Anatomy of Anthropically Controlled Natural Lagoons through Geophysical, Geological, and Remote Sensing Observations: The Valli Di Comacchio (NE Italy) Case Study
Abstract
:1. Introduction
The Study Area
2. Materials and Methods
2.1. Field Survey
2.2. Data Processing
2.2.1. Morphobathymetry
2.2.2. Bottom Reflectivity
2.2.3. Time-Slicing
2.2.4. Differential Bathymetric Models
2.3. Cone Penetration Tests (CPTu)
2.4. Geodetic Measurements
3. Results and Discussion
3.1. Recent Sedimentary Evolution: The Shallow Subsurface
3.2. Present-Day Setting: Bottom Morphology and Substrate Types
3.2.1. Bathymetric Survey
3.2.2. Bottom Reflectivity and Substrate Variability
3.2.3. Topography
3.3. Hydrodynamics
3.4. Decadal Changes in the Lagoon-Floor Morphology
3.5. Morpho-Stratigraphic Synthesis and Integrated Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Phys. Chem. Earth 2011, 36, 160–166. [Google Scholar] [CrossRef]
- Clara, I.; Dyack, B.; Rolfe, J.; Newton, A.; Borg, D.; Povilanskas, R.; Brito, A.C. The value of coastal lagoons: Case study of recreation at the Ria de Aveiro, Portugal in comparison to the Coorong, Australia. J. Nat. Conserv. 2018, 43, 190–200. [Google Scholar] [CrossRef]
- Chapman, P.M. Management of coastal lagoons under climate change. Estuar. Coast. Shelf Sci. 2012, 110, 32–35. [Google Scholar] [CrossRef]
- Kjerfve, B. (Ed.) Chapter 1 Coastal Lagoons. In Coastal Lagoon Processes; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 1–8. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- National Research Council. Mitigating Shore Erosion along Sheltered Coasts, Climate Change 2007: Impacts, Adaptation and Vulnerability; National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burket, V.R.; Codignotto, J.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, A.; Bonetti, J. Dynamical descriptors of physical vulnerability to sea-level rise in sheltered coastal systems: A methodological framework. Estuar. Coast. Shelf Sci. 2021, 249, 107118. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, J.; Woodroffe, C. Spatial Analysis for Coastal Vulnerability Assessment. In Geoinformatics for Marine and Coastal Management; CRC Press: Boca Raton, FL, USA, 2017; pp. 367–396. [Google Scholar] [CrossRef]
- Postma, H. Chapter 19 Future of Research in Coastal Lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 553–561. [Google Scholar] [CrossRef]
- Bird, E.C.F. Chapter 2 Physical Setting and Geomorphology of Coastal Lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 9–39. [Google Scholar] [CrossRef]
- Duffy, W.; Belknap, D.F.; Kelley, J.T. Morphology and stratigraphy of small barrier-lagoon systems in Maine. Mar. Geol. 1989, 88, 243–262. [Google Scholar] [CrossRef]
- McClennen, C.E.; Ammennan, A.J.; Schock, S.G. Framework stratigraphy for the Lagoon of Venice, Italy: Revealed in new seismic-reflection profiles and cores. J. Coast. Res. 1997, 13, 745–759. [Google Scholar]
- Nichols, M.M.; Boon, J.D. Chapter 7 Sediment Transport Processes in Coastal Lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 157–219. [Google Scholar] [CrossRef]
