A Comparison of Spectral Bin Microphysics versus Bulk Parameterization in Forecasting Typhoon In-Fa (2021) before, during, and after Its Landfall
Abstract
:1. Introduction
2. Data and Methodology
2.1. Experimental Design
2.2. BIN and BULK Schemes
2.3. GPM Observations and G-SDSU Simulator
2.4. Model Evaluation Methods
3. Results
3.1. Evaluation of Typhoon Track and Intensity
3.2. Evaluation of Typhoon Precipitation Hydrometeors
3.2.1. Comparison of BIN and BULK Schemes in Simulating Surface Rainfall
3.2.2. Satellite-Consistent Assessment of Simulated Hydrometeors
Overall Assessment
Statistical Assessment
Physical Assessment
- Azimuthal structure of typhoon precipitation hydrometeors
- Vertical structure of typhoon precipitation hydrometeors
4. Discussion
5. Conclusions
- Typhoon intensity prediction is quite sensitive to microphysical schemes, and BIN scheme performs better than BULK scheme in forecasting typhoon intensity as validated with CMA best track data. Typhoon track prediction is more (less) sensitive to microphysical schemes after (before) typhoon landfall, which can be attributed to the weakening of large-scale flow with typhoon landing, so that vortex motions that represent self-propagation can be more clearly modulated by microphysics. As for typhoon rainfall prediction, BIN scheme produces much more extensive and homogeneous typhoon rainbands than BULK scheme, whereas BULK scheme produces stronger (weaker) rainfall in the typhoon inner (outer) rainbands.
- According to the SAL forecast skill score, BIN scheme shows better performance in estimating the spatial structure, overall amplitude, and precise location of the condensed water in typhoons before landfall. During typhoon landfall, the performance of BIN scheme in simulating the structure and location of the condensate is close to that of BULK scheme, but the condensate intensity prediction by BIN scheme is still better. BULK scheme performs even better than BIN scheme in the prediction of condensate structure and location after typhoon landfall.
- The Taylor diagram also suggests that BIN scheme shows more advantages with a smaller RMSE value than BULK scheme in simulating brightness temperature before typhoon landfall (1.50 for BIN, 2.00 for BULK). During typhoon landfall, BIN scheme still has better performances than BULK scheme, but the difference of their RMSE values shrinks (1.30 for BIN, 1.50 for BULK), which suggests that the performance of BULK scheme is improving gradually. After typhoon landfall, BULK scheme shows more advantages with an RMSE smaller than BIN scheme (1.85 for BIN, 1.70 for BULK).
- Simulations of the azimuthal profile of brightness temperature are validated against the corresponding GMI observations, and it is indicated that the forecast skill of typhoon inner (outer) rainbands is worst (best). Meanwhile, BIN (BULK) scheme better simulates the azimuthal structure of typhoon hydrometeors before (after) landfall, and it is relatively more difficult for both schemes to simulate the azimuthal structure of hydrometeors during typhoon landfall.
- Simulations of the vertical profile of radar reflectivity are validated against the corresponding DPR observations, and it is indicated that, with the storm landing, BULK scheme shows worse performance than BIN scheme in simulating warm rain processes. This is because BULK scheme simulates less rainwater with lower humidity than BIN scheme after typhoon landfall, which possibly leads to stronger evaporation of rainwater. However, the BULK scheme is more advantageous in simulating cold rain processes after typhoon landfall, possibly due to its ability in simulating more hailstones that effectively consume the excessive amount of snow crystals.
