SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources
2.2.1. Index Data
2.2.2. Drought Data
2.2.3. Gross Primary Productivity (GPP) Data
2.2.4. Vegetation Type Data
2.3. Methods
2.3.1. Estimation of GPP Based on SIF Data
2.3.2. Correlation Analysis and Root Mean Square Error Calculation
3. Results
3.1. SIF Correlates Better with Drought Than EVI and NDVI
3.2. GPPSIF Has Better Accuracy Than Other GPP Products
3.3. Drought Evolution and GPP Response to Drought in Yunnan
3.3.1. sc_PDSI Spatiotemporal Pattern Evolution
3.3.2. GPPSIF Is More Sensitive to Drought Response
3.3.3. Response Characteristics of GPPSIF to Drought
4. Discussion
4.1. Sensitivity Analysis of SIF, EVI, NDVI to Drought
4.2. GPP Accuracy and Spatial Distribution Pattern
4.3. Response of GPP to Drought Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.; Smith, P.; Velde, M.; Vicca, S.; Babst, F. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; OGÉE, J.; Allard, V. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol. 2010, 13, 634–651. [Google Scholar] [CrossRef]
- Wang, S.; Huang, C.; Zhang, L.; Lin, Y.; Cen, Y.; Wu, T. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production. Remote Sens. 2016, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Daumard, F.; Champagne, S.; Fournier, A.; Goulas, Y.; Ounis, A.; Hanocq, J.F.; Moya, I. A Field Platform for Continuous Measurement of Canopy Fluorescence. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3358–3368. [Google Scholar] [CrossRef]
- Flexas, J.; Escalona, J.M.; Evain, S.; Gulías, J.; Moya, I.; Osmond, C.B.; Medrano, H. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 2002, 114, 231–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrowski, S.Z.; Pushnik, J.C.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 2005, 97, 403–414. [Google Scholar] [CrossRef]
- Norton, A.J.; Rayner, P.J.; Koffi, E.N.; Scholze, M.; Wang, Y.P. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 2018, 16, 3069–3093. [Google Scholar] [CrossRef] [Green Version]
- Xin, Q. Construction of Vegetation Drought Stress Index Based on Solar-Induced Chlorophyll Fluorescence. Master’s Thesis, Nanjing University, Nanjing, China, 2019. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Roderick, M.L.; Greve, P.; Farquhar, G.D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 2015, 51, 5450–5463. [Google Scholar] [CrossRef] [Green Version]
- Greve, P.; Roderick, M.L.; Ukkola, A.M.; Wada, Y. The aridity Index under global warming. Environ. Res. Lett. 2019, 14, 124006. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought [R]; Research Paper No. 45; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- Qiang, Z.; Liang, Z.; Xiancheng, C.; Jian, Z. Progresses and Challenges in Drought Assessment and Monitoring. Adv. Earth Sci. 2011, 26, 763–778. [Google Scholar]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Linlin, S.; Qiang, Z.; Yulong, R.; Yiping, L.; Lanying, H.; Yuanpu, L.; Suping, W. The applicable analysis of PDSI and self_calibrating PDSI drought indices in southwest China. J. Desert Res. 2021, 41, 10. [Google Scholar]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Han, G.; Ma, X.; Xu, H.; Zhang, M. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens. 2020, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Wang, M.; Sun, R.; Zhu, A.; Xiao, Z. Evaluation and Comparison of Light Use Efficiency and Gross Primary Productivity Using Three Different Approaches. Remote Sens. 2020, 12, 1003. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.M.; Chen, J.; Da Vis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Accadia, C.; Mariani, S.; Casaioli, M.; Lavagnini, A.; Speranza, A. Sensitivity of Precipitation Forecast Skill Scores to Bilinear Interpolation and a Simple Nearest-Neighbor Average Method on High-Resolution Verification Grids. Weather Forecast. 2003, 133, 129–130. [Google Scholar] [CrossRef]
- Pan, C. Extraction and Uncertainty Analysis of Impervious Surface Based on Multisource Remote Sensing Data in Yangtze River Delta, China; East China Normal University: Shanghai, China, 2016. [Google Scholar]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W. The Spatial-Temporal Dynamic of Grassland Ecosystem Productivity and Its Influence Factors Analysis in China. Ph.D. Thesis, Nanjing University, Nanjing, China, 2014. [Google Scholar]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: Cambridge, MA, USA, 1995; Volume 7. [Google Scholar]
- Ginestar, C.; Castel, J.R. Responses of young clementine citrus trees to water stress during different phenological periods. J. Pomol. Hortic. Sci. 1996, 71, 551–559. [Google Scholar] [CrossRef]