- da Conceiçao Freitas, M.; Andrade, C.; Rocha, F.; Tassinari, C.C.; Munhá, J.M.; Cruces, A.; Vidinha, J.; da Silva, C.M. Late Glacial and Holocene environmental changes in Portuguese coastal lagoons. 1: The sedimentological and geochemical records of the Santo André coastal area. Holocene 2003, 13, 433–446. [Google Scholar] [CrossRef]
- Gasperini, L.; Marzocchi, A.; Mazza, S.; Miele, R.; Meli, M.; Najjar, H.; Michetti, A.M.; Polonia, A. Morphotectonics and late Quaternary seismic stratigraphy of Lake Garda (Northern Italy). Geomorphology 2020, 371, 107427. [Google Scholar] [CrossRef]
- Gasperini, L.; Peteet, D.; Bonatti, E.; Gambini, E.; Polonia, A.; Nichols, J.; Heusser, L. Late Glacial and Holocene environmental variability, Lago Trasimeno, Italy. Quat. Int. 2021, in press. [CrossRef]
- Gasperini, L.; Ligi, M.; Stanghellini, G. Pseudo-3D techniques for analysis and interpretation of high-resolution marine seismic reflection data. Boll. Geofis. Teor. Appl. 2021, 62, 599–614. [Google Scholar] [CrossRef]
- Pydyn, A.; Popek, M.; Kubacka, M.; Janowski, L. Exploration and reconstruction of a medieval harbour using hydroacoustics, 3-D shallow seismic and underwater photogrammetry: A case study from Puck, southern Baltic Sea. Archeol. Prospect. 2021, 28, 527–542. [Google Scholar] [CrossRef]
- Stanghellini, G.; Del Bianco, F.; Gasperini, L. OpenSWAP, an open architecture, low cost class of autonomous surface vehicles for geophysical surveys in the shallow water environment. Remote Sens. 2021, 12, 2575. [Google Scholar] [CrossRef]
- Gelichi, S.; Calaon, D.; Grandi, E.; Negrelli, C. The history of a forgotten town: Comacchio and its archaeology. In From One Sea to Another. Trading Places in the European and Mediterranean Early Middle Ages: Proceedings of the International Conference, Comacchio, Italy, 27–29 March 2009; Brepols: Turnhout, Belgium, 2012; pp. 169–205. [Google Scholar] [CrossRef] [Green Version]
- Sarti, G.; Centineo, M.C.; Calabrese, L. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50.000—Foglio 205 Comacchio. Servizio Geologico d’Italia; ISPRA: Firenze, Italy, 2009; p. 126. [Google Scholar]
- Garnier, E.; Ciavola, P.; Spencer, T.; Ferreira, O.; Armaroli, C.; McIvor, A. Historical analysis of storm events: Case studies in France, England, Portugal and Italy. Coast. Eng. 2018, 134, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Gambolati, G.; Giunta, G.; Putti, M.; Teatini, P.; Tomasi, L.; Betti, I.; Morelli, M.; Berlamont, J.; De Backer, K.; Decouttere, C.; et al. Coastal Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and Anthropic Land Subsidence. In CENAS; Springer: Dordrecht, The Netherlands, 1998; pp. 1–34. [Google Scholar] [CrossRef]
- Stefani, M.; Vincenzi, S. The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar. Geol. 2005, 222–223, 19–48. [Google Scholar] [CrossRef]
- Amorosi, A.; Centineo, M.C.; Colalongo, M.L.; Fiorini, F. Millennial-scale depositional cycles from the Holocene of the Po Plain, Italy. Mar. Geol. 2005, 222–223, 7–18. [Google Scholar] [CrossRef]
- Marchetti, M. Clima e attività umane come cause dei cambiamenti fluviali—II caso del Fiume Po. Quat.-Ital. J. Quat. Sci. 2008, 21, 241–250. [Google Scholar]
