Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. AERONET Data and Study Area
- The AERONET observation data should be available for almost half of the study period at each site (more than nine years), allowing us to assess the long-term AAODBC variations.
- Each AERONET observation site should contain at least ten observations annually in different months (the years with lower observations were excluded from this study).
- The chosen sites must represent variations in aerosol optical characteristics due to mixing dust particles and anthropogenic aerosols during long-range transportation.
2.2. AAODBC Calculation Methodology
2.3. Trend Analysis Description
2.3.1. Mann−Kendall Test
2.3.2. Sen’s Slope Estimator
2.4. Uncertainties in AAODBC Retrieval Methodology
3. Results
3.1. Variations of Annual Mean AODT and AAODBC
3.2. Annual Variations of BC Ratio (AAODBC/AODT Ratio) and AAODBC/AAODTotal Ratio
3.3. Correlation between AAODBC and Coarse- or Fine Mode Particles
3.4. Uncertainties in AAODBC Retrieval Methodology
4. Discussion
4.1. Annual Mean AODT
4.2. Annual and Monthly Mean AAODBC
4.3. Annual Mean BC Ratio (AAODBC/AODT Ratio) and AAODBC/AAODTotal Ratio
4.4. Correlation between AAODBC and Coarse- or Fine Mode Particles
4.5. AAODBC Methodology Assessment
5. Conclusions
- -
- A significant declining trend in AODT was found over Mexico City, Beijing, and the European sites, while Kanpur represented an upward tendency during 2000–2018. The highest AODT was observed over Sao Paulo, Beijing, Ilorin, and the Indian sites. The upward tendency in AODT over Kanpur might be attributed to dust, mixed aerosols, and anthropogenic urban-industrial emissions mainly associated with the high population over this metropolitan city. The downward tendency in AODT over China, Europe, and America might be related to the decrease in emissions and the governmental air pollution control policies over these areas.
- -
- Higher AAODBC was observed over Beijing, Ilorin, Mexico City, Sao Paulo, and the Indian sites, with the maximum values in Beijing and Ilorin. AAODBC declined significantly over Sao Paulo, Thessaloniki, Beijing, Seoul, and Cape Verde. High population, local and industrial emissions, transportation, and carbon-containing fuel consumption for house warming could be the main drivers of higher AAODBC over Beijing, Mexico City, Sao Paulo, and the Indian sites. In contrast, AAODBC variation over Ilorin is significantly affected by biomass burning, agriculture fires, and other emission sources.
- -
- We found that besides the local anthropogenic emissions, the AAODBC variations are also influenced by other factors such as the site’s geographical location, altitude, the local diffusion condition, wind speed, and precipitation.
- -
- The AAODBC at Beijing, Sao Paulo, Mexico City, and the Indian sites showed a clear seasonality with an increase over the cold months and lowered values during summertime. The seasonal dependence of AAODBC emphasizes the notable role of residential heating in BC emissions related to coal-based fuels over these sites.
- -
- We found a higher coefficient of determination between AODT and AAODBC for the fine mode particles at all sites except for Beijing. This higher correlation can be attributed to the fact that BC particles in the atmosphere are mostly of anthropogenic origin and in fine mode. We concluded that aging, BC emission from different sources, BC aggregation properties might be the leading cause of higher AAODBC correlation with coarse particles over Beijing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAODBC | Black Carbon Absorption Aerosol Optical Depth |
AAODBrC | Brown Carbon Absorption Aerosol Optical Depth |
(DPR, δp) | Depolarization Ratio |
(SSA, ω) | Single Scattering Albedo |
(AE, å) | Ångström Exponent |
Rd | Dust Ratio |
References
- Curci, G.; Alyuz, U.; Barò, R.; Bianconi, R.; Bieser, J.; Christensen, J.H.; Colette, A.; Farrow, A.; Francis, X.; Jiménez-Guerrero, P.; et al. Modelling black carbon absorption of solar radiation: Combining external and internal mixing assumptions. Atmos. Chem. Phys. 2019, 19, 181–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samset, B.H.; Stjern, C.W.; Andrews, E.; Kahn, R.A.; Myhre, G.; Schulz, M.; Schuster, G.L. Aerosol Absorption: Progress Towards Global and Regional Constraints. Curr. Clim. Chang. Rep. 2018, 4, 65–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pani, K.S.; Wang, S.; Lin, N.; Chantara, S.; Lee, C.; Thepnuan, D. Black carbon over an urban atmosphere in northern peninsular southeast Asia: Characteristics, source apportionment, and associated health risks. Environ. Pollut. 2020, 259, 113871. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 2004, 109, D14. [Google Scholar] [CrossRef] [Green Version]
- IPCC Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.
