Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-1 C-Band SAR
2.3. Antecedent Precipitation Index
2.4. Dry Days
2.5. Artificial Neural Network
3. Results
3.1. Relationship between the Backscattering Coefficient and Observed Soil Moisture Content
3.2. API Optimization
3.3. Estimating Soil Moisture Content Using ANN
4. Discussion
- Increased surface interference occurs under dry conditions. The surface interference is reduced when surface moisture is sufficiently and homogeneously distributed, and stable SMC estimations are highly probable under these conditions [94]. However, in the opposite case, nonlinear SMC behavior is considered likely to be produced.
- Multiple scattering effects result from the vegetation density. Generally, as temperatures increase, evaporation from the ground surface becomes more active, and the vegetation biomass increases, resulting in a decreased SMC [95]. As a result, errors occur due to the scattering of the radar signal above dense vegetation; these errors can be inferred to influence the SMC estimation.
- Soil freezes in cold weather. Soil freezing is a well-known problem related to the reliability of SMC measurements obtained using TDR or frequency domain reflectometry (FDR). Freezing soil causes a change in the dielectric constant, causing the and the brightness temperature to change abruptly and significantly [94]. Filtering a soil freezing condition can be done using the soil temperature data when the soil temperature drops below 0 °C [96]. However, in this study, filtering soil freeze was impossible due to the non-existent soil temperature data at the SMC stations. In a further study, soil temperature nor surface temperature data should be collected to filter the soil freezing states directly or indirectly, and also compared the result of ANN simulation with/without filtering soil freeze.
- The dry-day threshold can affect outputs. The dry-day threshold was set to 5 mm in this work; however, under- and overestimates compared to the observed decreases in SMC occurred. In the study area, this trend was found to be especially prominent in summer and winter, but it cannot be generalized as a seasonal pattern. It is necessary to determine an optimum threshold value through seasonal analyses as well as through SMC variation pattern analyses.
5. Conclusions
- In the SAR image preprocessing step, the technique that effectively reduced the speckle pattern and facilitated a high correlation of the outputs with the observed SMC was found to be the Lee sigma filtering method. The correlation between the derived VV (copolarization) and SMC values was highest in the bare fields (R = 0.56) and lowest in the grasslands (R = 0.18). The VH (cross-polarization) in grassland had a higher correlation than VV due to the depolarization effect. For the upland crop that remaining exposed after harvest, the correlation of VH was lower than that of grassland.
- The API showed incomplete linearity with SMC; thus, a logarithmic transformation was performed to establish a linear relationship. As a result, the R value increased from 0.41 to 0.54. However, the API did not decrease below 0 even under dry conditions; therefore, dry days were introduced to reflect the decreased SMC.
- The ANN performance increased when not only SAR data but also topographical, soil, and rainfall-related data were added. In terms of activation functions, LeakyReLU, ReLU, SELU, and ELU showed good performance in that order. Based on the LeakyReLU activation function, the best performance was achieved when the number of hidden layers and hidden neurons was 3 and 27, respectively.
- As a result of estimating SMC using the whole dataset, the most stable result was obtained in autumn (R = 0.90 and RMSE = 3.60%), and outliers were found under dry conditions in summer, winter, and spring. These results can be explained by the presence of snow cover in winter and remaining snow in early spring in the high-elevation regions, the increasing vegetation biomass with heavy rainfall in summer, and the freezing of soils in winter due to low temperatures. In addition, the estimated SMC values were overestimated and underestimated when dry days overexpressed and underexpressed SMC loss, respectively.
