Analysis of Ionospheric Disturbance Response to the Heavy Rain Event
Abstract
:1. Introduction
2. Data and Methods
2.1. GNSS Data and Geomagnetic Activity Indices
2.2. GNSS Data Processing Methods
2.3. Time-Frequency Analysis Methods
3. Results and Analysis
3.1. Time-Frequency Analysis of dTEC Sequences
3.2. Searching the Trigger Source of Disturbances
4. Discussion
5. Conclusions
- (1)
- The time domain and frequency domain analysis of dTEC sequences both show obvious ionospheric disturbances with a maximum amplitude of 0.4 TEC and frequencies between 0.5–3 mHz.
- (2)
- The horizontal propagation velocity of ionospheric disturbances is about 150 m/s. Then the disturbances trigger source is determined to be the central part of Sichuan Province using the grid searching method.
- (3)
- It can be seen from the FY-2E TBB that there may be a strong convection at the trigger source. The strong convection during the rainfall excited GWs in the atmosphere. Under the promotion of topography, background wind field, and other factors, the GWs propagated in the atmosphere along the horizontal and vertical directions. When the GWs reached a certain height, they would break and deposit their momentum and energy into the background atmosphere, causing disturbances in the stratosphere and ionosphere.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cang, Z.; Cheng, G.; Cheng, G. Ionospheric anomalous disturbance during the tropospheric strong convective weather. J. Atmos. Solar-Terr. Phys. 2015, 129, 55–61. [Google Scholar] [CrossRef]
- Lastovicka, J. Lower ionosphere response to external forcing: A brief review. Adv. Space Res. 2009, 43, 1–14. [Google Scholar] [CrossRef]
- Kazimirovsky, E.; Herraiz, M.; Morena, B.A. Effects on the ionosphere due to phenomena occurring below it. Surv. Geophys. 2003, 24, 139–184. [Google Scholar] [CrossRef]
- Rishbeth, H. F-region links with the lower atmosphere? J. Atmos. Solar-Terr. Phys. 2006, 68, 469–478. [Google Scholar] [CrossRef]
- Lastovicka, J. Forcing of the ionosphere by waves from below. J. Atmos. Solar-Terr. Phys. 2006, 68, 479–497. [Google Scholar] [CrossRef]
- Beynon, W.J.G.; Brown, G.M. Geophysical and meteorological changes in the period Junuary-April 1949. Nature 1951, 167, 1012–1014. [Google Scholar] [CrossRef]
- Bauer, S.J. A possible troposphere-ionosphere relationship. J. Geophys. Res. 1957, 62, 425–430. [Google Scholar] [CrossRef]
- Baker, D.M.; Davies, K. F2-region acoustic waves from severe weather. J. Atmos. Terr. Phys. 1969, 31, 1345–1352. [Google Scholar] [CrossRef]
- Shrestha, K.L. Sporadic-E and atmospheric pressure waves. J. Atmos. Terr. Phys. 1970, 33, 205–211. [Google Scholar] [CrossRef]
- Shen, C. The correlations between the typhoon and the f0F2 of ionosphere. Chin. J. Space Sci. 1982, 2, 335–340. [Google Scholar]
- Xu, G.; Wan, W.; Ning, B. Effects of extreme heavy rainfall in the troposphere on the ionosphere. Chin. J. Space Sci. 2005, 25, 104–110. [Google Scholar]
- Mao, T.; Wang, J.; Yang, G.; Tao, Y.; Ping, J.; Suo, Y. Effects of typhoon Matsa on ionospheric TEC. Chin. Sci. Bull. 2010, 8, 712–717. [Google Scholar] [CrossRef]
- Hung, R.; Lee, C.C.; Johnson, D.L.; Chen, A. Remote sensing of mesospheric and thermospheric density perturbations induced by subtropical heavy rainfalls for spacecraft environment study. Acta Astronaut. 1991, 25, 379–393. [Google Scholar] [CrossRef]
- Tsutsui, M.; Ogawa, T. HF Doppler observation of ionospheric effects due to typhoons. Rep. Ionos. Space Res. Jpn. 1973, 27, 121–123. [Google Scholar]
- Xiao, S.; Hao, Y.; Zhang, D.; Xiao, Z. A case study on whole respond processes of the ionosphere to typhoons. Chin. J. Geophys. 2006, 49, 623–628. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, C. Correlation analysis between ionospheric TEC and ground weather parameters during cold wave. J. Nanjing Univ. Inf. Sci. Technol. 2013, 5, 278–283. [Google Scholar]