- Dumka, U.C.; Kaskaoutis, D.G.; Devara, P.C.S.; Kumar, R.; Kumar, S.; Tiwari, S.; Gerasopoulos, E.; Mihalopoulos, N. Year-long variability of the fossil fuel and wood burning black carbon components at a, rural site in southern Delhi outskirts. Atmos. Res. 2019, 216, 11–25. [Google Scholar] [CrossRef]
- Chen, W.; Tian, H.; Qin, K. Black carbon aerosol in the industrial city of Xuzhou, China: Temporal characteristics, and source appointment. Aerosol Air Qual. Res. 2019, 19, 794–811. [Google Scholar] [CrossRef] [Green Version]
- AERONET. Available online: https://aeronet.gsfc.nasa.gov (accessed on 15 March 2021).
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef] [Green Version]
- Chilinski, M.T.; Markowicz, K.; Zawadzk, O.; Stachlewska, I.; Lisok, J.; Makuch, P. Comparison of columnar, surface, and UAS profile of absorbing aerosol optical depth and single scattering albedo in south east Poland. Atmosphere 2019, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Ran, L.; Deng, Z.Z.; Wang, P.C.; Xia, X.A. Black carbon and wavelength-dependent aerosol absorption in the North china plain based on two-year aethalometer measurement. Atmos. Environ. 2016, 142, 132–144. [Google Scholar] [CrossRef]
- Koven, C.D.; Fung, I. Inferring dust composition from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data. J. Geophys. Res. 2006, 111, D14. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-K.; Tesche, M.; Müller, D.; Noh, Y. Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes. Atmos. Meas. Tech. 2019, 12, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Sun, E.; Xu, X.; Che, H.; Tang, Z.; Gui, K.; An, L.; Lu, C.; Shi, G. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol. Terr. Phys. 2019, 186, 8–19. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Chew, B.N.; Campbell, J.R.; Reid, J.S.; Giles, D.M.; Welton, E.J.; Salinas, S.V.; Liew, S.C. Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ. 2011, 45, 6724–6731. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, T.; Zheng, L. Light absorption of black carbon aerosols strongly influenced by particle morphology distribution. Environ. Res. Lett. 2020, 15, 094051. [Google Scholar] [CrossRef]
- Chin, M.; Diehl, T.; Dubovik, O.; Eck, T.F.; Holben, B.N.; Sinyuk, A.; Streets, D.G. Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with AERONET measurements. Ann. Geophys. 2009, 27, 3439–3464. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, A.; Sugimoto, N.; Matsui, I.; Arao, K.; Uno, I.; Murayama, T.; Kagawa, N.; Aoki, K.; Uchiyama, A.; Yamazaki, A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. Geophys. Res. Atmos. 2004, 109, D19S17. [Google Scholar] [CrossRef]
- Tesche, M.; Muller, D.; Gross, S.; Ansmann, A.; Althausen, D.; Freudenthaler, V.; Weinzirl, B.; Veira, A.; Petzold, A. Optical and microphysical properties of smoke over Cape Verde inferred from multi-wavelength lidar measurements. Tellus B Chem. Phys. Meteorol. 2011, 63B, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.; Müller, D.; Lee, K.; Kim, K.; Shimizu, A.; Sano, I.; Park, C.B. Depolarization ratios retrieved by AERONET sun—Sky radiometer data and comparison to depolarization ratios measured with lidar. Atmos. Chem. Phys. 2017, 17, 6271–6290. [Google Scholar] [CrossRef] [Green Version]
- Murayama, T.; Okamoto, H.; Kaneyasu, N.; Kamataki, H.; Miura, K. Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles. J. Geophys. Res. Atmos. 1999, 104, 31781–31792. [Google Scholar] [CrossRef]