- The average monthly SMC simulated through the Artificial Neural Network (ANN) changed well according to the monthly precipitation. When monthly precipitation was evenly distributed over 100 mm a year, the SMC did not change much, and when it was concentrated in a specific season, it changed sensitively. Moreover, monthly precipitation and monthly mean SMC showed a logarithmic relationship with an R value of 0.70.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, J. Investigating soil moisture–Climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Fallon, P.; Jones, C.D.; Ades, M.; Paul, K. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Glob. Biogeochem. Cycles 2011, 25, GB3010. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Qian, J.; Yue, H. Combined Sentinel-1A with Sentinel-2A to Estimate Soil Moisture in Farmland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1292–1310. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N. Thermal Remote Sensing of Surface Soil Water Content with Partial Vegetation Cover for Incorporation into Climate Models. J. Appl. Meteorol. Climatol. 1995, 34, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Amazirh, A.; Merlin, O.; Er-Raki, S.; Gao, Q.; Rivalland, V.; Malbeteau, Y.; Khabba, S.; Escorihuela, M.J. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sens. Environ. 2018, 211, 321–337. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, C.; Kim, S. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agric. Water Manag. 2019, 213, 580–593. [Google Scholar] [CrossRef]
- Jang, W.; Lee, Y.; Lee, J.; Kim, S. RNN-LSTM based soil moisture estimation using Terra MODIS NDVI and LST. J. Korean Soc. Agric. Eng. 2019, 61, 123–132. [Google Scholar]
- Jung, C.; Lee, Y.; Lee, J.; Kim, S. Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers. Remote Sens. 2020, 12, 1678. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens. Environ. 2003, 84, 42–52. [Google Scholar] [CrossRef]
- Entekhabi, D.; Joku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Dewalrt, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhire, C.; et al. SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Werbylo, K.L.; Niemann, J.D. Evaluation of sampling techniques to characterize topographically-dependent variability for soil moisture downscaling. J. Hydrol. 2014, 516, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Djamai, N.; Magagi, R.; Goïta, K.; Merlin, O.; Kerr, Y.; Roy, A. A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sens. Environ. 2016, 184, 1–14. [Google Scholar] [CrossRef]
- Chung, J.; Lee, Y.; Jang, W.; Lee, S.; Kim, S. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sens. 2020, 12, 3231. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Ma, C.; Qin, J.; Zhang, Y. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China. Remote Sens. Environ. 2017, 191, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Potin, P.; Rosich, B.; Miranda, N.; Grimont, P.; Shurmer, I.; O’Connell, A.; Krassenburg, M.; Gratadour, J.-B. Copernicus Sentinel-1 Constellation Mission Operations Status. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Yokohama, Japan, 2019; pp. 5385–5388. [Google Scholar]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Dubois, P.C.; van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Choker, M.; Zribi, M.; Hajj, M.E.; Paloscia, S.; Verhoest, N.E.C.; Lievens, H.; Baup, F.; Mattia, F. A new empirical model for radar scattering from bare soil surfaces. Remote Sens. 2016, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.E.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Altese, E.; Bologani, M.; Macini, M.; Troch, P.A. Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resour. Res. 1996, 32, 653–661. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote Sens. 2006, 27, 3831–3852. [Google Scholar] [CrossRef]
- Tomer, S.K.; Al Bitar, A.; Sekhar, M.; Zribi, M.; Bandyopadhyay, S.; Sreelash, K.; Sharma, A.K.; Corgne, S.; Kerr, Y. Retrieval and Multi-scale Validation of Soil Moisture from Multi-temporal SAR Data in a Semi-Arid Tropical Region. Remote Sens. 2015, 7, 8128–8153. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Taconet, O.; Le Hégarat-Mascle, S.; Vidal-Madjar, D.; Emblanch, C.; Loumagne, C.; Normand, M. Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval. Remote Sens. Environ. 1997, 59, 256–266. [Google Scholar] [CrossRef]
