High-Efficiency Optimization Algorithm of PMEPR for OFDM Integrated Radar and Communication Waveform Based on Conjugate Gradient
Abstract
:1. Introduction
2. Integrated Signal Model
Deformation of the Optimization Problem
3. PRP-CGPOA
3.1. Gradient Analytical Model
3.2. Update Rules
3.3. Step Size
3.4. Algorithm Summary and Complexity Comparison
4. Results
4.1. Simulation Analysis
4.2. Experimental Demonstration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiriyath, A.R.; Paul, B.; Jacyna, G.M.; Bliss, D.W. Inner bounds on performance of radar and communications co-existence. IEEE Trans. Signal Process. 2016, 64, 464–474. [Google Scholar] [CrossRef]
- Feng, Z.; Fang, Z.; Wei, Z.; Chen, X.; Quan, Z.; Li, D. Joint radar and communication: A survey. China Commun. 2020, 17, 1–27. [Google Scholar] [CrossRef]
- Xiao, B.; Huo, K.; Liu, Y. Development and prospect of radar and communication integration. J. Electron. Inf. Technol. 2019, 41, 739–750. [Google Scholar]
- Luong, N.C.; Lu, X.; Hoang, D.T.; Niyato, D.; Kim, D.I. Radio resource management in joint radar and communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2021, 23, 780–814. [Google Scholar] [CrossRef]
- Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Signaling strategies for dual-function radar communications: An overview. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 36–45. [Google Scholar] [CrossRef]
- Sturm, C.; Wiesbeck, W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc. IEEE 2011, 99, 1236–1259. [Google Scholar] [CrossRef]
- Han, L.; Wu, K. Multifunctional transceiver for future intelligent transportation systems. IEEE Trans. Microw. Theory Tech. 2011, 59, 1879–1892. [Google Scholar] [CrossRef]
- Moghaddasi, J.; Wu, K. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform. IEEE Access 2016, 4, 818–838. [Google Scholar] [CrossRef]
- Takase, H.; Shinriki, M. A dual-use radar and communication system with complete complementary codes. In Proceedings of the 2014 15th International Radar Symposium (IRS), Gdansk, Poland, 16–18 June 2014. [Google Scholar]
- Romero, R.A.; Shepherd, K.D. Friendly spectrally shaped radar waveform with legacy communication systems for shared access and spectrum management. IEEE Access 2015, 3, 1541–1554. [Google Scholar] [CrossRef]
- Shi, C.; Wang, F.; Salous, S.; Zhou, J. Joint subcarrier assignment and power allocation strategy for integrated radar and communications system based on power minimization. IEEE Sens. J. 2019, 19, 11167–11179. [Google Scholar] [CrossRef]
- Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 2015, 64, 2168–2181. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, L.; Zhou, Y.; Zhang, Q. Embedding communication symbols into radar waveform with orthogonal FM scheme. IEEE Sens. J. 2018, 18, 8709–8719. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Xu, S.; Zhang, J. A novel radar waveform compatible with communication. In Proceedings of the 2011 International Conference on Computational Problem-Solving, Chengdu, China, 21–23 October 2011. [Google Scholar]
- Sahin, C.; Jakabosky, J.; McCormick, P.M.; Metcalf, J.G.; Blunt, S.D. A novel approach for embedding communication symbols into physical radar waveforms. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017. [Google Scholar]
- Pappu, C.S.; Beal, A.N.; Flores, B.C. Chaos based frequency modulation for joint monostatic and bistatic radar-communication systems. Remote Sens. 2021, 13, 4113. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Xu, J.; Yang, Z.; Zhang, Y. Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Commun. Lett. 2017, 21, 2174–2177. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, W.; Shao, H. Spread spectrum-coded OFDM chirp waveform diversity design. IEEE Sens. J. 2015, 15, 5694–5700. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, T. Low PMEPR OFDM radar waveform design using the iterative least squares algorithm. IEEE Signal Process. Lett. 2015, 22, 1975–1979. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Su, Y.; Cui, Z.; Su, X. A design of communication radar integrated signal of MCPC based on costas coding. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019. [Google Scholar]