- Cairo, F.; Di Donfrancesco, G.; Adriani, A.; Pulvirenti, L.; Fierli, F. Comparison of various linear depolarization parameters measured by lidar. Appl. Opt. 1999, 38, 4425–4432. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.K.; Tesche, M.; Kim, K.; Kezoudi, M.; Tatarov, B.; Muller, D.; Noh, Y. On the spectral depolarization and lidar ratio of mineral dust provided in the AERONET version 3 inversion product. Atmos. Chem. Phys. 2018, 18, 12735–12746. [Google Scholar] [CrossRef] [Green Version]
- Tesche, M.; Ansmann, A.; Muller, D.; Althausen, D.; Mattis, I.; Heese, B.; Freudenthaler, V.; Wiegner, M.; Esselborn, M.; Pisani, G.; et al. Vertical profiling of Saharan dust with Raman LIDAR′s and airborne HSRL in southern Morocco during SAMUM. Tellus B 2009, 61, 144–164. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carlson, B.E.; Lacis, A.A. Using single scattering albedo spectral curvature to characterize East Asian aerosol mixtures. J. Geophys. Res. Atmos. 2015, 120, 2037–2052. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, W. Light absorption carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2007, 40, 27–67. [Google Scholar] [CrossRef]
- Bahadur, R.; Puppala, S.P.; Xu, Y.; Ramanathan, V. Solar absorption by elemental and brown carbon determined from spectral observations. Proc. Natl. Acad. Sci. USA 2012, 109, 17366–17371. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Hashino, M. Temperature trends in Japan: 1900–1996. Theor. Appl. Climatol. 2003, 75, 15–27. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.F.; Wang, M.; Wagan, B. Precipitation trend over time using Mann-Kendall and Spearman’s rho tests in Swat river basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Saran, S. Comprehensive study on AOD trends over the Indian subcontinent: A statistical approach. Int. J. Remote Sens. 2017, 38, 5127–5149. [Google Scholar] [CrossRef]
- Coen, M.C.; Andrews, E.; Asmi, A.; Baltensperger, U.; Bukowiecki, N.; Day, D.; Fiebig, M.; Fjaeraa, A.M.; Flentje, H.; Hyvärinen, A.; et al. Aerosol decadal trends—Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys. 2013, 13, 869–894. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Kendall Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics, 2008 ed.; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, S.K.; Pranuthi, G.; Dubey, S.K. Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. J. Agrometeorol. 2014, 16, 164–171. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 2012, 63, 1379–1389. [Google Scholar] [CrossRef]
- Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.; Che, H.; Bilal, M.; Zhang, M. Characteristic and driving factors of aerosol optical depth over mainland China during 1980–2017. Remote Sens. 2018, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Maghrabi, A.H.; Alotaibi, R.N. Long term variations of AOD from an AERONET station in the central Arabian Peninsula. Theor. Appl. Climatol. 2017, 134, 1015–1026. [Google Scholar] [CrossRef]
- Cheng, N.; Cheng, B.; Li, S.; Ning, T. Effects of meteorology and emission reduction measures on air pollution in Beijing during heating seasons. Atmos. Pollut. Res. 2019, 10, 971–979. [Google Scholar] [CrossRef]
- Hazra, A. Using the confidence interval confidently. J. Thorac. Dis. 2017, 9, 4125–4130. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef] [Green Version]
- Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A.K.; Astitha, M. AOD trends during 2001–2010 from observations and model simulations. Atmos. Chem. Phys. 2015, 15, 5521–5535. [Google Scholar] [CrossRef] [Green Version]
- Soni, M.; Chandel, A.S.; Verma, S.; Payra, S.; Prakash, D.; Holben, B. Aerosols properties over desret influenced locations situated in four different continents. Atmos. Environ. 2021, 248, 118232. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1. [Google Scholar] [CrossRef]