- Baghdadi, N.; King, C.; Bourguignon, A.; Remond, A. Potential of ERS and RADARSAT data for surface roughness monitoring over bare agricultural fields: Application to catchments in Northern France. Int. J. Remote Sens. 2002, 23, 3427–3442. [Google Scholar] [CrossRef]
- Panciera, R.; Tanase, M.A.; Lowell, K.; Walker, J.P. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4966–4979. [Google Scholar] [CrossRef]
- Gorrab, A.; Zribi, M.; Baghdadi, N.; Mougenot, B.; Fanise, P.; Chabaane, Z.L. Retrieval of both soil moisture and texture using TerraSAR-X images. Remote Sens. 2015, 7, 10098–10116. [Google Scholar] [CrossRef] [Green Version]
- Marchant, J.A.; Onyango, C.M. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Comput. Electron. Agric. 2003, 39, 3–22. [Google Scholar] [CrossRef]
- Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Musial, J.; Malinska, A.; Budzynska, M.; Gurdak, R.; Kiryla, W.; Bartold, M.; Grzybowski, P. Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery. Remote Sens. 2018, 10, 1979. [Google Scholar] [CrossRef] [Green Version]
- Prakash, R.; Singh, D.; Pathak, N.P. A Fusion approach to retrieve soil moisture with SAR and optical data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 196–206. [Google Scholar] [CrossRef]
- Lakhankar, T.; Ghedira, H.; Khanbilvardi, R. Soil moisture retrieval from RADARSAT data: A Neuro-Fuzzy approach. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 2328–2331. [Google Scholar]
- Said, S.; Kothyari, U.C.; Arora, M.K. ANN-Based Soil Moisture Retrieval over Bare and Vegetated Areas Using ERS-2 SAR Data. J. Hydrol. Enginering 2008, 13, 461–475. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Hajdu, I.; Yule, I.; Dehghan-Shear, M.H. Modelling of Near-Surface Soil Moisture Using Machine Learning and Multi-Temporal Sentinel 1 Images in New Zealand. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGRASS), Valencia, Spain, 22–27 July 2018; pp. 1422–1425. [Google Scholar]
- Hachani, A.; Ouessar, M.; Paloscia, S.; Santi, E.; Pettinato, S. Soil moisture retrieval from Sentinel-1 acquisitions in an arid environment in Tunisia: Application of Artificial Neural Networks techniques. Int. J. Remote Sens. 2019, 40, 9159–9180. [Google Scholar] [CrossRef]
- Santi, E.; Dabboor, M.; Pettinato, S.; Paloscia, S. Combining Machine Learning and Compact Polarimetry for Estimating Soil Moisture from C-Band SAR Data. Remote Sens. 2019, 11, 2451. [Google Scholar] [CrossRef] [Green Version]
- Ayehu, G.; Tadesse, T.; Gessesse, B.; Yigrem, Y.M.; Melesse, A. Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia. Sensors 2020, 20, 3282. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 61–73. [Google Scholar] [CrossRef]
- Lee, Y.G.; Jung, C.G.; Cho, Y.H.; Kim, S.J. Estimation of soil moisture using multiple linear regression model and COMS land surface temperature data. J. Korean Soc. Agric. Eng. 2017, 59, 11–20. [Google Scholar]
- Jung, C.; Lee, Y.; Cho, Y.; Kim, S. A study of spatial soil moisture estimation using a multiple linear regression model and MODIS land surface temperature data corrected by conditional merging. Remote Sens. 2017, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Son, M.; Lee, Y.; Kim, S. Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations. Korean J. Remote Sens. 2021, 37, 515–530. [Google Scholar]
- Soil Conservation Service. National Engineering Handbook, Section 4, Hydrology; Department of Agriculture: Washington, DC, USA, 1972.
- Douglas, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar]
- Koehler, M.A.; Linsley, R.K. Predicting the Runoff from Storm Rainfall, Research Paper n.34; Weather Bureau; US Department of Commerce: Washington, DC, USA, 1951.
- Sittner, W.T.; Schauss, C.E.; Monro, J.C. Continuous hydrograph synthesis with an API-type hydrologic model. Water Resour. Res. 1969, 5, 1007–1022. [Google Scholar] [CrossRef]
- Wei, F.; Hu, K.; Zhang, J.; Jiang, Y.; Chen, J. Determination of Effective Antecedent Rainfall for Debris Flow Forecast Based On Soil Moisture Content Observation in Jiangjia Gully, China. WIT Trans. Eng. Sci. 2008, 60, 13–22. [Google Scholar]
- Rivoire, P.; Tramblay, Y.; Neppel, L.; Hertig, E.; Vicente-Serrano, S.M. Impact of the dry-day definition on Mediterranean extreme dry-spell analysis. Nat. Hazards Earth Syst. Sci. 2019, 19, 1629–1638. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.S. UNESCO-IHP Yongdam study wateshed. Water Future 2017, 50, 70–74. [Google Scholar]
- National Spatial Data Infrastructure Portal. Available online: http://www.nsdi.go.kr (accessed on 1 November 2021).