- Stefani, M. The Po Delta Region: Depositional Evolution, Climate Change and Human Intervention through the Last 5000 Years. In Landscapes and Landforms of Italy. World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bondesan, M.; Favero, V.; Viñals, M.J. New evidence on the evolution of the Po-delta coastal plain during the Holocene. Quat. Int. 1995, 29–30, 105–110. [Google Scholar] [CrossRef]
- Correggiari, A.; Cattaneo, A.; Trincardi, F. Depositional patterns in the late-Holocene Po delta system. In River Deltas—Concepts, Models and Examples; Bhattacharya, J., Giosan, L., Eds.; SEPM Special Publication: Broken Arrow, OK, USA, 2005. [Google Scholar]
- Maselli, V.; Trincardi, F. Man-made deltas. Sci. Rep. 2013, 3, 1926. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P.; Casula, G.; Cenni, N.; Loddo, F.; Pesci, A. GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet. Sci. Lett. 2009, 288, 204–212. [Google Scholar] [CrossRef]
- Cenni, N.; Fiaschi, S.; Fabris, M. Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sens. 2021, 13, 1488. [Google Scholar] [CrossRef]
- Greggio, N.; Giambastiani, B.M.S.; Campo, B.; Dinelli, E.; Amorosi, A. Sediment composition, provenance, and Holocene paleoenvironmental evolution of the Southern Po River coastal plain (Italy). Geol. J. 2018, 53, 914–928. [Google Scholar] [CrossRef]
- Amorosi, A.; Centineo, M.C.; Colalongo, M.L.; Pasini, G.; Sarti, G.; Vaiani, S.C. Facies architecture and Latest Pleistocene-Holocene depositional history of the Po Delta (Comacchio Area). Italian J. Geol. 2003, 111, 39–56. [Google Scholar] [CrossRef]
- Bernardi, D.; Caleffi, V.; Gasperini, L.; Schippa, L.; Valiani, A. A Study of the Hydrodynamics of the Coastal Lagoon “Valli di Comacchio”. In Proceedings of the 3rd International Symposium on Shallow Flows, Iowa City, IA, USA, 4–6 June 2012. [Google Scholar]
- Archetti, R.; Romagnoli, C. Analysis of the effects of different storm events on shoreline dynamics of an artificially embayed beach. Earth Surf. Processes Landf. 2011, 36, 1449–1463. [Google Scholar] [CrossRef]
- Bertoni, D.; Armaroli, C.; Ciavola, P. Fast retreat of a barrier system due to reduced sediment supply (Bellocchio, Northern Adriatic Sea, Italy). In Proceedings of the 3rd Coastal and Maritime Mediterranean Conference, Ferrara, Italy, 25–27 November 2015; pp. 7–10. [Google Scholar] [CrossRef]
- Amorosi, A.; Bruno, L.; Campo, B.; Morelli, A.; Rossi, V.; Scarponi, D.; Hong, W.; Bohacs, K.M.; Drexler, T.M. Global sea-level control on local parasequence architecture from the Holocene record of the Po Plain, Italy. Mar. Pet. Geol. 2017, 87, 99–111. [Google Scholar] [CrossRef]
- Barry, K.M.; Cavers, D.A.; Kneale, C.W. Recommended standards for digital tape formats. Geophysics 1975, 40, 244–352. [Google Scholar] [CrossRef]
- Gasperini, L. Extremely shallow-water morphobathymetric surveys: The Valle Fattibello (Comacchio, Italy) test case. Mar. Geophys. Res. 2005, 26, 97–107. [Google Scholar] [CrossRef]
- Wessel, P. XOVER: A Cross-over Error Detector for Track Data. Comput. Geosci. 1989, 15, 333–346. [Google Scholar] [CrossRef]
- Ligi, M.; Bortoluzzi, G.; Giglio, F.; Del Bianco, F.; Ferrante, V.; Gasperini, L.; Ravaioli, M. Shallow water acoustic techniques to investigate transitional environments: A case study over Boka Kotorska Bay. Measurements 2018, 126, 382–391. [Google Scholar] [CrossRef]
