Impacts of Climate Change, Glacier Mass Loss and Human Activities on Spatiotemporal Variations in Terrestrial Water Storage of the Qaidam Basin, China
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. GRACE/GRACE-FO Data
3.1.2. GLDAS Data
3.1.3. Glacier Data
3.1.4. Meteorological Data
3.1.5. Other Relevant Data
3.2. Methods
3.2.1. GRACE/GRACE-FO Data Processing
3.2.2. Water Storage Equation
3.2.3. Water Balance Equation
4. Results
4.1. Variations in TWSA from GRACE
4.1.1. Spatial Pattern of TWSA Trends from GRACE
4.1.2. Temporal Variations in TWSA from GRACE
4.2. Variations in All Components of TWS
5. Discussion
5.1. Impacts of Climate Change on the Variations in TWS
5.2. Impacts of Glacier Mass Loss on the Variations in TWS
5.3. Impacts of Human Activities on the Variations in TWS
6. Conclusions
- (1)
- TWSA of the Qaidam Basin derived from different GRACE solutions agreed well in terms of amplitude and dynamics and were significantly correlated. The significant increasing trends were observed by TWSA from five GRACE solutions over the period of 2002–2020, with the change rates ranging from 4.85 to 6.90 mm/year (1.37 to 1.95 km3/year). The increasing trends revealed by JPL-M (6.90 mm/year) and GFZ-SH (6.68 mm/year) were much larger than those of other solutions.
- (2)
- The GRACE TWSA averaged from different GRACE solutions exhibited an increase at a rate of 5.83 ± 0.12 mm/year (1.65 ± 0.03 km3/year) during the period of 2002–2020. The variation trend in GRACE TWSA generally increased from upstream mountains to the interior of the basin in space, with the largest increasing trend mostly concentrated in the southwest and the smallest in the north of the basin. TWSA of the Qaidam Basin displayed significant seasonal variabilities, with the maximum values occurring in autumn and the largest increasing trend observed in summer (6.14 ± 0.41 mm/year).
- (3)
- The variation trends in components of TWS, including soil moisture, snow water equivalent, glacier mass balance, surface water, groundwater, and plant canopy water, were 7.65 mm/year, 0.06 mm/year, −2.18 ± 1.57 mm/year, 0.44 mm/year, 0.05 mm/year and 0.00 mm/year, respectively. Among these components of TWS, soil moisture contributed the most to the variations in TWS of the Qaidam Basin. Despite that, the glacier mass loss had a negative contribution to the variations in TWS; the increase in glacier meltwater also contributed to the increase in TWS.
- (4)
- The temporal variations in TWS of the Qaidam Basin were primarily affected by the variations in precipitation. The spatial variations in TWS of the Qaidam Basin were mostly driven by the increase in glacier meltwater due to climate warming, particularly in the Narin Gol Basin. In addition, the water consumption associated with human activities had relatively fewer impacts on the variations in TWS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodell, M.; Famiglietti, J.S. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res. 1999, 35, 2705–2723. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, S.Y.; Yi, Y.; Xie, F.; Grünwald, R.; Miao, W.F.; Wu, K.P.; Qi, M.M.; Gao, Y.P.; Singh, D. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Sci. Total Environ. 2021, 799, 149366. [Google Scholar] [CrossRef]
- Chang, L.L.; Yuan, R.Q.; Gupta, H.V.; Winter, C.; Niu, G.Y. Why Is the Terrestrial Water Storage in Dryland Regions Declining? A Perspective Based on Gravity Recovery and Climate Experiment Satellite Observations and Noah Land Surface Model with Multiparameterization Schemes Model Simulations. Water Resour. Res. 2020, 56, e2020WR027102. [Google Scholar] [CrossRef]
- Wang, J.D.; Song, C.Q.; Reager, J.T.; Yao, F.F.; Famiglietti, J.S.; Sheng, Y.W.; Macdonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Shao, J.; Frape, S.K.; Cui, Y.; Dang, X.; Wang, S.; Ji, Y. Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: A case study from the Qaidam Basin, northwestern China. Hydrol. Earth Syst. Sci. 2018, 22, 4381–4400. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, M.; Liang, X.; Pang, G.; Wan, G.; Chen, X. The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961–2010. Int. J. Climatol. 2014, 34, 1524–1537. [Google Scholar] [CrossRef]