- Korean Soil Information System. Available online: http://soil.rda.go.kr (accessed on 1 November 2021).
- Aschbacher, J.; Milagro-Peréz, M.P. The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sens. Environ. 2012, 120, 3–8. [Google Scholar] [CrossRef]
- Viessman, W.; Klapp, J.W.; Lewis, G.L.; Harbaugh, T.E. Introduction to Hydrology; Harper and Row: New York, NY, USA, 1977. [Google Scholar]
- Sivakumar, M.V.K. Empirical analysis of dry spells for agricultural applications in West Africa. J. Clim. 1992, 5, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Lana, X.; Martínez, M.D.; Burgueño, A.; Serra, C.; Martín-Vide, J.; Gómez, L. Distributions of long dry spells in the Iberian Peninsula, years 1951–1990. Int. J. Climatol. 2006, 26, 1999–2021. [Google Scholar] [CrossRef]
- Mathugama, S.C.; Peiris, T.S.G. Critical Evaluation of Dry Spell Research. Int. J. Basic Appl. Sci. 2011, 11, 153–160. [Google Scholar]
- Raymond, F.; Ullmann, A.; Camberlin, P.; Drobinski, P.; Chateau Smith, C. Extreme dry spell detection and climatology over the Mediterranean Basin during the wet season. Geophys. Res. Lett. 2016, 43, 7196–7204. [Google Scholar] [CrossRef]
- Douguedroit, A. The variations of dry spells in Marseilles from 1865 to 1984. Int. J. Climatol. 1987, 7, 541–551. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería-Portugués, S. Estimating extreme dry-spell risk in the middle Ebro valley (northeastern Spain): A comparative analysis of partial duration series with a general Pareto distribution and annual maxima series with a Gumbel distribution. Int. J. Climatol. 2003, 23, 1103–1118. [Google Scholar] [CrossRef]
- Serra, C.; Lana, X.; Burgueno, A.; Martinez, M.D. Partial duration series distributions of the European dry spell lengths for the second half of the twentieth century. Theor. Appl. Climatol. 2016, 123, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Hertig, E. Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation. Atmos. Res. 2018, 202, 40–48. [Google Scholar] [CrossRef]
- Hershfield, D.M.; Brakensiek, D.L.; Corner, G.H. Some Measures of Agricultural Drought, in Floods and Droughts. In Proceedings of the Second International Symposium in Hydrology, Fort Collins, CO, USA, 11–13 September 1972; pp. 491–502. [Google Scholar]
- Kim, H.Y. Analysis of the definition and characteristics of drought in Korea—What are the causes and countermeasures of drought? J. Korean Soc. Civ. Eng. 1995, 43, 23–32. [Google Scholar]
- Kim, O.K.; Choi, J.Y.; Jang, M.W.; Yoo, S.H.; Nam, W.H.; Lee, J.H.; Noh, J.K. Watershed Scale Drought Assessment using Soil Moisture Index. J. Korean Soc. Agric. Eng. 2006, 48, 3–13. [Google Scholar]
- Park, K.W.; Kim, J.T.; Ju, U.J.; Lee, Y.J. Application of drought indices for agricultural drought evalutaion. KCID J. 2006, 13, 72–81. [Google Scholar]
- Oh, T.S.; Moon, Y.I.; Kim, M.S.; Park, M.S. Division of Drought Area using Continuous Dry-Day and Cluster Analysis in Korea. In Proceedings of the Korea Water Resources Association Conference, Pyeongchang, Korea, 21 May 2009; pp. 1551–1554. [Google Scholar]
- Palani, S.; Liong, S.Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef]
- Lek, S.; Guegan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 17, 65–73. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Zhang, H.; Liao, L.; Saravanan, K.M.; Yin, P.; Wei, Y. DeepBindRG: A deep learning based method for estimating effective protein–ligand affinity. PeerJ 2019, 7, e7362. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Garcia, G.A.; Venturini, V.; Brogiono, M.; Walker, E.; Rodriguez, L. Soil moisture estimation over flat lands in the Argentinian Pampas region using Sentinel-1A data and non-parametric methods. Int. J. Remote Sens. 2019, 40, 3689–3720. [Google Scholar] [CrossRef]