- Horowitz, H.M.; Garland, R.M.; Thatcher, M.; Landman, W.A.; Dedekind, Z.; Merwe, J.; Engelbrecht, F.A. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET. Atmos. Chem. Phys. 2017, 17, 13999–14023. [Google Scholar] [CrossRef] [Green Version]
- Lieke, K.; Kandler, K.; Scheuvens, D.; Emmel, C.; Von Glahn, C.; Petzold, A.; Weinzierl, B.; Veira, A.; Ebert, M.; Weinbruch, S.; et al. Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus B 2011, 63, 497e511. [Google Scholar] [CrossRef] [Green Version]
- Omari, K.; Abuelgasim, A.; Alhebsi, K. Aerosol optical depth retrieval over the city of Abu Dhabi, United Arab Emirates (UAE) using Landsat-8 OLI images. Atmos. Pollut. Res. 2019, 10, 1075–1083. [Google Scholar] [CrossRef]
- Alpert, P.; Shvainshtein, O.; Kishcha, P. AOD Trends over Megacities based on Space Monitoring Using MODIS and MISR. Am. J. Clim. Chang. 2012, 1, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Carabali, G.; Estevez, H.R.; Valdes-Barron, M.; Bonifaz-Alfonzo, R.; Riveros-Rosas, D.; Velasco-Herrera, V.M.; Vazquez-Galvez, F. Aerosol climatology over the Mexico City basin: Characterization of optical properties. Atmos. Res. 2017, 194, 190–201. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Eck, T.E.; Smirnov, A.; Chin, M.; Remer, L.A.; Bian, H.; Tan, Q.; Levy, R.; Holben, B.N.; et al. Aerosol daytime variations over North and South America derived from multiyear AERONET measurements. J. Geophys. Res. Atmos. 2012, 117, D5. [Google Scholar] [CrossRef] [Green Version]
- Just, A.C.; Wright, R.O.; Schwartz, J.; Coull, B.A.; Baccarelli, A.A.; Tellez-Rojo, M.M.; Moody, E.; Wang, Y.; Lyapustin, A.; Kloog, A. Using High-Resolution Satellite Aerosol Optical Depth to Estimate Daily PM2.5 Geographical Distribution in Mexico City. Environ. Sci. Technol. 2015, 49, 8576–8584. [Google Scholar] [CrossRef] [Green Version]
- Saldiva, P.H.; Pope, C.A., III; Schwartz, J.; Dockery, D.W.; Lichtenfels, A.J.; Salge, J.M.; Barone, I.; Bohm, G.M. Air Pollution and Mortality in Elderly People: A Time-Series Study in Sao Paulo, Brazil. Arch. Environ. Health Int. J. 1995, 50, 159–163. [Google Scholar] [CrossRef]
- Meij, A.D.; Pozzer, A.; Lelieveld, J. Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. Atmos. Environ. 2012, 51, 75–85. [Google Scholar] [CrossRef]
- Dey, S.; Di Girolamo, L. A decade of change in aerosol properties over the Indian subcontinent. Geophys. Res. Lett. 2011, 38, 14. [Google Scholar] [CrossRef] [Green Version]
- Central Pollution Control Board. National Ambient Air Quality Status and Trends; Ministry of Environment, Forest and Climate Change Government of India: New Delhi, India, 2014.
- Singh, R.P.; Dey, S.; Tripathi, S.N.; Tare, V.; Holben, B. Variability of aerosol parameters over Kanpur, northern India. J. Geophys. Res. Atmos. 2004, 109, D23. [Google Scholar] [CrossRef]
- Dey, S.; Tripathi, S.N.; Singh, R.P.; Holben, B.N. Sesonal variability of aerosol parameters over Kanpur, an urban site in Indo—Gangetic basin. Adv. Space Res. 2005, 36, 778–782. [Google Scholar] [CrossRef]
- Chen, B.; Du, K.; Wang, Y.; Chen, J.; Zhao, J.; Wang, K.; Zhang, F.; Xu, L. Emission and Transport of Carbonaceous Aerosols in Urbanized Coastal Areas in China. Aerosol Air Qual. Res. 2012, 12, 371–378. [Google Scholar] [CrossRef]