- Jing, W.L.; Zhao, X.D.; Yao, L.; Jiang, H.; Xu, J.H.; Yang, J.; Li, Y. Variations in terrestrial water storage in the Lancang-Mekong river basin from GRACE solutions and land surface model. J. Hydrol. 2020, 580, 124258. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, L11501. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data. PLoS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.Y.; Jiang, S.H.; Ren, L.L.; Tan, H.B.; Ta, W.Q.; Liu, Y.; Yang, X.L.; Zhang, L.Q.; Duan, Z. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data. J. Hydrol. 2021, 598, 126274. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.P.; Zhang, X.T.; Chen, D.L. Response of Groundwater Storage and Recharge in the Qaidam Basin (Tibetan Plateau) to Climate Variations From 2002 to 2016. J. Geophys. Res. Atmos. 2019, 124, 9918–9934. [Google Scholar] [CrossRef]
- Hu, L.T.; Jiao, J.J. Calibration of a large-scale groundwater flow model using GRACE data: A case study in the Qaidam Basin, China. Hydrogeol. J. 2015, 23, 1305–1317. [Google Scholar] [CrossRef]
- Liu, S.Y.; Guo, W.Q.; Xu, J.L. The Second Glacial Catalogue Data Set of China (V1.0); National Cryosphere Desert Data Center: Lanzhou, China, 2019. [Google Scholar]
- Soltani, S.S.; Ashtiani, B.A.; Simmons, C.T. Review of assimilating GRACE terrestrial water storage data into hydrological models: Advances, challenges and opportunities. Earth-Sci. Rev. 2021, 213, 103487. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, 4531. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global Evaluation of New GRACE Mascon Products for Hydrologic Applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Huang, W.J.; Duan, W.L.; Chen, Y.N. Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.T.; Sun, K.N.; Yang, Z.Q.; Sun, J.C.; Yin, W.J. Improved Understanding of Groundwater Storage Changes under the Influence of River Basin Governance in Northwestern China Using GRACE Data. Remote Sens. 2021, 13, 2672. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wang, C.; Yu, Z.B.; Xu, F. Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage. Glob. Planet. Chang. 2013, 109, 30–37. [Google Scholar] [CrossRef]
- Guo, W.Q.; Liu, S.Y.; Xu, J.L.; Wu, L.Z.; Shangguan, D.H.; Yao, X.J.; Wei, J.F.; Bao, W.J.; Yu, P.C.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- van Zyl, J.J.; Zebker, H.A.; Elachi, C. Imaging radar polarization signatures: Theory and observation. Radio Science 1987, 22, 529–543. [Google Scholar] [CrossRef]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Scattering Mechanism Based Snow Cover Mapping Using RADARSAT-2 C-Band Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3213–3224. [Google Scholar] [CrossRef]
- Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Radić, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. Earth Surf. 2010, 115, F01010. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Y.; Li, Z.; Fang, G.; Li, Y.; Wang, X.; Zhang, X.; Kayumba, P.M. Developing a Long Short-Term Memory (LSTM)-Based Model for Reconstructing Terrestrial Water Storage Variations from 1982 to 2016 in the Tarim River Basin. Remote Sens. 2021, 13, 889. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res. Solid Earth 2002, 107, 2193. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.K.; Tapley, B.D. Variations in the Earth′s oblateness during the past 28 years. J. Geophys. Res. Solid Earth 2004, 109, B03406. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113, B08410. [Google Scholar] [CrossRef] [Green Version]
- Geruo, A.; Wahr, J.; Zhong, S.J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth′s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Yang, X.; Wang, N.; Liang, Q.; Chen, A.; Wu, Y. Impacts of Human Activities on the Variations in Terrestrial Water Storage of the Aral Sea Basin. Remote Sens. 2021, 13, 2923. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al. J. Geophys. Res. Solid Earth 2018, 123, 2019–2028. [Google Scholar] [CrossRef]