- Liu, J.; Tsai, Y.B.; Ma, K.; Chen, Y.; Tsai, H.F.; Lin, C.; Masashi, K.; Lee, C.P. Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami. J. Geophys. Res. Space Phys. 2006, 111, A5. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liu, Z. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong. J. Geophys. Res. Space Phys. 2016, 121, 4705–4717. [Google Scholar] [CrossRef]
- Kong, J.; Yao, Y.; Xu, Y.; Zhang, L.; Liu, L.; Zhai, C. A clear link connecting the troposphere and ionosphere: Ionosphere response to the 2015 Typhoon Dujuan. J. Geod. 2017, 91, 1087–1097. [Google Scholar] [CrossRef]
- Rastogi, R.G. Thunderstorms and sporadic- E layer ionization over Ottawa, Canada. J. Atmos. Terr. Phys. 1961, 24, 533–540. [Google Scholar] [CrossRef]
- Ma, X.; Yu, K.; Montillet, J.P.; He, X. One-step solution to local tie vector determination at co-located GNSS/VLBI sites. Stud. Geophys. Geod. 2018, 62, 535–561. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Xiao, Z.; Suo, Y. A possible mechanism of typhoon effects on the ionospheric layer. Chin. J. Space Sci. 2006, 26, 92–97. [Google Scholar]
- Shan, L.; Yao, Y. Analysis of Ionospheric Anomalous Disturbance during a Heavy Rainfall. In China Satellite Navigation Conference (CSNC) 2018 Proceedings; Lecture Notes in Electrical Engineering; Sun, J., Yang, C., Guo, S., Eds.; Springer: Singapore, 2018; pp. 233–242. [Google Scholar]
- Shi, R.; Chen, Y.; Xiao, H. Comparative Analysis of Continuous Rainstorm in Sichuan Basin in 2013. Plateau Mt. Meteorol. Res. 2014, 34, 11–15. [Google Scholar]
- Yuan, Y.; Huo, X.; Zhang, B. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years. Acta Geod. Cartogr. Sinica. 2017, 46, 1364–1378. [Google Scholar]
- Liu, Z.; Gao, Y.; Skone, S. A study of smoothed TEC precision inferred from GPS measurements. Earth Planets Space 2005, 57, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhai, C.; Kong, J.; Zhao, C.; Luo, Y.; Liu, L. An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography. GPS Solut. 2020, 24, 68. [Google Scholar] [CrossRef]
- Jin, R.; Jin, S.; Feng, G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut. 2012, 16, 541–548. [Google Scholar] [CrossRef]
- He, X.; Montillet, J.-P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geod. 2017, 106, 12–29. [Google Scholar] [CrossRef]
- Dierckx, P. An algorithm for smoothing, differentiation and integration of experimental data using spline functions. J. Comput Appl Math. 1975, 1, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Maletckii, B.; Yasyukevich, Y.; Vesnin, A. Wave Signatures in Total Electron Content Variations: Filtering Problems. Remote Sens. 2020, 12, 1340. [Google Scholar] [CrossRef] [Green Version]
- Yasyukevich, Y.V.; Kiselev, A.V.; Zhivetiev, I.V.; Edemskiy, I.K.; Syrovatskii, S.V.; Maletckii, B.M.; Vesnin, A.M. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 2020, 24, 69. [Google Scholar] [CrossRef]
- Zhai, C.; Shi, X.; Wang, W.; Hartinger, M.D.; Yao, Y.; Peng, W.; Lin, D.; Ruohoniemi, J.M.; Baker, J.B.H. Characterization of high-m ULF wave signatures in GPS TEC data. Geophys. Res. Letters. 2021, 48, 14. [Google Scholar] [CrossRef]
- He, L.; Wu, L.; Liu, S.; Ma, B. Seismo-ionospheric anomalies detection based on integrated wavelet. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Waston, C.; Jayachandran, P.T.; Spanswick, E.; Donovan, E.F.; Danskin, D.W. GPS TEC technique for observation of the evolution of substrom particle injection. J. Geophys. Res. 2011, 116, A00190. [Google Scholar]
- Lee, W.H.K.; Lahr, J.C. HYPO71: A Computer Program for Determining Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes; Open File Report 75-311; U.S. Geological Survey: Reston, VA, USA, 1975; pp. 1–116.