- Gu, X.; Bo, F.; Cheng, T.; Chen, H.; Wang, Y.; Guo, H. The impacts of regional transport and meteorological factors on aerosol optical depth over Beijing, 1980–2014. Nat. Sci. Rep. 2018, 8, 5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, W.; Arimoto, R.; Zhang, X.Y.; Zhao, C.H.; Wang, Y.Q.; Sheng, L.F.; Fu, G. Spatial distribution and inter annual variation of surface PM10 concentrations over eighty-six Chinese cities. Atmos. Chem. Phys. 2010, 10, 5641–5662. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, F.; Pilot, E.; Yu, J.; Nie, C.; Holdaway, J.; Yang, L.; Li, Y.; Wang, W.; Vardoulakis, S.; et al. Taking action on air pollution control in the Beijing-Tianjin-Hebi (BTH) region: Progress, challenges and opportunities. Int. J. Environ. Res. Public Health 2018, 15, 306. [Google Scholar] [CrossRef] [Green Version]
- Ni, M.; Huang, J.; Lu, S.; Li, X.; Yan, J.; Cen, K. A review on black carbon emissions, worldwide and in China. Chemosphere 2014, 107, 83–93. [Google Scholar] [CrossRef]
- Kanaya, Y.; Yamaji, K.; Miyakawa, T.; Taketani, F.; Zhu, C.; Choi, Y.; Komazaki, Y.; Ikeda, K.; Kondo, Y.; Klimont, Z. Rapid reduction in black carbon emissions from China: Evidence from 2009–2019 observations on Fukue Island, Japan. Atmos. Chem. Phys. 2020, 20, 6339–6356. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Y.; Chen, J.; Yu, Q.; Cheng, S.; Li, W.; Liu, X.; Tian, H. Variation, sources and historical trend of black carbon in Beijing, China based on ground observation and MERRA-2 reanalysis data. Environ. Pollut. 2019, 245, 853–863. [Google Scholar] [CrossRef]
- Cho, C.; Kim, S.W.; Lee, M.; Lim, S.; Fang, W.; Gustafsson, O.; Andersson, A.; Park, R.J.; Sheridan, P.J. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ. 2019, 212, 65–74. [Google Scholar] [CrossRef]
- Chan, K.L. Aerosol optical depths and their contributing sources in Taiwan. Atmos. Environ. 2017, 148, 364–375. [Google Scholar] [CrossRef]
- Peralta, O.; Ortinez-Alvarez, A.; Basaldud, R. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 2019, 230, 104626. [Google Scholar] [CrossRef]
- Paredes-Miranda, G.; Arnott, W.P.; Moosmuller, H.; Green, M.C.; Gayawali, M. Black carbon aerosol concentration in five cities and its scaling with city population. Bull. Am. Meteorol. Soc. 2013, 94, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, H.; de Assuncao, J.V. Transport air pollution in Sao-Paulo, Brazil: Advances in control programs in the last 15 years. In Transactions on State of the Art in Science and Engineering; WIT Press: London, UK, 2005; Volume 22, ISSN 1755-8336. [Google Scholar] [CrossRef]
- Fawole, O.G.; Cai, X.; Levine, J.G.; Pinker, R.T.; MacKenzie, A.R. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa. J. Geophys. Res. Atmos. 2016, 121, 14–513. [Google Scholar] [CrossRef]
- Ramachandran, S.; Rajesh, T.A. Black Carbon aerosol mass concentrations over Ahmadabad, an urban location in western India: Comparison with urban sites in Asia, Europe, Canada, and the United States. J. Geophys. Res. Atmos. 2007, 112, D6. [Google Scholar] [CrossRef] [Green Version]
- Kutzner, D.D.; von Schneidemesser, E.; Kuik, F.; Quedenau, J.; Waetherhead, E.C.; Schmale, J. Long-Term monitoring of black carbon across Germany. Atmos. Environ. 2018, 185, 41–52. [Google Scholar] [CrossRef]
- Romppanen, S. Arctic governance via EU law on black carbon? Rev. Eur. Comp. Int. Environ. Law 2018, 27, 45–54. [Google Scholar] [CrossRef]
- Thomas, L.B. Black Carbon Problems in Transportation: Technological Solutions and Governmental Policy Solutions. In Massachusetts Institute of Technology Working Paper Series 1–25; CEEPR, MIT Center for Energy and Environmental Policy Research: Cambridge, MA, USA, 2017; Available online: https://ceepr.mit.edu/wp-content/uploads/2021/09/2017-012.pdf (accessed on 25 June 2021).
- SAFAR (System for Air Quality Forecasting and Research). A Special Report Emission Inventory for National Capital Region Delhi Ministry of Earth Sciences; Government of India: Pune, India, 2010. Available online: http://safar.tropmet.res.in (accessed on 10 July 2021).
