Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing
Abstract
:1. Introduction
2. SAR Data Acquisition Model
3. The Proposed CFBA Method
3.1. The Optimization Model
3.2. Complex Forward-Backward Splitting-Based Method
3.2.1. Image Reconstruction Step
3.2.2. Optimization of the Phase Errors
Algorithm 1: CFBA |
3.3. Convergence Analysis
3.3.1. Convergence of the Inner Complex Forward-Backward Splitting Algorithm
3.3.2. Convergence of the Outer Alternating Minimization Method
4. Wirtinger Alternating Minimization Autofocusing
4.1. The Original Method
Algorithm 2: WAMA |
4.2. Extension to Several Other Regularizers
- (1)
- The pth power of an approximate normIn this case,This yields the same algorithm as in this case of [12], but no reference to the literature of Wirtinger calculus is made therein. Therefore, this deduction can be viewed as an alternative perspective to interpret SDA;
- (2)
- Approximate total variationFor approximate total variation, the situation is more complicated. However, the result can still be incorporated in the form of (47). Let be the 2D matrix form of the N-dimensional vector ; thenNowAs for , and , they are matrices that contain only 0, 1, and −1 and are constructed so that they realize the following relations:
- (3)
- Welsh potential
- (4)
- Geman–McClure potentialIn this case, another variant of regularization [42] is imposed on the magnitude of f, and we have
4.3. Convergence Analysis
- 1.
- Find by
- 2.
- Find byThis leads to:
- 3.
- Find byThis leads to:
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Proof of Lemma 1
Appendix B. Another Proof of Theorem 1
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, K. Recent Trend and Advance of Synthetic Aperture Radar with Selected Topics. Remote Sens. 2013, 5, 716–807. [Google Scholar] [CrossRef] [Green Version]
- Graziano, M.D.; D’Errico, M.; Rufino, G. Wake Component Detection in X-Band SAR Images for Ship Heading and Velocity Estimation. Remote Sens. 2016, 8, 498. [Google Scholar] [CrossRef] [Green Version]
- Wahl, D.E.; Eichel, P.; Ghiglia, D.; Jakowatz, C. Phase Gradient Autofocus - a Robust Tool for High Resolution SAR Phase Correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Calloway, T.M.; Donohoe, G.W. Subaperture Autofocus for Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 617–621. [Google Scholar] [CrossRef]
- Tsakalides, P.; Nikias, C. High-resolution Autofocus Techniques for SAR Imaging Based on Fractional Lower-order Statistics. IEE Proc.-Radar Sonar Navig. 2001, 148, 267–276. [Google Scholar] [CrossRef]
- Fienup, J.; Miller, J. Aberration Correction by Maximizing Generalized Sharpness Metrics. J. Opt. Soc. Am. A 2003, 20, 609–620. [Google Scholar] [CrossRef]
- Morrison, R.L.; Do, M.N.; Munson, D.C. SAR Image Autofocus by Sharpness Optimization: A Theoretical Study. IEEE Trans. Image Process. 2007, 16, 2309–2321. [Google Scholar] [CrossRef]
- Kragh, T.J.; Kharbouch, A.A. Monotonic Iterative Algorithm for Minimum-entropy Autofocus. Adapt. Sens. Array Process. Workshop 2006, 40, 1147–1159. [Google Scholar]
- Zeng, T.; Wang, R.; Li, F. SAR Image Autofocus Utilizing Minimum-entropy Criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1552–1556. [Google Scholar] [CrossRef]
- Kantor, J.M. Minimum Entropy Autofocus Correction of Residual Range Cell Migration. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 0011–0016. [Google Scholar]
- Onhon, N.Ö.; Cetin, M. A Sparsity-driven Approach for Joint SAR Imaging and Phase Error Correction. IEEE Trans. Image Process. 2011, 21, 2075–2088. [Google Scholar] [CrossRef]
- Kelly, S.I.; Yaghoobi, M.; Davies, M.E. Auto-focus for Under-sampled Synthetic Aperture Radar. In Proceedings of the Sensor Signal Processing for Defence (SSPD 2012), London, UK, 25–27 September 2012. [Google Scholar]
