Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
- Magnetic surveys. We use on ground and vector magnetometry (Figure 2), a remote sensing tool, to measure the magnetic signature of different structures, both on the ground and onboard a remote-piloted aircraft (RPA) (Figure 3A). This allows for the determination of the intensity and direction of the magnetic field. Additionally, we measure the magnetic susceptibility in situ to determine the induced magnetization of different elements.
- The in situ observations of the morphology of the structures, constituent rocks, and the collection of samples.
- The generation of mathematical models based on the observations and measurements of the magnetic field and susceptibility. The aim of the modeling is to test how the predicted magnetic field matches the measured one, taking into account the observed geological data and measured magnetization characteristics. In cases where the in situ magnetic characterization of rocks is not available, approximate expected values are used according to the type of rock obtained in previous measurements.
2.1. On-Ground Magnetometry Equipment Description
2.2. Onboard Drones Magnetometry Equipment Description
2.3. Magnetic Susceptibility Meter Description
2.4. Magnetic Modeling Description
3. Results
3.1. First Case Study: Catalonian Volcanic Zone
3.2. Second Case Study: Cerro Gordo Volcano in Campo de Calatrava Volcanic Province
3.3. Third Case Study: Cabo de Gata in Almería–Murcia Volcanic Area
4. Discussion
4.1. Appropriateness of the Proposed Methodology
4.2. Applicability of Proposed Methodology to Study of Planetary Volcanoes
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choumert-Nkolo, J.; Lamour, A.; Phélinas, P. The Economics of Volcanoes. Études Et Documents n° 3; Araujo, C., Ed.; Cornec M.: Clermont-Ferrand, France, 2020; pp. 1–36. [Google Scholar]
- Filiberto, J.; Trang, D.; Treiman, A.H.; Gilmore, M.S. Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci. Adv. 2020, 6, eaax7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Incecco, P.; Filiberto, J.; López, I.; Gorinov, D.A.; Komatsu, G. Idunn Mons: Evidence for Ongoing Volcano-tectonic Activity and Atmospheric Implications on Venus. Planet. Sci. J. 2021, 2, 215. [Google Scholar] [CrossRef]
- Shalygin, E.V.; Markiewicz, W.J.; Basilevsky, A.T.; Titov, D.V.; Ignatiev, N.I.; Head, J.W. Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys. Res. Lett. 2015, 42, 4762–4769. [Google Scholar] [CrossRef]
- Christensen, P.; McSween, H.; Bandfield, J.; Ruff, S.; Rogers, D.; Hamilton, V.; Gorelick, N.; Wyatt, M.; Jakosky, B.; Kieffer, H.; et al. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 2005, 436, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Baratoux, D.; Toplis, M.J.; Monnereau, M.; Gasnault, O. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 2011, 472, 338–341. [Google Scholar] [CrossRef] [PubMed]
- McSween, H.; Taylor, G.; Wyatt, M. Elemental composition of the Martian crust. Science 2009, 324, 736–739. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.D.; Hamilton, V.E. Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA and CRISM data. J. Geophys. Res. Planets 2014, 120, 62–91. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, Y.; Bai, Y.; Wand, L.; Jia, Y.; Shen, W.; Fan, Y.; Liu, Y.; Wang, C.; Zhang, A.; et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Adv. Space Res. 2021, 67, 812–823. [Google Scholar] [CrossRef]
- NASA. Ingenuity Mars Helicopter, Landing Press Kit. Available online: https://www.jpl.nasa.gov/news/press_kits/mars_2020/download/ingenuity_landing_press_kit.pdf (accessed on 22 December 2021).
- Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Las Heras, F. Autonomous Airborne 3D SAR Imaging System for Subsurface Sensing: UWB-GPR on Board a UAV for Landmine and IED Detection Remote. Remote Sens. 2019, 11, 2357. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Wilson, L. Planetary Volcanism. In Encyclopedia of the Solar System, 3rd ed.; Spohn, T., Breuer, D., Johnson, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Kilburn, C.R.J. Encyclopedia of Volcanoes; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- McElhinny, M.; McFadden, P. Paleomagnetism: Continents and Oceans; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Anderson, B.J.; Johnson, C.L.; Korth, H.; Purucker, M.E.; Winslow, R.M.; Slavin, J.A.; Solomon, S.C.; McNutt, R.L., Jr.; Raines, J.M.; Zurbuchen, T.H. The global magnetic field of Mercury from MESSENGER orbital observations. Science 2011, 333, 1859–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, L.L. Initial mapping of Mercury’s crustal magnetic field: Relationship to the Caloris impact basin. Geophys. Res. Lett. 2015, 42, 10. [Google Scholar] [CrossRef] [Green Version]
- Hood, L.L. Magnetic anomalies concentrated near and within Mercury’s impact basins: Early mapping and interpretation. J. Geophys. Res. Planets 2016, 121, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Hood, L.L.; Oliveira, J.S.; Galluzzi, V.; Rothery, D.A. Investigating sources of Mercury’s crustal magnetic field: Further mapping of MESSENGER magnetometer data. J. Geophys. Res. Planets 2018, 123, 2647–2666. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.S.; Hood, L.L.; Langlais, B. Constraining the early history of Mercury and its core dynamo by studying the crustal magnetic field. J. Geophys. Res. Planets 2019, 124, 2382–2396. [Google Scholar] [CrossRef] [Green Version]
- Heyner, D.; Auster, H.-U.; Fornaçon, K.-H.; Carr, C.; Richter, I.; Mieth, J.Z.D.; Kolhey, P.; Exner, W.; Motschmann, U.; Baumjohann, W.; et al. The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field? Space Sci. Rev. 2021, 217, 52. [Google Scholar] [CrossRef]
- Russell, C.T.; Elphic, R.C.; Slavin, J.A. Limits on the possible intrinsic magnetic field of Venus. J. Geophys. Res. 1980, 85, 8319–8332. [Google Scholar] [CrossRef]
- O’Rourke, J.G.; Buz, J.; Fu, R.R.; Lillis, R.J. Detectability of remanent magnetism in the crust of Venus. Geophys. Res. Lett. 2019, 46, 5768–5777. [Google Scholar] [CrossRef]
- Acuña, M.H.; Connerney, J.E.P.; Ness, N.F.; Lin, R.P.; Mitchell, D.; Carlson, C.W.; McFadden, J.; Anderson, K.A.; Rême, H.; Mazelle, C.; et al. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment. Science 1999, 284, 790–793. [Google Scholar] [CrossRef] [Green Version]
- Gilder, S.A.; Pohl, J.; Eitel, M. Magnetic Signatures of Terrestrial Meteorite Impact Craters: A summary. In Magnetic Fields in the Solar System. Planets, Moons and Solar Wind Interactions (Astrophysics and Space Science Library 448); Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 357–382. [Google Scholar]
- Connerney, J.E.P.; Acuña, M.H.; Ness, N.F.; Kletetschka, G.; Mitchell, D.L.; Lin, R.P.; Reme, H. Tectonic implications of Mars crustal magnetism Earth. Proc. Natl. Acad. Sci. USA 2005, 102, 14975. [Google Scholar] [CrossRef] [Green Version]
- Lillis, R.J.; Frey, H.V.; Manga, M. Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 2008, 35, L14203. [Google Scholar] [CrossRef] [Green Version]
- Mittelholz, A.; Johnson, C.L.; Feinberg, J.M.; Langlais, B.; Phillips, R.J. Timing of the martian dynamo: New constraints for a core field 4.5 and 3.7 G ago. Sci. Adv. 2020, 6, eaba0513. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Byrne, P.K.; Massironi, M.; Hiesinger, H. Volcanism and tectonism across the inner solar system: An overview. Geol. Soc. Lond. Spec. Publ. 2014, 401, 1–56. [Google Scholar] [CrossRef]