- Venkataraman, C.; Habib, G.; Eiguren-Fernandez, A.; Miguel, A.H.; Friedlander, S.K. Residential biofuels in South Asia: Carbonaceous aerosol emissions and climate impacts. Science 2005, 307, 1454–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.M.; Ravishankara, A.R.; Kodros, J.K.; Venkataraman, C.; Sadavarte, P.; Pierce, J.R.; Chaliyakunnel, S.; Millet, D.B. Aerosol Optical Depth Over India. J. Geophys. Res. Atmos. 2018, 123, 3688–3703. [Google Scholar] [CrossRef]
- Ali, M.A.; Nichol, J.E.; Bilal, M.; Qiu, Z.; Mazhar, U.; Wahiduzzaman, M.; Almazroui, M.; Islam, M.N. Classification of aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. 2020, 241, 117785. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhu, C.S.; Chow, J.C.; Watson, J.G.; Han, Y.M.; Wang, G.H.; Shen, Z.X.; An, Z.S. Black carbon relationships with emissions and meteorology in Xi′an, China. Atmos. Res. 2009, 94, 194–202. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zheng, M. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 2017, 618, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Dehkhoda, N.; Noh, Y.; Joo, S. Long-Term Variation of Black Carbon Absorption Aerosol Optical Depth from AERONET Data over East Asia. Remote Sens. 2020, 12, 3551. [Google Scholar] [CrossRef]
- Kang, L.; Chen, S.; Huang, J.; Zhao, S.; Ma, X.; Yuan, T.; Zhang, X.; Xie, T. The spatial and temporal distributions of absorbing aerosols over East Asia. Remote Sens. 2017, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Castanho, A.; Artaxo, P. Wintertime and summertime Sao Paulo aerosol source apportionment study. Atmos. Environ. 2001, 35, 4889–4902. [Google Scholar] [CrossRef]
- Chiloane, K.E.; Beukes, J.P.; van Zyl, P.G.; Maritz, P.; Vakkari, V.; Josipovic, M.; Venter, A.D.; Jaars, K.; Tiitta, P.; Kulmala, M.; et al. Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa. Atmos. Chem. Phys. 2017, 17, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
- Liakakou, E.; Stavroulas, I.; Kaskaoutis, D.G.; Grivas, G.; Paraskevopoulou, D.; Dumka, U.C.; Tsagkaraki, M.; Bougiatioti, A.; Oikonomou, K.; Sciare, J.; et al. Long-term variability, source apportionment and spectral properties of black carbon at an urban bachground site in Athens, Greece. Atmos. Environ. 2020, 222, 117137. [Google Scholar] [CrossRef]
- Bikkina, S.; Andersson, A.; Ram, K.; Sarin, M.M.; Sheesley, R.J.; Kirillova, E.N.; Rengarajan, R.; Sudheer, A.K.; Gustafsson, Ö. Carbon isotope-constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indo-Gangetic Plain. J. Geophys. Res. Atmos. 2017, 122, 4903–4923. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Bano, T.; Singh, S.; Behura, S.; Srivastava, M.K.; Chate, D.M.; Padmanabhamurty, B. Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J. Atmos. Chem. 2009, 62, 193–209. [Google Scholar] [CrossRef]
- Ynoue, R.Y.; Andrade, M.F. Size-Resolved Mass Balance of Aerosol Particles over the Sao Paulo Metropolitan Area of Brazil. Aerosol Sci. Technol. 2004, 38, 52–62. [Google Scholar] [CrossRef]
- Costabile, F.; Angelini, F.; Barnaba, F.; Gobbi, G.P. Partitioning of black carbon between ultrafine and fine particle modes in an urban airport vs. urban background environment. Atmos. Environ. 2015, 102, 136–144. [Google Scholar] [CrossRef]