- BIN scheme might overestimate the cold rain processes while underestimate the warm rain processes in typhoon simulation, and BULK scheme shows limitations in simulating the warm rain processes, such as melting of ice particles and evaporation of liquid particles. Meanwhile, BULK scheme is noted to simulate more cloud water and larger convective updraft than BIN scheme, probably due to the widespread application of saturation adjustment in bulk parameterizations, and similar conclusions have also been reported in many model studies comparing BIN and BULK schemes.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Magee, A.D.; Kiem, A.S.; Chan, J.C. A new approach for location-specific seasonal outlooks of typhoon and super typhoon frequency across the Western North Pacific region. Sci. Rep. 2021, 11, 19439. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Zhang, Y.; Zhang, L.; Lei, H.; Zheng, H. Precipitation characteristics of typhoon Lekima (2019) at landfall revealed by joint observations from GPM satellite and S-band radar. Atmos. Res. 2021, 260, 105714. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Zhou, X. Lightning activity and precipitation characteristics of Typhoon Molave (2009) around its landfall. Acta Meteorol. Sin. 2013, 27, 742–757. [Google Scholar] [CrossRef]
- Yang, M.; Ching, L. A modeling study of Typhoon Toraji (2001): Physical parameterization sensitivity and topographic effect. Terr. Atmos. Oceanic Sci. 2005, 16, 177–213. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.K.; Shi, J.J.; Chen, S.S.; Lang, S.; Lin, P.-L.; Hong, S.-Y.; Peters-Lidard, C.; Hou, A. The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci. 2011, 47, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Lin, W.; He, Q.; Feng, Y.; Mao, J. Cloud-scale simulation study of Typhoon Hagupit (2008) Part II: Impact of cloud microphysical latent heat processes on typhoon intensity. Atmos. Res. 2013, 120, 202–215. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, G.; Guo, J.; Yang, Y.; Li, R.; Fu, Y.; Liu, L. Satellite-based assessment of various cloud microphysics schemes in simulating typhoon hydrometeors. Adv. Meteorol. 2019, 2019, 3168478. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Li, X. The impacts of microphysics and terminal velocities of graupel/hail on the rainfall of Typhoon Fitow (2013) as seen from the WRF model simulations with several microphysics schemes. J. Geophys. Res. Atmos. 2021, 126, e2020JD033940. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, F.; Chen, X.; Ryzhkov, A.; Zhao, K.; Kumjian, M.R.; Chen, X.; Chan, P.-W. Evaluation of microphysics schemes in tropical cyclones using polarimetric radar observations: Convective precipitation in an outer rainband. Mon. Wea. Rev. 2021, 149, 1055–1068. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Xie, Y.; Zhang, L.; Zheng, H. Radiance-Based Assessment of Bulk Microphysics Models with Seven Hydrometeor Species in Forecasting Super-typhoon Lekima (2019) near Landfall. Atmos. Res. 2022, 273, 106173. [Google Scholar] [CrossRef]
- Tan, I.; Storelvmo, T.; Zelinka, M.D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 2016, 352, 224–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesana, G.; Suselj, K.; Brient, F. On the dependence of cloud feedbacks on physical parameterizations in WRF aquaplanet simulations. Geophys. Res. Lett. 2017, 44, 10762–10771. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Sánchez, J.-L.; García-Ortega, E. Empirical Values and Assumptions in the Microphysics of Numerical Models. Atmos. Res. 2019, 215, 214–238. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tao, W.K.; Matsui, T.; Liu, C.; Masunaga, H. Improving a spectral bin microphysical scheme using TRMM satellite observations. Quart. J. Roy. Meteor. Soc. 2010, 136, 382–399. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.; Lynn, B. Simulation of tropical cyclones using a mesoscale model with spectral bin microphysics. In Recent Hurricane Research—Climate, Dynamics, and Societal Impacts; Lupo, A.R., Ed.; Intech: London, UK, 2011; pp. 197–227. [Google Scholar]
- Khain, A.P.; Beheng, K.D.; Heymsfield, A.; Korolev, A.; Krichak, S.O.; Levin, Z.; Pinsky, M.; Phillips, V.; Prabhakaran, T.; Teller, A.; et al. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 2015, 53, 247–322. [Google Scholar] [CrossRef]