- Mège, D.; Cook, A.C.; Garel, E.; Lagabrielle, Y.; Cormier, M.H. Volcanic rifting at Martian grabens. J. Geophys. Res. 2003, 108, 5044. [Google Scholar] [CrossRef] [Green Version]
- Cohen, B.E.; Mark, D.F.; Cassata, W.S. Taking the pulse of Mars via dating of a plume-fed volcano. Nat. Commun. 2017, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Gülcher, A.J.P.; Gerya, T.V.; Montési, L.G.J.; Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 2020, 13, 547–554. [Google Scholar] [CrossRef]
- Smrekar, S.E.; Stofan, E.R.; Mueller, N.; Treiman, A.; Elkins-Tanton, L.; Helbert, J.; Piccioni, G.; Drossart, P. Recent hotspot volcanism on venus from VIRTIS emissivity data. Science 2010, 328, 605–608. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Herd, C.D.K.; McCoy, T.J.; McSween, H.Y.; Rogers, A.D.; Treiman, A.H. Igneous Mars: Crust and Mantle Evolution as Seen by Rover Geochemistry, Martian Meteorites, and Remote Sensing. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; Volume 2132, p. 2419. [Google Scholar]
- Santos, A.R.; Agee, C.B.; McCubbin, F.M.; Shearer, C.K.; Burger, P.V.; Tartèse, R.; Anand, M. Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust. Geochim. Cosmochim. Acta 2015, 157, 56–85. [Google Scholar] [CrossRef]
- Ming, D.W.; Gellert, R.; Morris, R.V.; Arvidson, R.E.; Brueckner, J.; Clark, B.C. Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-ray Spectrometer from Cumberland Ridge to Home Plate. J. Geophys. Res. Planets 2008, 113, E12S39. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Campbell, J.L.; Gellert, R.; Perrett, G.M.; Treiman, A.H.; Blaney, D.L. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source. J. Geophys. Res. Planets 2014, 119, 64–81. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Perrett, G.M.; Bray, S.L.; Bradley, N.J.; Lee, R.E.; Berger, J.A. Dusty Rocks in Gale Crater: Assessing areal coverage and separating dust and rock contributions in APXS analyses. J. Geophys. Res. Planets 2018, 123, 1649–1673. [Google Scholar] [CrossRef]
- Sautter, V.; Stolper, E.M. In situ evidence for continental crust on early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Brückner, J.; Dreibus, G.; Rieder, R.; Wänke, H. Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry. J. Geophys. Res. Planets 2003, 108, 8094. [Google Scholar] [CrossRef]
- McSween, H.Y. Petrology on Mars. Am. Mineral. 2015, 100, 2380–2395. [Google Scholar] [CrossRef]
- Zipfel, J.; Schroder, C.; Jolliff, B.L.; Gellert, R.; Herkenhoff, K.E.; Rieder, R.; Anderson, R.; Bell, J.F., III; Brückner, J.; Crisp, J.A.; et al. Bounce Rock—A shergottite-like basalt encounteredin Meridiani Planum; Mars. Meteorit. Planet. Sci. 2011, 46, 1–20. [Google Scholar]
- Sautter, V.; Payre, V. Alkali magmatism on Mars: An unexpected diversity. CR Geosci. 2021, 353, 61–90. [Google Scholar] [CrossRef]
- Greeley, R.; Spudis, P.D. Volcanism on mars. Rev. Geophys. 1981, 19, 13–41. [Google Scholar] [CrossRef]
- Hauber, E.; Brož, P.; Rossi, A.P.; Michael, G. A field of small pitted cones on the floor of coprate chasma Mars: Volcanism inside Valles Marineris? In Proceedings of the 46th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015; pp. 16–20. [Google Scholar]
- Greeley, R.; Foing, B.H.; McSween, H.Y.; Neukum, G.; Pinet, P.; van Kan, M.; Werner, S.C.; Williams, D.A.; Zegers, T.E. Fluid lava flows in Gusev crater; Mars. J. Geophys. Res. Planets 2005, 110, E05008. [Google Scholar] [CrossRef] [Green Version]