- Sakumura, C.; Bettadpur, S.; Bruinsma, S.L. Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett. 2014, 41, 1389–1397. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Yin, W.; Kang, G.; Zhang, G.; Zhang, D. Improving the Accuracy of Water Storage Anomaly Trends Based on a New Statistical Correction Hydrological Model Weighting Method. Remote Sens. 2021, 13, 3583. [Google Scholar] [CrossRef]
- Abhishek; Kinouchi, T.; Sayama, T. A comprehensive assessment of water storage dynamics and hydroclimatic extremes in the Chao Phraya River Basin during 2002-2020. J. Hydrol. 2021, 603, 126868. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Zhang, X.; Druce, D.; Kittel, C.M.M.; Tøttrup, C.; Bauer-Gottwein, P. Impacts of water resources management on land water storage in the North China Plain: Insights from multi-mission earth observations. J. Hydrol. 2021, 603, 126933. [Google Scholar] [CrossRef]
- Meng, F.C.; Su, F.G.; Li, Y.; Tong, K. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Tan, H.B.; Lu, S.C.; Ta, W.Q.; Rao, W.B.; Guo, H.Y. Water resource and mineral source significances of Nalenggele River Catchment in Qaidam Basin. J. Hohai Univ. Nat. Sci. 2020, 48, 392–397. [Google Scholar]
Data Sources | Abbreviation | Spatial Resolution | Spatial Resolution (Resampled) | Temporal Resolution | Period |
---|---|---|---|---|---|
CSR spherical harmonics | CSR-SH | 1° × 1° | 0.25° × 0.25° | Monthly | 2002–2020 |
JPL spherical harmonics | JPL-SH | 1° × 1° | 0.25° × 0.25° | Monthly | 2002–2020 |
GFZ spherical harmonics | GFZ-SH | 1° × 1° | 0.25° × 0.25° | Monthly | 2002–2020 |
CSR mascon | CSR-M | 0.25° × 0.25° | 0.25° × 0.25° | Monthly | 2002–2020 |
JPL mascon | JPL-M | 0.5° × 0.5° | 0.25° × 0.25° | Monthly | 2002–2020 |
Station Code | Name | Latitude (°N) | Longitude (°E) | Altitude (m) |
---|---|---|---|---|
52602 | Lenghu | 38.45 | 93.20 | 2770.0 |
52707 | Xiaozaohuo | 36.48 | 93.41 | 2767.0 |
52818 | Golmud | 36.25 | 94.55 | 2807.6 |
52825 | Nuomuhong | 36.26 | 96.26 | 2790.4 |
52836 | Dulan | 36.18 | 98.06 | 3189.0 |
Solutions | Trends | p-Value | |
---|---|---|---|
mm/Year | km3/Year | ||
CSR-SH | 4.86 | 1.37 | p < 0.01 |
JPL-SH | 4.85 | 1.37 | p < 0.01 |
GFZ-SH | 6.68 | 1.89 | p < 0.01 |
CSR-M | 5.86 | 1.66 | p < 0.01 |
JPL-M | 6.90 | 1.95 | p < 0.01 |
Average | 5.83 ± 0.12 | 1.65 ± 0.03 | p < 0.01 |
Variables | Trends | Contributions (%) to TWSA | |
---|---|---|---|
mm/Year | km3/Year | ||
Soil moisture anomalies | 7.65 | 2.16 | 131.17 |
Snow water equivalent anomalies | 0.06 | 0.02 | 1.03 |
Plant canopy water anomalies | 0.00 | 0.00 | 0.00 |
Glacier mass balance | −2.18 ± 1.57 | −0.62 ± 0.44 | −37.38 ± 26.92 |
Surface water | 0.44 | 0.12 | 7.54 |
Groundwater | 0.05 | 0.01 | 0.86 |
GRACE TWSA | 5.83 ± 0.12 | 1.65 ± 0.03 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wang, N.; Chen, A.; Li, Z.; Liang, Q.; Zhang, Y. Impacts of Climate Change, Glacier Mass Loss and Human Activities on Spatiotemporal Variations in Terrestrial Water Storage of the Qaidam Basin, China. Remote Sens. 2022, 14, 2186. https://doi.org/10.3390/rs14092186
Yang X, Wang N, Chen A, Li Z, Liang Q, Zhang Y. Impacts of Climate Change, Glacier Mass Loss and Human Activities on Spatiotemporal Variations in Terrestrial Water Storage of the Qaidam Basin, China. Remote Sensing. 2022; 14(9):2186. https://doi.org/10.3390/rs14092186
Chicago/Turabian StyleYang, Xuewen, Ninglian Wang, An’an Chen, Zhijie Li, Qian Liang, and Yujie Zhang. 2022. "Impacts of Climate Change, Glacier Mass Loss and Human Activities on Spatiotemporal Variations in Terrestrial Water Storage of the Qaidam Basin, China" Remote Sensing 14, no. 9: 2186. https://doi.org/10.3390/rs14092186
APA StyleYang, X., Wang, N., Chen, A., Li, Z., Liang, Q., & Zhang, Y. (2022). Impacts of Climate Change, Glacier Mass Loss and Human Activities on Spatiotemporal Variations in Terrestrial Water Storage of the Qaidam Basin, China. Remote Sensing, 14(9), 2186. https://doi.org/10.3390/rs14092186