- Richardson, M.D.; Briggs, K.B. In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering. Geo-Mar. Lett. 1996, 16, 196–203. [Google Scholar] [CrossRef]
- Pereira, M.L.M.; Bonetti, J. Caracterização geomorfológica do relevo submarino de áreas marinhas protegidas brasileiras com base em técnicas de análise espacial. Rev. Bras. Geomorfol. 2018, 19, 127–147. [Google Scholar]
- Benelli, C. Metodiche di Indagine Geofisiche e Geomeccaniche in Ambiti Lagunari a Supporto della Progettazione Idraulica: Una Applicazione alle Valli di Comacchio. Master’s Thesis, Università Degli Studi di Ferrara, Ferrara, Italy, 2010; p. 112. [Google Scholar]
- Robertson, P.K. Interpretation of Cone Penetration Tests—A unified approach. Can. Geotech. J. 1988, 46, 1337–1355. [Google Scholar] [CrossRef] [Green Version]
- Dal Forno, G.; Gasperini, L. ChirCor: A new tool for generating synthetic chirp-sonar seismograms. Comput. Geosci. 2008, 34, 103–114. [Google Scholar] [CrossRef]
- Cenni, N.; Viti, M.; Baldi, P.; Mantovani, E.; Bacchetti, M.; Vannucchi, A. Present vertical movements in central and northern Italy from GPS data: Possible role of natural and anthropogenic causes. J. Geodyn. 2013, 71, 74–85. [Google Scholar] [CrossRef]
- Cenni, N.; Mantovani, E.; Baldi, P.; Viti, M. Present kinematics of Central and Northern Italy from continuous GPS measurements. J. Geodyn. 2012, 58, 62–72. [Google Scholar] [CrossRef]
- Mancini, F.; Grassi, F.; Cenni, N. A Workflow Based on SNAP–StaMPS Open-Source Tools and GNSS Data for PSI-Based Ground Deformation Using Dual-Orbit Sentinel-1 Data: Accuracy Assessment with Error Propagation Analysis. Remote Sens. 2021, 13, 753. [Google Scholar] [CrossRef]
- Nespoli, M.; Cenni, N.; Belardinelli, M.E.; Marcaccio, M. The interaction between displacements and water table changes due to natural and anthropogenic effects: The different point of view of GNSS and piezometers in the Po Plain (Italy). J. Hydrol. 2021, 596, 126112. [Google Scholar] [CrossRef]
- Arca, S.; Beretta, G.P. Prima sintesi geodetica-geologica sui movimenti verticali del suolo nell’Italia Settentrionale. Boll. Geod. Sci. Aff. 1985, 44, 125–156. [Google Scholar]
- Quilici, L.; Gigli, S.Q. Opere di Assetto Territoriale ed Urbano. Atlante Tematico di Topografia Antica 3; L’Erma di Bretschneider: Roma, Italy, 1995; 248p, ISBN 9788870628883. [Google Scholar]
- Ciabatti, M. Ricerche sull’evoluzione del delta padano. G. Geol. 1966, 34, 381–410. [Google Scholar]
- Da Lio, C.; Tosi, L. Vulnerability to relative sea-level rise in the Po river delta (Italy). Estuar. Coast. Shelf Sci. 2019, 228, 106379. [Google Scholar] [CrossRef]
- Millet, B.; Guelorget, O. Relationships between Benthic Communities and Physical Environment in a Lagoon Ecosystem. J. Coast. Res. 1993, 9, 378–389. [Google Scholar]
- Magni, P.; De Falco, G.; Como, S.; Casu, D.; Floris, A.; Petrov, A.N.; Castelli, A.; Perilli, A. Distribution and ecological relevance of fine sediments in organic-enriched lagoons: The case study of the Cabras lagoon (Sardinia, Italy). Mar. Pollut. Bull. 2008, 56, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.A.; Ekau, W.; Gooday, A.J.; Jorissen, F.; Middelburg, J.J.; Naqvi, S.W.A.; Neira, C.; Rabalais, N.N.; Zhang, J. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 2009, 6, 2063–2098. [Google Scholar] [CrossRef] [Green Version]