- Farrand, W.H.; Rice, J.W., Jr.; Chuang, F.C.; Rogers, A.D. Spectral and geological analyses of domes in western Arcadia Planitia; Mars: Evidence for intrusive alkali-rich volcanism and ice-associated surface features. Icarus 2021, 357, 114111. [Google Scholar] [CrossRef]
- Michalski, J.; Bleacher, J. Supervolcanoes within an ancient volcanic province in Arabia Terra; Mars. Nature 2013, 502, 47–52. [Google Scholar] [CrossRef]
- Whelley, P.; Matiella Novak, A.; Richardson, J.; Bleacher, J.; Mach, K.; Smith, R.N. Stratigraphic evidence for early martian explosive volcanism in Arabia Terra. Geophys. Res. Lett. 2021, 48, e2021GL094109. [Google Scholar] [CrossRef]
- Squyres, S.W.; Aharonson, O.; Clark, B.C.; Cohen, B.A.; Crumpler, L.; De Souza, P.A.; Farrand, W.H.; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; et al. Pyroclastic activity at home plate in Gusev Crater; Mars. Science 2007, 316, 738–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treiman, A.H. Geochemistry of Venus’ Surface: Current Limitations as Future Opportunities. In Exploring Venus as a Terrestrial Planet, 1st ed.; Esposito, L.W., Stofan, E.R., Cravens, T.E., Eds.; American Geophysical Union: Washington, DC, USA, 2007; pp. 7–22. [Google Scholar]
- Elkins-Tanton, L.T.; Smrekar, S.E.; Hess, P.C.; Parmentier, E.M. Volcanism and volatile recycling on a one-plate planet: Applications to Venus. J. Geophys. Res. Planets 2007, 112, E04S06. [Google Scholar] [CrossRef] [Green Version]
- Magee, K.P.; Head, J.W. Large flow fields on Venus: Implications for plumes, rift associations, and resurfacing. In Mantle Plumes: Their Identification Through Time; Geological Society of America Special Papers: Washington DC USA, 2001; Volume 352, pp. 81–101. [Google Scholar]
- Stofan, E.; Anderson, S.; Crown, D.A.; Plaut, J.J. Emplacement and composition of steep-sided domes on Venus. J. Geophys. Res. Planets 2000, 105, 26757–26771. [Google Scholar] [CrossRef]
- Crumpler, L.S.; Aubele, J. Volcanism on Venus. In Encyclopedia of Volcanoes; Sigurdson, H., Houghton, B., Rymer, H., Stix, J., McNutt, S., Eds.; Academic Press: New York, NY, USA, 2000; pp. 727–770. [Google Scholar]
- Lustrino, M.; Wilson, M. The Circum-Mediterranean Anorogenic Cenozoic Igneous Province. Earth Sci. Rev. 2007, 81, 1–65. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.; Klügel, A.; Geldmacher, J.; Thirlwall, M.; Hauff, F.; Lowry, D.; Oates, N. Geochemical zonation of the Miocene Alborán Basin volcanism (westernmost Mediterranean): Geodynamic implications. Contrib. Mineral Petr. 2008, 156, 577–593. [Google Scholar] [CrossRef]
- Porreca, M.; Giordano, G.; Riggs, N.; Mattei, M. Geochronology; Geochemistry and Geodynamics of the Cabo de Gata volcanic zone; Southeastern Spain. Ital. J. Geosci. 2014, 133, 341–361. [Google Scholar]
- Le Bas, J.M.; Le Maitre, R.V.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Quesada, C.; Oliveira, J.T. (Eds.) Martí and Bólos. In The Geology of Iberia: A Geodynamic Approach; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Granja Bruña, J.L.; Vegas, R.; Sentre-Domingo, M.A.; Muñoz-Martín, A.; Sainz-Maza, S. Gravity modeling of the lithosphere in the Calatrava Volcanic Province (Spain): Geodynamic implications. J. Iber. Geol. 2015, 41, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Fernandez Romero, S.; Morata Barrado, P.; Rivero Rodriguez, M.A.; Vazquez Yañez, G.A.; De Diego Custodio, E.; Díaz Michelena, M. Vector Magnetometry Using Remotely Piloted Aircraft Systems: An Example of Application for Planetary Exploration. Remote Sens. 2021, 13, 390. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Xing, K.; Zhang, X. Unmanned Aerial Vehicles for Magnetic Surveys: A Review on Platform Selection and Interference Suppression. Drones 2021, 5, 93. [Google Scholar] [CrossRef]