- Akhavan, Z.; Hasanlou, M.; Hosseini, M.; Becker-Reshef, I. Soil moisture retrieval improvement over agricultural fields by adding entropy–alpha dual-polarimetric decomposition features. J. Appl. Remote Sens. 2021, 15, 034516. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, J.; Liu, J.; Wen, Y.; Wang, Y. Soil Moisture Retrieval Using Microwave Remote Sensing Data and a Deep Belief Network in the Naqu Region of the Tibetan Plateau. Sustainability 2021, 13, 12635. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 971–980. [Google Scholar]
- Benninga, H.J.F.; van der Velde, R.; Su, Z. Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields. J. Hydrol. X 2020, 9, 100066. [Google Scholar] [CrossRef]
- Verhost, N.E.C.; Lievens, H.; Wagner, W.; Alvarez-Mozos, J.; Moran, M.S.; Mattia, F. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. Sensors 2008, 8, 4213–4248. [Google Scholar] [CrossRef] [Green Version]
- Comite, D.; Pierdicca, N. Monostatic and Bistatic Scattering Modeling of the Anisotropic Rough Soil. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2543–2556. [Google Scholar] [CrossRef]
- Ezzahar, J.; Ouaadi, N.; Zribi, M.; Elfarkh, J.; Aouade, G.; Khabba, S.; Er-Raki, S.; Chehbouni, A.; Jarlan, L. Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data. Remote Sens. 2020, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Shin, Y.; Su, Y.; Karniadakis, G. Dying ReLU and Initialization: Theory and Numerical Examples. arXiv 2020, arXiv:1903.06733. [Google Scholar] [CrossRef]
- Lee, S.J.; Hong, S.; Cho, J.; Lee, Y.W. Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data. Korean J. Remote Sens. 2017, 33, 947–960. [Google Scholar]
- Brouwer, C.; Prins, K.; Heibloem, M. Irrigation Water Management: Training Manual No. 4: Irrigation Scheduling; FAO: Rome, Italy, 1989. [Google Scholar]
- Bousbih, S.; Zribi, M.; Lili-Chabaane, Z.; Baghdadi, N.; Hajj, M.E.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2017, 17, 2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekertekin, A.; Marangoz, A.M.; Adbikan, S. ALOS-2 and Sentinel-1 SAR data sensitivity analysis to surface soil moisture over bare and vegetated agricultural fields. Comput. Electron. Agric. 2020, 171, 105303. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Li, F. Optimality of antecedent precipitation index and its application. J. Hydrol. 2021, 595, 126027. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martinez-Fernandez, J.; Liorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Park, J.Y.; Ahn, S.R.; Hwang, S.J.; Jang, C.H.; Park, G.A.; Kim, S.J. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling. Paddy Water Environ. 2014, 12, 77–88. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiova, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network. Vadose Zone J. 2012, 12, vzj2012.0097. [Google Scholar] [CrossRef]
- Ottinger, M.; Kuenzer, C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sens. 2020, 12, 2228. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, G.Y.; Lee, Y.G.; Jeong, J.H.; Choi, M.H. Introduction and development direction of various soil moisture measurement methods. Water Future 2020, 53, 126–134. [Google Scholar]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