- Reclus, E. Nouvelle Géographie Universelle. La Terre et les Hommes; Librairie Hachette: Paris, France, 1875; 1012p. [Google Scholar]
- Antonellini, M.; Giambastiani, B.M.S.; Greggio, N.; Bonzi, L.; Calabrese, L.; Luciani, P.; Perini, L.; Severi, P. Processes governing natural land subsidence in the shallow coastal aquifer of the Ravenna coast, Italy. CATENA 2019, 172, 76–86. [Google Scholar] [CrossRef]
- Simeoni, U.; Tessari, U.; Corbau, C.; Tosatto, O.; Polo, P.; Teatini, P. Impact of land subsidence due to residual gas production on surficial infrastructures: The Dosso degli Angeli field study (Ravenna, Northern Italy). Eng. Geol. 2017, 229, 1–12. [Google Scholar] [CrossRef]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Bondesan, M. L’area deltizia padana: Caratteri geomorfologici. In II Parco del Delta del Po. Studi e Immagini; Libri, S., Ed.; L’ambiente Come Risorsa: Ferrara, Italy, 1990; p. 16. [Google Scholar]
Site | Start Date | End Date | N | T(y) | Longitude | Latitude | H(m) |
---|---|---|---|---|---|---|---|
COCL | 2016.6434 | 2019.8233 | 666 | 3.18 | 12.18852594 | 44.68992146 | 49.42 |
CODI | 2007.6315 | 2019.6945 | 3916 | 12.06 | 12.11197254 | 44.83667447 | 45.57 |
GARI | 2009.5466 | 2019.9986 | 3739 | 10.45 | 12.24943596 | 44.67690139 | 47.75 |
PTO1 | 2010.5575 | 2019.8233 | 2953 | 9.27 | 12.33405291 | 44.95151834 | 49.31 |
TGPO | 2008.6544 | 2019.9959 | 3721 | 11.34 | 12.22832082 | 45.00305807 | 49.36 |
RAVE | 2005.3548 | 2019.9986 | 4236 | 14.64 | 12.20029619 | 44.41275804 | 54.81 |
RAVS | 2007.1082 | 2019.7658 | 3700 | 12.66 | 12.19188083 | 44.40529434 | 51.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonetti, J.; Del Bianco, F.; Schippa, L.; Polonia, A.; Stanghellini, G.; Cenni, N.; Draghetti, S.; Marabini, F.; Gasperini, L. Anatomy of Anthropically Controlled Natural Lagoons through Geophysical, Geological, and Remote Sensing Observations: The Valli Di Comacchio (NE Italy) Case Study. Remote Sens. 2022, 14, 987. https://doi.org/10.3390/rs14040987
Bonetti J, Del Bianco F, Schippa L, Polonia A, Stanghellini G, Cenni N, Draghetti S, Marabini F, Gasperini L. Anatomy of Anthropically Controlled Natural Lagoons through Geophysical, Geological, and Remote Sensing Observations: The Valli Di Comacchio (NE Italy) Case Study. Remote Sensing. 2022; 14(4):987. https://doi.org/10.3390/rs14040987
Chicago/Turabian StyleBonetti, Jarbas, Fabrizio Del Bianco, Leonardo Schippa, Alina Polonia, Giuseppe Stanghellini, Nicola Cenni, Stefano Draghetti, Francesco Marabini, and Luca Gasperini. 2022. "Anatomy of Anthropically Controlled Natural Lagoons through Geophysical, Geological, and Remote Sensing Observations: The Valli Di Comacchio (NE Italy) Case Study" Remote Sensing 14, no. 4: 987. https://doi.org/10.3390/rs14040987
APA StyleBonetti, J., Del Bianco, F., Schippa, L., Polonia, A., Stanghellini, G., Cenni, N., Draghetti, S., Marabini, F., & Gasperini, L. (2022). Anatomy of Anthropically Controlled Natural Lagoons through Geophysical, Geological, and Remote Sensing Observations: The Valli Di Comacchio (NE Italy) Case Study. Remote Sensing, 14(4), 987. https://doi.org/10.3390/rs14040987