; Han, P.; Zhang, W.; Shan, J.; Liu, Y.; Li, M. Building region derivation from LiDAR data using a reversed iterative mathematic morphological algorithm. Opt. Commun. 2013, 286, 244–250. [Google Scholar] [CrossRef]
- Liu, K.; Wang, W.; Tharmarasa, R.; Wang, J. Dynamic vehicle detection with sparse point clouds based on PE-CPD. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1964–1977. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, X.; Li, Q.; Ma, L. Automatic registration of terrestrial and airborne point clouds using building outline features. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 628–638. [Google Scholar] [CrossRef]
- Dimitrov, A.; Golparvar-Fard, M. Segmentation of building point cloud models including detailed architectural/structural features and MEP systems. Autom. Constr. 2015, 51, 32–45. [Google Scholar] [CrossRef]
- Mitra, N.J.; Nguyen, A. Estimating surface normals in noisy point cloud data. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry, San Diego, CA, USA, 8–10 June 2003; pp. 322–328. [Google Scholar]
- Pauly, M.; Keiser, R.; Gross, M. Multi-scale feature extraction on point-sampled surfaces. In Computer Graphics Forum; Blackwell Publishing, Inc.: Oxford, UK, 2003; pp. 281–289. [Google Scholar]
- Atik, M.E.; Duran, Z.; Seker, D.Z. Machine learning-based supervised classification of point clouds using multiscale geometric features. ISPRS Int. J. Geo Inf. 2021, 10, 187. [Google Scholar] [CrossRef]
- Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wan, Y.; Wang, M.; Xu, J. Automatic stem detection in terrestrial laser scanning data with distance-adaptive search radius. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2968–2979. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Shi, W.; Wu, F. Feature extraction and modeling of urban building from vehicle-borne laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2004, 35, 934–939. [Google Scholar]
- Hernández, J.; Marcotegui, B. Point cloud segmentation towards urban ground modeling. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–5. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Günen, M.A. Adaptive neighborhood size and effective geometric features selection for 3D scattered point cloud classification. Appl. Soft Comput. 2022, 115, 108196. [Google Scholar] [CrossRef]
- Hackel, T.; Wegner, J.D.; Schindler, K. Fast semantic segmentation of 3D point clouds with strongly varying density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Lari, Z.; Habib, A. An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data. ISPRS-J. Photogramm. Remote Sens. 2014, 93, 192–212. [Google Scholar] [CrossRef]
- Chu, H.-J.; Wang, C.-K.; Huang, M.-L.; Lee, C.-C.; Liu, C.-Y.; Lin, C.-C. Effect of point density and interpolation of LiDAR-derived high-resolution DEMs on landscape scarp identification. GIScience Remote Sens. 2014, 51, 731–747. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, H.; Guo, J.; Dai, H. Classification and segmentation of mining area objects in large-scale spares lidar point cloud using a novel rotated density network. ISPRS Int. J. Geo-Inf. 2020, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection in urban areas. ISPRS-J. Photogramm. Remote Sens. 2014, 87, 152–165. [Google Scholar]