- Liu, J.; Tsai, H.F.; Lin, C.; Kamogawa, M.; Chen, Y.; Huang, B.; Yu, S.; Yeh, Y.L. Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake. J. Geophys. Res. Atmos. 2010, 115, A8. [Google Scholar] [CrossRef]
- Vadas, S.L.; Fritts, D.C. Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann. Geophys. 2009, 27, 147–177. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, Q.; Yue, J.; Hoffmann, L.; Straka, W.C., III; Wang, C.; Liu, M.; Yuan, W.; Han, S.; Miller, S.D.; et al. Concentric GWs over northern China observed by an airglow imager network and satellites. J. Geophys. Res. Atmos. 2015, 120, 11058–11078. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Xiao, S.; Hao, Y.; Zhang, D. Meteorological features of ionospheric response to typhoon. J. Geophys. Res. Space Phys. 2007, 112, A4. [Google Scholar] [CrossRef] [Green Version]
- Tsugawa, T.; Saito, A.; Otsuka, Y.; Nishioka, M.; Maruyama, T.; Kato, H.; Nagatsuma, T.; Murata, K.T. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Sp. 2011, 63, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Vadas, S.L. Horizontal and vertical propagation and dissipation of GWs in the thermosphere from lower atmospheric and thermospheric source. J. Geophys. Res. 2007, 112, A6. [Google Scholar]
- Hoffmann, L.; Xue, X.; Alevander, M.J. A global view of stratospheric gravity wave hotpots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos. 2013, 118, 416–434. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, L.; Wu, Z.; Wan, W.; Ning, B. Ionospheric disturbances related to the meteorology of Qinghai-Xizang Plateau. Publ. Yunnan Obs. 1990, 1, 1. [Google Scholar]
- Vadas, S.L.; Nicolls, M.J. Temporal evolution of neutral, thermosphere winds and plasma response using PFISR measurements of GWs. J. Atmos. Sol. Terr. Phys. 2009, 71, 740–770. [Google Scholar] [CrossRef]
- Vadas, S.L.; Liu, H. Generation of large-scale GWs and neutral winds in the thermosphere from the dissipation of convectively generated GWs. J. Geophys. Res. 2009, 114, A10. [Google Scholar]
- Beres, H.J.; Alexander, J.M.; Holton, J.R. Effects of tropospheric wind shear on the spectrum of convectively generated GWs. J. Atmos. Sci. 2002, 59, 1805–1824. [Google Scholar] [CrossRef] [Green Version]
- Yiğit, E.; Knížová, P.K.; Georgieva, K.; Ward, W. A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J. Atmos. Solar-Terr. Phys. 2016, 141, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.; Shan, L.; Yan, X.; Wang, Y. Analysis of Ionospheric Disturbance Response to the Heavy Rain Event. Remote Sens. 2022, 14, 510. https://doi.org/10.3390/rs14030510
Kong J, Shan L, Yan X, Wang Y. Analysis of Ionospheric Disturbance Response to the Heavy Rain Event. Remote Sensing. 2022; 14(3):510. https://doi.org/10.3390/rs14030510
Chicago/Turabian StyleKong, Jian, Lulu Shan, Xiao Yan, and Youkun Wang. 2022. "Analysis of Ionospheric Disturbance Response to the Heavy Rain Event" Remote Sensing 14, no. 3: 510. https://doi.org/10.3390/rs14030510
APA StyleKong, J., Shan, L., Yan, X., & Wang, Y. (2022). Analysis of Ionospheric Disturbance Response to the Heavy Rain Event. Remote Sensing, 14(3), 510. https://doi.org/10.3390/rs14030510