- Díaz Michelena, M.; Mesa Uña, J.L.; Pérez Jimenez, M.; Maicas Ramos, M.C.; Cobos Arribas, P.; Aroca Hernánedez-Ros, C. A novel induction-based device for the measurement of the complex magnetic susceptibility. Sens. Actuators A 2017, 263, 471–479. [Google Scholar] [CrossRef]
- Reitz, J.R.; Milford, F.J.; Christy, R.W. Electromagnetic Waves. In Foundations of Electromagnetic Theory, 3rd ed.; Wesley series in Physics; Addison-Wesley: Boston, MA, USA, 1979. [Google Scholar]
- Díaz Michelena, M.; Kilian, R.; Baeza, O.; Rios, F.; Rivero, M.A.; Mesa, J.L.; González, V.; Arlensiú Ordoñez, A.; Langlais, B.; Rocca, M.C.L.; et al. The formation of a giant collapse caprock sinkhole on the Barda Negra plateau basalts (Argentina): Magnetic, mineralogical and morphostructural evidences. Geomorphology 2020, 367, 107297. [Google Scholar] [CrossRef]
- López-Ruiz, J.; Cebriá, J.M.; Doblas, M. Cenozoic volcanism I: The Iberian peninsula. In The Geology of Spain; Gibbons, W., Moreno, T., Eds.; Geological Society: London, UK, 2002. [Google Scholar]
- Ancochea, E. Evolución Espacial Y Temporal Del Vulcanismo Reciente De España Central. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1982. [Google Scholar]
- Ancochea, E.; Huertas, M.J. La región volcánica de Levante. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 675–676. [Google Scholar]
- Ancochea, E.; Muñoz, M.; Sagredo, J. Las manifestaciones volcánicas de Cofrentes y Picasent (provincia de Valencia). In Proceedings of the I Congreso Español de Geología, Segovia, Spain, 9–19 April 1984. [Google Scholar]
- Aparicio, A.; Araña, V.; García, R.; Grachev, A. The origin of the Columbretes Islands’ basanitic and phonolitic magmas (Western Mediterranean). Mineral. Mag. 1994, 58, 21–22. [Google Scholar] [CrossRef]
- Cebriá, J.M.; López Ruiz, J. Alkali basalts and leucitites in an extensional intracontinental plate setting: The Late Cenozoic Calatrava Volcanic Province (Central Spain). Lithos 1995, 35, 27–46. [Google Scholar] [CrossRef]
- López Ruiz, J.; Rodríguez Badiola, E. La región volcánica Mio-Pleistocena del NE de España. Estud. Geol.-Madr. 1985, 41, 105–126. [Google Scholar] [CrossRef] [Green Version]
- Neumann, E.R.; Martí, J.; Mitjavila, J.; Wulff-Pedersen, E. Origin and implications of mafic xenoliths associated with Cenozoic extension-related volcanism in the València Trough, NE Spain. Miner. Petrol. 1999, 65, 113–139. [Google Scholar] [CrossRef]
- Soriano, C.; Cas, R.A.F.; Riggs, N.R.; Giordano, G. Submarine Volcanism of the Cabo de Gata Magmatic Arc in the Betic-Rif Orogen, SE Spain. In Updates in Volcanology—From Volcano Modelling to Volcano Geology; Nemeth, K., Ed.; IntechOpen: London, UK, 2016. [Google Scholar]
- Martí, J.; Mitjavila, J.; Roca, E.; Aparicio, A. Cenozoic magmatism of the Valencia trough (western Mediterranean): Relationship between structural evolution and volcanism. Tectonophysics 1992, 203, 145–165. [Google Scholar] [CrossRef]
- Dèzes, P.; Schmid, S.M.; Ziegler, P.A. Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 2004, 389, 1–33. [Google Scholar] [CrossRef]
- Martí, J.; Pujadas, A.; Ferrés, D.; Planagumà, L. El vulcanismo. In Guía de Campo de la Zona Volcánica de la Garrotxa, 1st ed.; Parque Natural de la Zona volcánica de la Garrotxa: Catalunya, Spain, 2001. [Google Scholar]
- Bolós, X.; Planagumà, L.; Martí, J. Volcanic stratigraphy of the Quaternary La Garrotxa Volcanic Field (north-east Iberian Peninsula). J. Quaternary Sci. 2014, 29, 547–560. [Google Scholar] [CrossRef]