- Landrieu, L.; Raguet, H.; Vallet, B.; Mallet, C.; Weinmann, M. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds. ISPRS-J. Photogramm. Remote Sens. 2017, 132, 102–118. [Google Scholar]
- Schindler, K. An overview and comparison of smooth labeling methods for land-cover classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4534–4545. [Google Scholar] [CrossRef]
Set | Feature | Definition | |
---|---|---|---|
I | Covariance features | Linearity | |
Planarity | |||
Scattering | |||
Shannon entropy | |||
Eigenentropy | |||
Omnivariance | |||
Anisotropy | |||
Curvature variation | |||
Verticality feature | Verticality | ||
II | Grid features | Relative projection density | |
The maximum height difference | |||
The standard deviation of z values within the sub-grid |
Dataset | Scanner | Point Number | Angular Resolution Setting in Scanning/° | |
---|---|---|---|---|
Horizontal | Vertical | |||
Data 1 | Reigl-VZ400 | 53101629 | 0.03 | 0.02 |
Data 2 | FARO Focus S350 | 15831994 | 0.035 | 0.035 |
Data 3 | Reigl-VZ2000 | 10396796 | 0.04 | 0.04 |
Data 4 | STONEX X300 | 1876543 | 0.09 | 0.09 |
Data 5 | Reigl-VZ400 | 1346313 | 0.2 | 0.092 |
Dataset | Our Method/10−4° | Point Spacing-Based Method/10−4° |
---|---|---|
Data 1 | 8.6 ± 7.9 | 31.7 ± 23.7 |
Data 2 | 1.1 ± 0.8 | 19.0 ± 7.6 |
Data 3 | 0.9 ± 0.7 | 34.8 ± 19.4 |
Data 4 | 2.2 ± 0.7 | 37.2 ± 22.0 |
Data 5 | 2.7 ± 1.8 | 71.6 ± 50.5 |
Dataset | Our Method/10−4° | Point Spacing-Based Method/10−4° |
---|---|---|
Data 1 | 5.0 ± 0.4 | 20.7 ± 20.0 |
Data 2 | 2.5 ± 1.1 | 5.9 ± 5.9 |
Data 3 | 17.9 ± 5.6 | 37.4 ± 17.6 |
Data 4 | 2.1 ± 1.4 | 26.4 ± 34.5 |
Data 5 | 4.3 ± 1.9 | 64.4 ± 17.8 |
Target | Dataset | Horizontal/10−4° | Vertical/10−4° |
---|---|---|---|
Building 1 | Data2 | 1.6 | 1.4 |
Building 2 | Data3 | 0.6 | 7.1 |
Crown 1 | Data5 | 2.7 | 6.4 |
Crown 2 | Data1 | 16.6 | 5.4 |
Pole 1 | Data4 | 2.6 | 1.0 |
Pole 2 | Data1 | 1.5 | 1.6 |
Shrub 1 | Data2 | 1.9 | 1.9 |
Shrub 2 | Data4 | 2.8 | 1.4 |
Ground 1 | Data4 | 0.4 | 0.3 |
Ground 2 | Data5 | 1.7 | 4.1 |
Car | Data3 | 0.8 | 12.7 |
Pedestrian | Data3 | 300 | 8.1 |
Dataset | Point Number | Execution Time/s |
---|---|---|
Data 1 | 53101629 | 102.0 |
Data 2 | 15831994 | 29.8 |
Data 3 | 10396796 | 16.2 |
Data 4 | 1876543 | 2.5 |
Data 5 | 1346313 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Zhang, X.; Ji, C.; Pan, J.; Mu, F. Using Relative Projection Density for Classification of Terrestrial Laser Scanning Data with Unknown Angular Resolution. Remote Sens. 2022, 14, 6043. https://doi.org/10.3390/rs14236043
Chen M, Zhang X, Ji C, Pan J, Mu F. Using Relative Projection Density for Classification of Terrestrial Laser Scanning Data with Unknown Angular Resolution. Remote Sensing. 2022; 14(23):6043. https://doi.org/10.3390/rs14236043
Chicago/Turabian StyleChen, Maolin, Xinyi Zhang, Cuicui Ji, Jianping Pan, and Fengyun Mu. 2022. "Using Relative Projection Density for Classification of Terrestrial Laser Scanning Data with Unknown Angular Resolution" Remote Sensing 14, no. 23: 6043. https://doi.org/10.3390/rs14236043
APA StyleChen, M., Zhang, X., Ji, C., Pan, J., & Mu, F. (2022). Using Relative Projection Density for Classification of Terrestrial Laser Scanning Data with Unknown Angular Resolution. Remote Sensing, 14(23), 6043. https://doi.org/10.3390/rs14236043