- Kelly, S.; Yaghoobi, M.; Davies, M. Sparsity-based Autofocus for Undersampled Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 972–986. [Google Scholar] [CrossRef] [Green Version]
- Güngör, A.; Cetin, M.; Güven, H.E. An Augmented Lagrangian Method for Autofocused Compressed SAR Imaging. In Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing (CoSeRa), Pisa, Italy, 17–19 June 2015; pp. 1–5. [Google Scholar]
- Güngör, A.; Çetin, M.; Güven, H.E. Autofocused Compressive SAR Imaging Based on the Alternating Direction Method of Multipliers. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 1573–1576. [Google Scholar]
- Uḡur, S.; Arıkan, O. SAR Image Reconstruction and Autofocus by Compressed Sensing. Digit. Signal Process. 2012, 22, 923–932. [Google Scholar] [CrossRef]
- Ash, J.N. An Autofocus Method for Backprojection Imagery in Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2011, 9, 104–108. [Google Scholar] [CrossRef]
- Sommer, A.; Ostermann, J. Backprojection Subimage Autofocus of Moving Ships for Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8383–8393. [Google Scholar] [CrossRef]
- Kantor, J.M. Polar Format-Based Compressive SAR Image Reconstruction With Integrated Autofocus. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3458–3468. [Google Scholar] [CrossRef]
- Mason, E.; Yonel, B.; Yazici, B. Deep learning for SAR image formation. In Algorithms for Synthetic Aperture Radar Imagery XXIV; International Society for Optics and Photonics: San Diego, CA, USA, 2017; Volume 10201, p. 1020104. [Google Scholar]
- Pu, W. Deep SAR Imaging and Motion Compensation. IEEE Trans. Image Process. 2021, 30, 2232–2247. [Google Scholar] [CrossRef]
- Brandwood, D. A Complex Gradient Operator and its Application in Adaptive Array Theory. IEE Proc. H (Microw. Opt. Antennas) 1983, 130, 11–16. [Google Scholar] [CrossRef]
- Van Den Bos, A. Complex Gradient and Hessian. IEE Proc.-Vis. Image Signal Process. 1994, 141, 380–382. [Google Scholar] [CrossRef]
- Kreutz-Delgado, K. The Complex Gradient Operator and the CR-calculus. arXiv 2009, arXiv:0906.4835. [Google Scholar]
- Bouboulis, P. Wirtinger’s Calculus in General Hilbert Spaces. arXiv 2010, arXiv:1005.5170. [Google Scholar]
- Zhang, Z.Y.; Pappas, O.; Achim, A. SAR Image Autofocusing using Wirtinger calculus and Cauchy regularization. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1455–1459. [Google Scholar]
- Pappas, O.; Achim, A.; Bull, D. Superpixel-level CFAR detectors for ship detection in SAR imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1397–1401. [Google Scholar] [CrossRef] [Green Version]
- Rizaev, I.G.; Karakuş, O.; Hogan, S.J.; Achim, A. Modeling and SAR Imaging of the Sea Surface: A Review of the State-of-the-Art with Simulations. ISPRS J. Photogramm. Remote Sens. 2022, 187, 120–140. [Google Scholar] [CrossRef]
- Çetin, M.; Karl, W.C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 2001, 10, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrara, W.; Goodman, R.S.; Majewski, R.M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- McCullagh, P.; Polson, N.G. Statistical Sparsity. Biometrika 2018, 105, 797–814. [Google Scholar] [CrossRef]
- Karakuş, O.; Achim, A. On Solving SAR Imaging Inverse Problems Using Non-convex Regularization with a Cauchy-Based Penalty. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5828–5840. [Google Scholar] [CrossRef]
- Karakuş, O.; Mayo, P.; Achim, A. Convergence Guarantees for Non-convex Optimisation with Cauchy-based Penalties. IEEE Trans. Signal Process. 2020, 68, 6159–6170. [Google Scholar] [CrossRef]
- Soulez, F.; Thiébaut, É.; Schutz, A.; Ferrari, A.; Courbin, F.; Unser, M. Proximity Operators for Phase Retrieval. Appl. Opt. 2016, 55, 7412–7421. [Google Scholar] [CrossRef] [Green Version]