- Lee, H.; Baik, J.-J. A Comparative Study of Bin and Bulk Cloud Microphysics Schemes in Simulating a Heavy Precipitation Case. Atmosphere 2018, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.; Tao, W.-K.; Chern, J.-D.; Wu, D.; Li, X. Benefits of a 4th ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci. 2014, 71, 3583–3612. [Google Scholar] [CrossRef]
- Tao, W.-K.; Wu, D.; Lang, S.; Chern, J.; Peters-Lidard, C.; Fridlind, A.; Matsui, T. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. 2016, 121, 1278–1305. [Google Scholar] [CrossRef]
- Tapiador, F.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.; Kidd, C.; Kucera, P.; Kummerow, C.; Masunaga, H.; Petersen, W.; et al. Global Precipitation Measurements for Validating Climate Models. Atmos. Res. 2017, 197, 1278–1305. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A description of the advanced research WRF model Version 4. In NCAR Technical Note NCAR/TN-475+STR; National Science Foundation: Alexandria, VA, USA, 2019; p. 145. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global Precipitation Measurement: Methods, Datasets and Applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Hristova-Veleva, S.; Li, P.P.; Knosp, B.; Vu, Q.; Turk, F.J.; Poulsen, W.L.; Haddad, Z.; Lambrigtsen, B.; Stiles, B.W.; Shen, T.-P.; et al. An eye on the storm: Integrating a wealth of data for quickly advancing the physical understanding and forecasting of tropical cyclones. Bull. Am. Meteorol. Soc. 2020, 101, E1718–E1742. [Google Scholar] [CrossRef]
- Hristova-Veleva, S.; Haddad, Z.; Chau, A.; Stiles, B.W.; Turk, F.J.; Li, P.P.; Knosp, B.; Vu, Q.; Shen, T.-P.; Lambrigtsen, B.; et al. Impact of microphysical parameterizations on simulated hurricanes—using multi-parameter satellite data to determine the particle size distributions that produce most realistic storms. Atmosphere 2021, 12, 154. [Google Scholar] [CrossRef]
- Ikuta, Y.; Satoh, M.; Sawada, M.; Kusabiraki, H.; Kubota, T. Improvement of the Cloud Microphysics Scheme of the Mesoscale Model at the Japan Meteorological Agency Using Spaceborne Radar and Microwave Imager of the Global Precipitation Measurement as Reference. Mon. Wea. Rev. 2021, 149, 3803–3819. [Google Scholar] [CrossRef]
- Matsui, T.; Iguchi, T.; Li, X.; Han, M.; Tao, W.K.; Petersen, W.; L’Ecuyer, T.; Meneghini, R.; Olson, W.; Kummerow, C.D.; et al. GPM satellite simulator over ground validation sites. Bull. Am. Meteorol. Soc. 2013, 94, 1653–1660. [Google Scholar] [CrossRef]
- Matsui, T.; Santanello, J.; Shi, J.J.; Tao, W.K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; et al. Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling. J. Geophys. Res. 2014, 119, 8450–8475. [Google Scholar] [CrossRef]
- Bae, S.Y.; Hong, S.Y.; Tao, W.K. Development of a single-moment cloud microphysics scheme with prognostic hail for the weather research and forecasting (WRF) model. Asia-Pac. J. Atmos. Sci. 2018, 55, 233–245. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Zheng, H.; Huang, X. A Comparison of Convective and Stratiform Precipitation Microphysics of the Record-breaking Typhoon In-Fa (2021). Remote Sens. 2022, 14, 344. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.X.; Wang, Y.Q.; Hamilton, K. Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified tiedtke cumulus parameterization scheme. Mon. Wea. Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified Noah land−surface model in the WRF model Paper. In WRF Model Development and Applications, Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction; American Meteorological Society: Seattle, WA, USA, 2004; pp. 2165–2170. [Google Scholar]
- Khain, A.; Pokrovsky, A.; Pinsky, M.; Seifert, A.; Phillips, V. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 2004, 61, 2963–2982. [Google Scholar] [CrossRef] [Green Version]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef] [Green Version]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Twomey, S. The nuclei of natural cloud formation: The supersaturation in natural clouds and the variation of cloud droplet concentrations. Pure Appl. Geophys. 1959, 43, 243–249. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; Martín, R.; Hristova-Veleva, S.; Haddad, Z.S. Predicting Tropical Cyclone Rapid Intensification from Satellite Microwave Data and Neural Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4205213. [Google Scholar] [CrossRef]