- Ahmed, A.; Zhang, Y.D.; Hassanien, A. Joint radar-communications exploiting optimized OFDM waveforms. Remote Sens. 2021, 13, 4376. [Google Scholar] [CrossRef]
- Nee, R.V.; Prasad, R. OFDM for Wireless Multimedia Communications; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- Levanon, N. Radar Signals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Narahashi, S.; Nojima, T. New phasing scheme of n-multiple carriers for reducing peak-to-average power ratio. Electron. Lett. 1994, 30, 1382–1383. [Google Scholar] [CrossRef]
- Rahmatallah, Y.; Mohan, S. Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Commun. Surv. Tutor. 2013, 15, 1567–1592. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, Y. An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast. 2008, 54, 257–268. [Google Scholar] [CrossRef]
- Han, S.H.; Lee, J.H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Wirel. Commun. 2005, 12, 56–65. [Google Scholar] [CrossRef]
- Armstrong, J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electron. Lett. 2002, 38, 246–247. [Google Scholar] [CrossRef]
- Tellado, J. Peak to Average Power Reduction for Multicarrier Modulation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1999. [Google Scholar]
- Wang, L.; Tellambura, C. Analysis of clipping noise and tonereservation algorithms for peak reduction in OFDM systems. IEEE Trans. Veh. Technol. 2008, 57, 1675–1694. [Google Scholar] [CrossRef]
- Chen, J.C.; Chiu, M.H.; Yang, Y.S.; Li, C.P. A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems. IEEE Trans. Broadcast. 2011, 57, 752–756. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Tellambura, C. Genetic algorithm based nearly optimal peak reduction tone set selection for adaptive amplitude clipping PAPR reduction. IEEE Trans. Broadcast. 2012, 58, 462–471. [Google Scholar] [CrossRef]
- Lim, D.W.; Noh, H.S.; No, J.S.; Shin, D.J. Near optimal PRT set selection algorithm for tone reservation in OFDM systems. IEEE Trans. Broadcast. 2008, 54, 454–460. [Google Scholar]
- Janaaththanan, S.; Kasparis, C.; Evans, B.G. A gradient based algorithm for PAPR reduction of OFDM using tone reservation technique. In Proceedings of the VTC Spring 2008—IEEE Vehicular Technology Conference, Singapore, 11–14 May 2008. [Google Scholar]
- Hou, J.; Ge, J.; Gong, F. Tone reservation technique based on peak-windowing residual noise for PAPR reduction in OFDM systems. IEEE Trans. Veh. Technol. 2015, 64, 5373–5378. [Google Scholar] [CrossRef]
- Polak, E.; Ribière, G. Note sur la convergence de directions conjugèes. Rev. Fr. Inform. Rech. Oper. 1969, 16, 35–43. [Google Scholar]
- Liang, T.; Zhu, Y.; Fu, Q. Designing PAR-constrained periodic/aperiodic sequence via the gradient-based method. Signal Process. 2018, 147, 11–22. [Google Scholar]
- Zhang, X. Matrix Analysis and Applications; Tsinghua University Press: Beijing, China, 2004. [Google Scholar]
- Ding, L.; Geng, F. Principle of Radar, 3rd ed.; Xidian University Press: Xi’an, China, 2002. [Google Scholar]
Parameter | Value |
---|---|
Pulse Width | 10 |
Bandwidth | 100 MHz |
Sampling Frequency | 400 MHz |
Number of Subcarriers | 1000 |
Modulation | 16 QAM |
TRR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, J.; Liu, F.; Miao, Y. High-Efficiency Optimization Algorithm of PMEPR for OFDM Integrated Radar and Communication Waveform Based on Conjugate Gradient. Remote Sens. 2022, 14, 1715. https://doi.org/10.3390/rs14071715
Rong J, Liu F, Miao Y. High-Efficiency Optimization Algorithm of PMEPR for OFDM Integrated Radar and Communication Waveform Based on Conjugate Gradient. Remote Sensing. 2022; 14(7):1715. https://doi.org/10.3390/rs14071715
Chicago/Turabian StyleRong, Juan, Feifeng Liu, and Yingjie Miao. 2022. "High-Efficiency Optimization Algorithm of PMEPR for OFDM Integrated Radar and Communication Waveform Based on Conjugate Gradient" Remote Sensing 14, no. 7: 1715. https://doi.org/10.3390/rs14071715
APA StyleRong, J., Liu, F., & Miao, Y. (2022). High-Efficiency Optimization Algorithm of PMEPR for OFDM Integrated Radar and Communication Waveform Based on Conjugate Gradient. Remote Sensing, 14(7), 1715. https://doi.org/10.3390/rs14071715