- Bolós, X.; Martí, J.; Becerril, L.; Planagumà, L.; Grosse, P.; Barde-Cabusson, S. Volcano-structural analysis of La Garrotxa Volcanic Field (NE Iberia): Implications for the plumbing system. Tectonophysics 2015, 642, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Barde-Cabusson, S.; Bolós, X.; Pedrazzi, D.; Lovera, R.; Himi, M.; Serra, G.; Martí Molist, J.; Casas, A. Illuminating the Internal Structure of Two Monogenetic Volcanoes by ERT (La Garrotxa Volcanic Field, Spain). In Proceedings of the Conference Proceedings, Near Surface Geoscience 2013—19th EAGE European Meeting of Environmental and Engineering Geophysics, Bochum, Germany, 9–11 September 2013. [Google Scholar]
- Bolós, X.; Barde-Cabusson, S.; Pedrazzi, D.; Martí, J. Investigation of the inner structure of La Crosa de Sant Dalmai mar (Catalo- nian Volcanic Zone, Spain). J. Volcanol. Geotherm. Res. 2012, 37–48, 247–248. [Google Scholar]
- Becerra-Ramírez, R.; Gosálvez, R.U.; Escobar, E.; González, E.; Serrano-Patón, M.; Guevara, D. Characterization and Geotourist Resources of the Campo de Calatrava Volcanic Region (Ciudad Real, Castilla-La Mancha, Spain) to Develop a UNESCO Global Geopark Project. Geosciences 2020, 10, 441. [Google Scholar] [CrossRef]
- Fernández-Soler, J.M. El vulcanismo calco-alcalino en el Parque Natural de Cabo de Gata—Nijar (Almeria). Estudio volcanológico y petrológico. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1 December 1996. Soc. Almeriense Historia Natural. [Google Scholar]
- Braga, J.; Martín, J.; Quesada, C. Patterns and average rates of late Neogene–Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 2003, 50, 3–26. [Google Scholar] [CrossRef]
- Sola, F.; Puga-Bernabéu, Á.; Aguirre, J.; Braga, J.C. Heterozoan carbonate deposition on a steep basement escarpment (Late Miocene, Almería, south-east Spain). Sedimentology 2017, 64, 1107–1131. [Google Scholar] [CrossRef]
- Li, Z.; Fu, G. Application of Magnetic Susceptibility Parameters in Research of Igneous Rock in Chepaizi. J. Phys. Conf. Ser. 2019, 1176, 042068. [Google Scholar] [CrossRef]
- Moreno, X.; Masana, E.; Pallàs, R.; Gràcia, E.; Rodés, Á.; Bordonau, J. Quaternary tectonic activity of the Carboneras Fault in the La Serrata range (SE Iberia): Geomorphological and chronological constraints. Tectonophysics 2015, 663, 78–94. [Google Scholar] [CrossRef]
- Toepfer, S.; Narita, Y.; Heyner, D.; Kolhey, P.; Motschmann, U. Mathematical foundations of Capon’s method for planetary magnetic field analysis. Geosci. Instrum. Methods Data Syst. 2020, 9, 471–481. [Google Scholar] [CrossRef]
- Parshin, A.V.; Morozov, V.A.; Blinov, A.V.; Kosterev, A.N.; Budyak, A.E. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spat. Inf. Sci. 2018, 21, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gailler, L.; Labazuy, P.; Régis, E.; Bontemps, M.; Souriot, T.; Bacques, G.; Carton, B. Validation of a New UAV Magnetic Prospection Tool for Volcano Monitoring and Geohazard Assessment. Remote Sens. 2021, 13, 894. [Google Scholar] [CrossRef]
- Wakita, S.; Johnson, B.C.; Garrick-Bethell, I.; Kelley, M.R.; Maxwell, M.E.; Davison, T.M. Impactor material records the ancient lunar magnetic field in antipodal anomalies. Nat. Commun. 2021, 12, 6543. [Google Scholar] [CrossRef] [PubMed]
- Treiman, A.; Wadhwa, M.; Shearer, C.K., Jr.; MacPherson, G.J.; Papike, J.J.; Wasserburg, G.J.; Floss, C.; Rutherford, M.J.; Flynn, G.J.; Papanastassiou, D.; et al. Groundbreaking Sample Return from Mars: The Next Giant Leap in Understanding the Red Planet. A White Paper for the NRC Planetary Science Decadal Survey. 2009. Available online: https://www.lpi.usra.edu/decadal/captem/AllanTreimanMars.pdf (accessed on 27 March 2022).