- Teare, I.D.; Peet, M.M. Crop-Water Relations [M]; John Wiley& Sons: New York, NY, USA, 1983. [Google Scholar]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Hongping, C.; Gensuo, J.; Jinming, F. Continuous drought intensifies reducing forest greenness. In Proceedings of the 2012 National Academic Forum for Doctoral Students in Atmospheric Sciences and the 12th Cross-Strait Youth Symposium, Beijing, China, 6 December 2012. [Google Scholar]
- Huan, D.; Feng, C.; Jinliang, W. Study on the Response Characteristics of Vegetation to Drought in Central Yunnan Based on SPEI Index. Geomat. Spat. Inf. Technol. 2020, 43, 51–55. [Google Scholar]
- Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.A.; Longdoz, B.; Epron, D.; et al. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob. Chang. Biol. 2008, 14, 1917–1933. [Google Scholar] [CrossRef]
- Saleska, S.R.; Didan, K.; Huete, A.R.; Da Rocha, H.R. Amazon Forests Green-Up During 2005 Drought. Science 2007, 318, 612. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, Y.; Liu, Y. Spatial and Temporal Differences of GPP Simulated by Different Satellite-derived LAI in China. Remote Sens. Technol. Appl. 2020, 35, 1015–1027. [Google Scholar]
- Chaves, M.M. Effects of Water Deficits on Carbon Assimilation. J. Exp. Bot. 1991, 42, 1–16. [Google Scholar] [CrossRef]
- Zheng, Y. Light Use Efficiency Based Gross Primary Productivity Estimation and Uncertainty Analysis. Master’s Thesis, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Arneth, A.; Bonal, D.; Buchmann, N.; Chen, J.; Law, B.E.; Lindroth, A.; Luyssaert, S. Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Glob. Chang. Biol. 2010, 16, 657–670. [Google Scholar] [CrossRef]
- Huang, K.; Wang, S.; Zhou, L.; Wang, H.; Liu, Y.; Yang, F. Effects of drought and ice rain on potential productivity of a subtropical coniferous plantation from 2003 to 2010 based on eddy covariance flux observation. Environ. Res. Lett. 2013, 8, 035021. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zscheischler, J.; Mahecha, M.D.; Von Buttlar, J.; Harmeling, S.; Jung, M.; Rammig, A.; Randerson, J.T.; Schölkopf, B.; Seneviratne, S.I.; Tomelleri, E. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 2014, 9, 035001. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Sayer, E.J.; Jia, Z.; Liu, W.; Wu, Y.; Yang, S.; Wang, C.; Yang, L.; Chen, D.; Bai, Y.; et al. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Glob. Chang. Biol. 2020, 26, 3015–3027. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yang, Y.; Fan, D.; Guan, H.; Zhang, T.; Long, D.; Zhou, Y.; Bai, D. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 2015, 204, 22–36. [Google Scholar] [CrossRef]
- Sperry, J.S.; Love, D.M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 2015, 207, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, J.; Li, J.; Wang, K.; Lei, L.; Guo, H. The 2010 spring drought reduced primary productivity in southwestern China. Environ. Res. Lett. 2012, 7, 045706. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Klonner, G.; Rammer, W.; Essl, F.; Moreno, A.; Neumann, M.; Dullinger, S. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 2018, 9, 1626. [Google Scholar] [CrossRef] [PubMed]
sc_PDSI | Wet/Dry Grade | sc_PDSI | Wet/Dry Grade |
---|---|---|---|
≤−4.00 | Extreme Drought | 0.50~0.99 | Initial wetness |
−3.00~−3.99 | Severe Drought | 1.00~1.99 | Slight wetness |
−2.00~−2.99 | Moderate drought | 2.00~2.99 | Moderate wetness |
−1.00~−1.99 | Slight drought | 3.00~3.99 | Severe wetness |
−0.50~−0.99 | Initial drought | ≥4.00 | Extreme wetness |
0.49~−0.49 | Normal |
2009-06 | 2009-09 | 2009-12 | 2010-01 | 2010-04 | 2010-10 | 2010-12 | 2011-03 | |
---|---|---|---|---|---|---|---|---|
Slight wetness | 16.39% | 0% | 0% | 0% | 1.41% | 15.58% | 15.28% | 15.71% |
Normal | 67.39% | 11.42% | 0.11% | 0.07% | 13.92% | 9.85% | 16.05% | 50.78% |
Slight drought | 15.58% | 63.99% | 9.99% | 6.95% | 7.38% | 6.12% | 21.92% | 29.31% |
Moderate drought | 0.64% | 23.63% | 36.30% | 30.06% | 15.41% | 36.73% | 27.94% | 4.15% |
Severe Drought | 0% | 0.96% | 53.60% | 62.92% | 61.88% | 31.72% | 18.81% | 0.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Peng, L.; Zhou, M.; Wei, Y.; Liu, L.; Li, L.; Liu, Y.; Dou, T.; Chen, J.; Wu, X. SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China. Remote Sens. 2022, 14, 1509. https://doi.org/10.3390/rs14061509
Li C, Peng L, Zhou M, Wei Y, Liu L, Li L, Liu Y, Dou T, Chen J, Wu X. SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China. Remote Sensing. 2022; 14(6):1509. https://doi.org/10.3390/rs14061509
Chicago/Turabian StyleLi, Chuanhua, Lixiao Peng, Min Zhou, Yufei Wei, Lihui Liu, Liangliang Li, Yunfan Liu, Tianbao Dou, Jiahao Chen, and Xiaodong Wu. 2022. "SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China" Remote Sensing 14, no. 6: 1509. https://doi.org/10.3390/rs14061509
APA StyleLi, C., Peng, L., Zhou, M., Wei, Y., Liu, L., Li, L., Liu, Y., Dou, T., Chen, J., & Wu, X. (2022). SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China. Remote Sensing, 14(6), 1509. https://doi.org/10.3390/rs14061509