- Petzold, A.; Gysel, M.; Vancassel, X.; Hitzenberger, R.; Puxbaum, H.; Vrochticky, S.; Weingartner, E.; Baltensperger, U.; Mirabel, P. On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles. Atmos. Chem. Phys. 2005, 5, 31873203. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Short-term effects of controlling fossil-fuel soot biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. Geophys. Res. Atmos. 2010, 115, 1307–1314. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, T.; Liu, D.; Allen, J.D.; Zheng, L.; Chen, H. Light absorption enhancement of black carbon aerosol constrained by particle morphology. Environ. Sci. Technol. 2018, 52, 6912–6919. [Google Scholar] [CrossRef]
- Schwarz, J.P.; Gao, R.S.; Spackman, J.R.; Watts, L.A.; Thomson, D.S.; Fahey, D.W.; Ryerson, T.B.; Peischl, J.; Holloway, J.S.; Trainer, M.; et al. Measurements of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys. Res. Lett. 2008, 35, 13. [Google Scholar] [CrossRef]
- Mayol-Bracero, O.L.; Guyon, P.; Graham, B.; Roberts, G.; Andreae, M.O.; Decesari, S.; Facchini, M.C.; Fuzzi, S.; Artaxo, P. Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. 2002, 107, 8091. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Ge, X.; Wu, Y.; Shen, F.; Chen, M.; Zhao, J.; Xie, C.; Wang, Q.; Xu, W.; et al. Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmos. Chem. Phys. 2019, 19, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, D.; Yu, C.; Tian, P.; Hu, D.; Zhou, W.; Ding, S.; Hu, K.; Sun, Z.; Huang, M.; et al. Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing winter. Sci. Total Environ. 2020, 709, 136251. [Google Scholar] [CrossRef]
Location | Site Geolocation Information |
---|---|
America | Sao Paulo (23.561°S, 46.735°W) Mexico City (19.334°N, 99.182°W) |
Europe | Thessaloniki (40.630°N, 22.960°E) Venice (45.314°N, 12.508°E) |
East Asia | Beijing (39.977°N, 116.381°E) Seoul_SNU (37.458°N, 126.951°E) Taipei (25.015°N, 121.538°E) |
Africa | IER_Cinzana (13.278°N, 5.934°W) Ilorin (8.484°N, 4.675°E) Cape Verde (16.733°N, 22.935°W) |
Middle East | Solar Village (24.907°N, 46.397°E) Mezaira (23.105°N, 53.755°E) |
India | Kanpur (26.513°N, 80.232°E) Gandhi College (25.871°N, 84.128°E) |
Number of AERONET Observations | ||
---|---|---|
Location | Stations | Total |
North & South America | Sao Paulo | 201 |
Mexico City | 341 | |
Europe | Thessaloniki | 494 |
Venice | 555 | |
East Asia | Beijing | 1313 |
Taipei | 361 | |
Seoul | 822 | |
Africa | Cape Verde | 720 |
IER-Cinzana | 1207 | |
Ilorin | 998 | |
Middle East | Mezaira | 699 |
Solar Village | 1262 | |
India | Gandhi College | 821 |
Kanpur | 2379 |
Location | Site | N | AODT (440 nm) | N | AAODBC (440 nm) | N | BC Ratio (AAODBC/AODT) | N | AAODBC to AAODTotal AAODBC/AAODT Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mann−Kendall | Sen’s Slope | Mann−Kendall | Sen’s Slope | Mann−Kendall | Sen’s Slope | Mann−Kendall | Sen’s Slope | ||||||||||
z Value | p-Value | z Value | p-Value | z Value | p-Value | z Value | p-Value | ||||||||||
Americas | Sao Paulo | 11 | −0.155 | 0.876 | −0.005 | 11 | −1.98 | 0.051 | −0.001 | 11 | 0 | 1 | 0.00 | 11 | −1.245 | 0.212 | −0.006 |
Mexico City | 14 | −3.065 | 0.0021 | −0.01 | 14 | −1.423 | 0.154 | −0.0005 | 14 | −0.12 | 0.5 | −0.0001 | 14 | −0.32 | 0.74 | 0.00 | |
Europe | Thessaloniki | 13 | −2.867 | 0.004 | −0.006 | 13 | −2.013 | 0.044 | −0.0004 | 13 | −1.98 | 0.012 | −0.001 | 13 | −1.98 | 0.046 | −0.015 |
Venice | 18 | −3.030 | 0.002 | −0.009 | 18 | −0.227 | 0.820 | 0.000 | 18 | 0.530 | 0.59 | +0.0001 | 18 | −2.42 | 0.015 | −0.006 | |