- Martins, Z.; Chan, Q.H.S.; Bonal, L.; King, A.; Yabuta, H. Organic Matter in the Solar System—Implications for Future on-Site and Sample Return Missions. Space Sci. Rev. 2020, 216, 54. [Google Scholar] [CrossRef]
- Kuramoto, K.; Kawakatsu, Y.; Fujimoto, M. Martian moons exploration MMX: Sample return mission to Phobos elucidating formation processes of habitable planets. Earth Planets Space 2022, 74, 1–31. [Google Scholar] [CrossRef]
- Lorenz, R.D.; Turtle, E.P.; Barnes, J.W.; Trainer, M.G.; Adams, D.S.; Hibbard, K.E.; Sheldon, C.Z.; Zacny, K.; Peplowski, P.N.; Lawrence, D.J.; et al. Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan. Johns Hopking APL Tech. Dig. 2018, 34, 3. [Google Scholar]
- Barnes, J.W.; Turtle, E.P.; Trainer, M.G.; Lorentz, R.D.; MacKenzie, S.M.; Brinkerhoff, W.B.; Cable, M.L.; Ernst, C.M.; Freissinet, C.; Hand, K.P. Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Sci. J. 2021, 2, 130. [Google Scholar] [CrossRef]
- Zimbelman, J.R.; Crown, D.A.; Mouginis-Mark, P.J.; Gregg, T.K.P. The Volcanoes of Mars, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of Igneous Rocks Analyzed by ChemCam at Gale Crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Pavri, B.; Head, J.W.; Klose, K.B.; Wilson, L. Steep-sided domes on Venus: Characteristics; geologic setting; and eruption conditions from Magellan data. J. Geophys. Res. 1992, 97, 13445–13478. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz Michelena, M.; Kilian, R.; Rivero, M.Á.; Fernández Romero, S.; Ríos, F.; Mesa, J.L.; Oyarzún, A. Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula. Remote Sens. 2022, 14, 2039. https://doi.org/10.3390/rs14092039
Díaz Michelena M, Kilian R, Rivero MÁ, Fernández Romero S, Ríos F, Mesa JL, Oyarzún A. Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula. Remote Sensing. 2022; 14(9):2039. https://doi.org/10.3390/rs14092039
Chicago/Turabian StyleDíaz Michelena, Marina, Rolf Kilian, Miguel Ángel Rivero, Sergio Fernández Romero, Francisco Ríos, José Luis Mesa, and Andrés Oyarzún. 2022. "Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula" Remote Sensing 14, no. 9: 2039. https://doi.org/10.3390/rs14092039
APA StyleDíaz Michelena, M., Kilian, R., Rivero, M. Á., Fernández Romero, S., Ríos, F., Mesa, J. L., & Oyarzún, A. (2022). Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula. Remote Sensing, 14(9), 2039. https://doi.org/10.3390/rs14092039