- Heini, W.; Marcus, P.; Martin, H.; Frei, C. SAL-a novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev. 2008, 136, 4470–4487. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Fovell, R.G.; Su, H. Impact of cloud microphysics on hurricane track forecasts. Geophys. Res. Lett. 2007, 34, L24810. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.Q.; Yu, H.; Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.; Wan, R. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Roca, R.; Del Genio, A.; Dewitte, B.; Petersen, W.; Zhang, F. Is Precipitation a Good Metric for Model Performance? Bull. Am. Meteorol. Soc. 2019, 100, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.S.; Pattnaik, S.; Salvekar, P.S. Impact of cloud parameterization on the numerical simulation of a super cyclone. Ann. Geophys. 2012, 30, 775–795. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tao, W.K.; Khain, A.P.; Simpson, J.; Johnson, D.E. Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part I: Comparisons. J. Atmos. Sci. 2009, 66, 3–21. [Google Scholar] [CrossRef]
- Li, X.; Tao, W.-K.; Khain, A.P.; Simpson, J.; Johnson, D.E. Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes, Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci. 2009, 66, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Pu, Z. Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterization. Mon. Wea. Rev. 2008, 136, 4819–4838. [Google Scholar] [CrossRef]
- Khain, A.; Lynn, B. Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res. 2009, 114, D19209. [Google Scholar] [CrossRef]
- Yin, L.; Ping, F.; Mao, J. A comparative study between bulk and bin microphysical schemes of a simulated squall line in East China. Atmos. Sci. Lett. 2017, 18, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Guo, J.; Chen, D.; Yang, J. Systematic bias in the prediction of warm-rain hydrometeors in the WDM6 microphysics scheme and modifications. J. Geophys. Res. Atmos. 2020, 125, e2019JD030756. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Villalba-Pradas, A.; Navarro, A.; García-Ortega, E.; Lim, K.-S.S.; Kim, K.; Ahn, K.D.; Lee, G. Future Directions in Precipitation Science. Remote Sens. 2021, 13, 1074. [Google Scholar] [CrossRef]
Scheme Type | Scheme Name | Related Document |
---|---|---|
Boundary layer | Mellor-Yamada-Janjic | Janjić [34] |
Long-wave radiation | RRTMG | Iacono et al. [35] |
Short-wave radiation | RRTMG | Iacono et al. [35] |
Land surface | unified Noah | Tewari et al. [36] |
Surface layer | Monin-Obukhov | Janjić [34] |
Description | BIN | BULK |
---|---|---|
DSD | Solving a system of kinetic equations for DSD | The DSD is prescribed in the form of exponential distribution or gamma distribution |
Aerosols | Aerosol budget, transport of aerosols, size distribution of CCN, cloud–aerosol interaction | Fractional aerosol budget, transport of aerosols, size distribution of CCN, cloud–aerosol interaction |
Condensation/ evaporation | The diffusion growth/evaporation equations are used | No equation for diffusion growth or evaporation; the strategy of saturation adjustment is utilized |
Collisions | Stochastic collision equations are used | Simplified equations are used |
Sedimentation | Differential fall velocity depending on particle size, shape, and air density | The bulk fall velocity for the same type of particles |
Melting/ freezing | The shape of DSD changes during these nonlinear processes | The shape of DSD remains fixed during the highly nonlinear processes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, Z.; Zhang, L.; Zheng, H. A Comparison of Spectral Bin Microphysics versus Bulk Parameterization in Forecasting Typhoon In-Fa (2021) before, during, and after Its Landfall. Remote Sens. 2022, 14, 2169. https://doi.org/10.3390/rs14092169
Zhang Y, Wu Z, Zhang L, Zheng H. A Comparison of Spectral Bin Microphysics versus Bulk Parameterization in Forecasting Typhoon In-Fa (2021) before, during, and after Its Landfall. Remote Sensing. 2022; 14(9):2169. https://doi.org/10.3390/rs14092169
Chicago/Turabian StyleZhang, Yun, Zuhang Wu, Lifeng Zhang, and Hepeng Zheng. 2022. "A Comparison of Spectral Bin Microphysics versus Bulk Parameterization in Forecasting Typhoon In-Fa (2021) before, during, and after Its Landfall" Remote Sensing 14, no. 9: 2169. https://doi.org/10.3390/rs14092169
APA StyleZhang, Y., Wu, Z., Zhang, L., & Zheng, H. (2022). A Comparison of Spectral Bin Microphysics versus Bulk Parameterization in Forecasting Typhoon In-Fa (2021) before, during, and after Its Landfall. Remote Sensing, 14(9), 2169. https://doi.org/10.3390/rs14092169