East Asia | Beijing | 17 | −2.43 | 0.015 | −0.011 | 16 | −1.98 | 0.0139 | −0.001 | 16 | 0.045 | 0.096 | 0.00 | 16 | −1.98 | 0.05 | −0.006 |
Seoul | 9 | −1.46 | 0.25 | −0.004 | 9 | −3.023 | 0.002 | −0.0015 | 9 | −1.98 | 0.04 | −0.0011 | 9 | −1.196 | 0.05 | −0.018 | |
Taipei | 15 | −0.94 | 0.34 | −0.005 | 15 | −1.088 | 0.276 | −0.0005 | 15 | −0.989 | 0.322 | −0.0008 | 15 | −3.16 | 0.0015 | −0.0094 | |
Africa | Cape Verde | 16 | −0.151 | 0.87 | −0.0004 | 15 | −2.672 | 0.007 | −0.0009 | 16 | −3.10 | 0.0018 | −0.0014 | 16 | −3.06 | 0.002 | −0.0019 |
IER-Cinzana | 14 | −0.328 | 0.74 | −0.001 | 14 | −0.65 | 0.51 | −0.0001 | 14 | 0.52 | 0.58 | +0.0001 | 14 | 0.00 | 1 | 0.00 | |
Ilorin | 15 | −0.296 | 0.766 | −0.005 | 15 | 0.98 | 0.32 | +0.001 | 15 | 1.187 | 0.23 | +0.0011 | 15 | 0.98 | 0.32 | +0.003 | |
Middle East | Mezaira | 11 | 0.618 | 0.537 | +0.0044 | 11 | −0.622 | 0.533 | −0.0002 | 11 | 0.10 | 0.53 | 0.00 | 11 | −0.34 | 0.73 | −0.0008 |
Solar Village | 13 | 1.89 | 0.058 | +0.010 | 12 | 1.57 | 0.11 | +0.001 | 12 | 1.44 | 0.014 | +0.0012 | 12 | 1.028 | 0.303 | +0.0012 | |
India | Gandhi College | 10 | 0.178 | 0.758 | +0.007 | 10 | 0.17 | 0.85 | +0.0004 | 10 | −0.17 | 0.85 | −0.0004 | 10 | 1.25 | 0.21 | +0.02 |
Kanpur | 18 | 2.045 | 0.040 | +0.009 | 17 | −1.287 | 0.197 | −0.0005 | 17 | −2.677 | 0.007 | −0.0011 | 17 | 0.86 | 0.38 | +0.0031 |
Our Approach | Previous Studies |
---|---|
A Downward trend in AAODBC at the Beijing site from 2001 to 2017 | A downward tendency in AAODBC was found over China during 2008–2017, with a considerable influence on AAOD over this area [14]. A decreasing trend in BC concentration was reported over Beijing [62]. |
Higher AAODBC and AAODBC/AAODT over the Americas imply the high contribution of BC in light absorption. | A higher absorption coefficient related to BC was reported over Mexico City [67]. Elevated BC concentration was reported due to the high BC emissions over Sao Paulo [68]. |
Lower AAODBC over the European sites than the other sites | The European and American sites showed lower BC mass concentration than India, Beijing, and Seoul [71]. |
Higher variations in AAODBC over the Indian sites | A considerable fraction of aerosols over India were found to be light-absorbing which contain BC [77]. |
Higher AAODBC and AAODBC/AAODT at the Ilorin site, indicating the high contribution of BC and dust in light absorption at this site. | The higher annual mean AOD was found over Ilorin mainly attributable to the influence of dust and anthropogenic sources [43]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehkhoda, N.; Sim, J.; Joo, S.; Shin, S.; Noh, Y. Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018. Remote Sens. 2022, 14, 1510. https://doi.org/10.3390/rs14061510
Dehkhoda N, Sim J, Joo S, Shin S, Noh Y. Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018. Remote Sensing. 2022; 14(6):1510. https://doi.org/10.3390/rs14061510
Chicago/Turabian StyleDehkhoda, Naghmeh, Juhyeon Sim, Sohee Joo, Sungkyun Shin, and Youngmin Noh. 2022. "Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018" Remote Sensing 14, no. 6: 1510. https://doi.org/10.3390/rs14061510
APA StyleDehkhoda, N., Sim, J., Joo, S., Shin, S., & Noh, Y. (2022). Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018. Remote Sensing, 14(6), 1510. https://doi.org/10.3390/rs14061510