Station | Latitude (Degree) | Longitude (Degree) | Elevation (m) | Land Cover | * Max. (%) | * Min. (%) | * Mean (%) | * Std. (%) |
---|---|---|---|---|---|---|---|---|
Ancheon | 35.8689 | 127.5433 | 313 | Upland crop | 50.8 | 11.8 | 38.3 | 5.8 |
Bugwi | 35.8622 | 127.3992 | 396 | Bare field | 21.9 | 3.6 | 14.3 | 3.4 |
Cheoncheon | 35.6847 | 127.5114 | 409 | Grass | 34.8 | 11.4 | 24.7 | 5.1 |
Gyebuk | 35.8075 | 127.6294 | 453 | Upland crop | 41.0 | 13.0 | 30.0 | 5.5 |
Jinan | 35.9706 | 127.4242 | 362 | Upland crop | 47.0 | 3.2 | 21.0 | 7.5 |
Jucheon | 35.8053 | 127.4844 | 303 | Upland crop | 33.8 | 9.5 | 25.9 | 4.9 |
Jangsu | 36.0059 | 127.6780 | 478 | Upland crop | 41.1 | 4.2 | 24.7 | 6.3 |
Muju | 35.6198 | 127.5120 | 214 | Grass | 39.0 | 5.4 | 24.1 | 6.7 |
Sangjeon | 35.7603 | 127.4380 | 334 | Upland crop | 43.5 | 18.8 | 35.4 | 3.4 |
Platform | Sentinel-1A | Sentinel-1B |
---|---|---|
Orbit direction | Descending | Ascending |
Product type | GRD | GRD |
Acquisition mode | IW | IW |
Polarization mode | Dual (VH, VV) | Dual (VH, VV) |
Incidence angle (°) | 36–54 | 29–45 |
Revisit period | 12 days | 12 days |
Spatial resolution | 10 m | 10 m |
Acquisition period | Aug. 2015 to Dec. 2019 | Sep. 2016 to Dec. 2019 |
Number of images | 93 | 95 |
Parameter | Description | Range | Increment |
---|---|---|---|
Number of days | 5–14 | 1 | |
Decay constant | 0.80–0.98 | 0.02 |
Groups | Parameter | Source | Temporal Resolution |
---|---|---|---|
SAR | VH | Sentinel-1 | 6-day |
VV | |||
Local incidence angle | |||
Topography | Elevation | Digital elevation model | |
Slope | |||
Soil | Sand percentage | Soil map | |
Clay percentage | |||
PCP | * API | Observed precipitation data | |
Dry days |
Station | Sentinel-1A | Sentinel-1B | ||
---|---|---|---|---|
VH Polarization | VV Polarization | VH Polarization | VV Polarization | |
Ancheon | 0.48 | 0.42 | 0.47 | 0.39 |
Bugwi | 0.42 | 0.56 | 0.52 | 0.42 |
Cheoncheon | 0.26 | 0.36 | 0.31 | 0.32 |
Gyebuk | 0.46 | 0.55 | 0.53 | 0.44 |
Jinan | 0.41 | 0.50 | 0.27 | 0.39 |
Jucheon | 0.15 | 0.42 | 0.34 | 0.41 |
Jangsu | 0.19 | 0.51 | 0.21 | 0.22 |
Muju | 0.18 | 0.11 | 0.17 | 0.21 |
Sangjeon | 0.37 | 0.48 | 0.54 | 0.44 |
Mean | 0.32 | 0.43 | 0.37 | 0.36 |
Inputs | Training | Test | Overall | |||
---|---|---|---|---|---|---|
R | RMSE (Vol.%) | R | RMSE (Vol.%) | R | RMSE (Vol.%) | |
* SAR | 0.24 | 8.82 | 0.19 | 8.68 | 0.21 | 8.75 |
SAR + * Topography | 0.59 | 7.37 | 0.56 | 7.39 | 0.58 | 7.38 |
SAR + Topography + * Soil | 0.74 | 6.19 | 0.67 | 6.57 | 0.70 | 6.38 |
SAR + Topography + Soil + * PCP | 0.81 | 5.40 | 0.76 | 5.79 | 0.78 | 5.60 |
Topography + Soil + PCP | 0.69 | 6.59 | 0.61 | 6.99 | 0.65 | 6.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.; Lee, Y.; Kim, J.; Jung, C.; Kim, S. Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components. Remote Sens. 2022, 14, 465. https://doi.org/10.3390/rs14030465
Chung J, Lee Y, Kim J, Jung C, Kim S. Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components. Remote Sensing. 2022; 14(3):465. https://doi.org/10.3390/rs14030465
Chicago/Turabian StyleChung, Jeehun, Yonggwan Lee, Jinuk Kim, Chunggil Jung, and Seongjoon Kim. 2022. "Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components" Remote Sensing 14, no. 3: 465. https://doi.org/10.3390/rs14030465
APA StyleChung, J., Lee, Y., Kim, J., Jung, C., & Kim, S. (2022). Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components. Remote Sensing, 14(3), 465. https://doi.org/10.3390/rs14030465