- Güven, H.E.; Güngör, A.; Cetin, M. An Augmented Lagrangian Method for Complex-valued Compressed SAR Imaging. IEEE Trans. Comput. Imaging 2016, 2, 235–250. [Google Scholar] [CrossRef]
- Attouch, H.; Bolte, J.; Redont, P.; Soubeyran, A. Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality. Math. Oper. Res. 2010, 35, 438–457. [Google Scholar] [CrossRef] [Green Version]
- Attouch, H.; Bolte, J.; Svaiter, B.F. Convergence of Descent Methods for Semi-algebraic and Tame Problems: Proximal Algorithms, Forward–backward Splitting, and Regularized Gauss–Seidel Methods. Math. Program. 2013, 137, 91–129. [Google Scholar] [CrossRef]
- Csiszár, I. Information Geometry and Alternating Minimization Procedures. Stat. Decis. 1984, 1, 205–237. [Google Scholar]
- Byrne, C.L. Alternating Minimization as Sequential Unconstrained Minimization: A Survey. J. Optim. Theory Appl. 2013, 156, 554–566. [Google Scholar] [CrossRef]
- Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods; SIAM Press: Philadelphia, PA, USA, 1994. [Google Scholar]
- Florescu, A.; Chouzenoux, E.; Pesquet, J.C.; Ciuciu, P.; Ciochina, S. A Majorize-minimize Memory Gradient Method for Complex-valued Inverse Problems. Signal Process. 2014, 103, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Çetin, M.; Karl, W.C.; Willsky, A.S. Feature-preserving Regularization Method for Complex-valued Inverse Problems with Application to Coherent Imaging. Opt. Eng. 2006, 45, 017003. [Google Scholar]
- Geman, D.; Reynolds, G. Constrained Restoration and the Recovery of Discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 367–383. [Google Scholar] [CrossRef]
- Joly, P.; Meurant, G. Complex Conjugate Gradient Methods. Numer. Algorithms 1993, 4, 379–406. [Google Scholar] [CrossRef]
- Walker, J.L. Range-Doppler Imaging of Rotating Objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 23–52. [Google Scholar] [CrossRef]
- Krantz, S.G.; Parks, H.R. A Primer of Real Analytic Functions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Zhang, S.; Xia, Y.; Zheng, W. A Complex-valued Neural Dynamical Optimization Approach and its Stability Analysis. Neural Netw. 2015, 61, 59–67. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, H.; Zhang, L.; Mei, X. A Neurodynamic Optimization Approach for Complex-variables Programming Problem. Neural Netw. 2020, 129, 280–287. [Google Scholar] [CrossRef]
Carrier Frequency | |
Chirp Rate | |
Pulse Duration | |
Angular Range | ° |
MSE | |||||
---|---|---|---|---|---|
Method | Scene 1 | Scene 2 | Scene 3 | Scene 4 | Scene 5 |
SDA | 5.4310 | 6.4964 | 6.3576 | 1.3997 | 6.8909 |
WAMA | 1.2227 | 6.3029 | 5.3663 | 2.2250 | 7.8785 |
CFBA | 1.1836 | 6.2940 | 5.4803 | 1.3483 | 6.5628 |
Entropy | |||||
Method | Scene 1 | Scene 2 | Scene 3 | Scene 4 | Scene 5 |
SDA | 1.4621 | 5.4410 | 5.6918 | 4.5720 | 4.2847 |
WAMA | 0.3327 | 5.4333 | 5.6641 | 4.5230 | 4.2782 |
CFBA | 0.3430 | 5.4228 | 5.6602 | 4.5617 | 4.2916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.-Y.; Pappas, O.; Rizaev, I.G.; Achim, A. Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing. Remote Sens. 2022, 14, 2190. https://doi.org/10.3390/rs14092190
Zhang Z-Y, Pappas O, Rizaev IG, Achim A. Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing. Remote Sensing. 2022; 14(9):2190. https://doi.org/10.3390/rs14092190
Chicago/Turabian StyleZhang, Zi-Yao, Odysseas Pappas, Igor G. Rizaev, and Alin Achim. 2022. "Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing" Remote Sensing 14, no. 9: 2190. https://doi.org/10.3390/rs14092190
APA StyleZhang, Z. -Y., Pappas, O., Rizaev, I. G., & Achim, A. (2022). Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing. Remote Sensing, 14(9), 2190. https://doi.org/10.3390/rs14092190