Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network
Abstract
:1. Introduction
- (1)
- In view of the huge number of point clouds and to cope with the problem of redundant point cloud feature distribution found in the experiment, we designed a data preprocessing applying principal component extraction to enhance the performance of the proposed network model on the applied multispectral LiDAR data.
- (2)
- For the segmentation task of land cover large-scale multispectral LiDAR point clouds, we drew on RandLA, which can be used for large-scale point clouds. Furthermore, we designed and embedded a module that leverages semantic fusion to improve the fine-grained segmentation capability in point cloud semantic segmentation.
- (3)
- We conducted a series of experiments on a real-world land cover large-scale multispectral LiDAR point cloud. Through quantitative analysis and evaluation, we confirmed that the proposed deep learning network achieves satisfactory performance on a real land cover point cloud semantic segmentation task, and various evaluation metrics achieve state of the art level.
2. Materials and Methods
2.1. Multispectral LiDAR Data
2.2. Preprocessing by Singular Value Decomposition
2.3. Framework of Deep Learning Network
2.3.1. Backbone of the Network
2.3.2. Contextual Semantic Fusion Block
3. Experiments and Results
3.1. Experimental Configuration
3.2. Overall Performance
3.3. Comparative Experimental Performance
4. Discussion with Ablation Experiment
4.1. Promotion of CSF Block to Backbone Network
4.2. The Enhancement from SVD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KNN | K-nearest neighbor |
MLP | Multilayer perceptron |
SVD | Singular value decomposition |
CSF | Context semantic fusion |
References
- Shi, S.; Bi, S.; Gong, W.; Chen, B.; Chen, B.; Tang, X.; Qu, F.; Song, S. Land Cover Classification with Multispectral LiDAR Based on Multi-Scale Spatial and Spectral Feature Selection. Remote Sens. 2021, 13, 4118. [Google Scholar] [CrossRef]
- Ekhtari, N.; Glennie, C.; Fernandez-Diaz, J.C. Classification of airborne multispectral lidar point clouds for land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2068–2078. [Google Scholar] [CrossRef]
- Teo, T.-A.; Wu, H.-M. Analysis of land cover classification using multi-wavelength LiDAR system. Appl. Sci. 2017, 7, 663. [Google Scholar] [CrossRef] [Green Version]
- Matikainen, L.; Karila, K.; Hyyppä, J.; Litkey, P.; Puttonen, E.; Ahokas, E. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS J. Photogramm. Remote Sens. 2017, 128, 298–313. [Google Scholar] [CrossRef]
- Wei, G.; Shalei, S.; Bo, Z.; Shuo, S.; Faquan, L.; Xuewu, C. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS J. Photogramm. Remote Sens. 2012, 69, 1–9. [Google Scholar]
- Ibrahim, M.; Akhtar, N.; Ullah, K.; Mian, A. Exploiting Structured CNNs for Semantic Segmentation of Unstructured Point Clouds from LiDAR Sensor. Remote Sens. 2021, 13, 3621. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, T.; Tang, X.; Lei, X.; Peng, Y. Introducing Improved Transformer to Land Cover Classification Using Multispectral LiDAR Point Clouds. Remote Sens. 2022, 14, 3808. [Google Scholar] [CrossRef]
- Handayani, H.H.; Bawasir, A.; Cahyono, A.B.; Hariyanto, T.; Hidayat, H. Surface drainage features identification using LiDAR DEM smoothing in agriculture area: A study case of Kebumen Regency, Indonesia. Int. J. Image Data Fusion 2022, 6, 240. [Google Scholar] [CrossRef]
- Lin, X.; Xie, W. A segment-based filtering method for mobile laser scanning point cloud. Int. J. Image Data Fusion 2022, 13, 136–154. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Liang, S.; Zhou, T.; Du, X.; Xu, P.; Wu, D. Assessing the thermal contributions of urban land cover types. Landsc. Urban Plan. 2020, 204, 103927. [Google Scholar]
- Morsy, S.; Shaker, A.; El-Rabbany, A. Multispectral LiDAR data for land cover classification of urban areas. Sensors 2017, 17, 958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Diaz, J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.; Sartori, M. Capability assessment and performance metrics for the Titan multispectral mapping lidar. Remote Sens. 2016, 8, 936. [Google Scholar] [CrossRef]
- Wichmann, V.; Bremer, M.; Lindenberger, J.; Rutzinger, M.; Georges, C.; Petrini-Monteferri, F. Evaluating the potential of multispectral airborne LIDAR for topographic mapping and land cover classification. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Bakuła, K.; Kupidura, P.; Jełowicki, Ł. Testing of land cover classification from multispectral airborne laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, F.D.; Xia, G.S. A geometry-attentional network for ALS point cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 164, 26–40. [Google Scholar]
- Scaioni, M.; Höfle, B.; Kersting, A.B.; Barazzetti, L.; Previtali, M.; Wujanz, D. Methods from information extraction from lidar intensity data and multispectral lidar technology. ISPRS J. Photogramm. Remote Sens. 2018, 42, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar] [CrossRef]
- Lawin, F.J.; Danelljan, M.; Tosteberg, P.; Bhat, G.; Khan, F.S.; Felsberg, M. Deep Projective 3D Semantic Segmentation. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 22–24 August 2017; pp. 476–483. [Google Scholar]
- Boulch, A.; Le Saux, B.; Audebert, N. Unstructured point cloud semantic labeling using deep segmentation networks. in3DOR 2017, 3, 17–24. [Google Scholar]
- Wu, B.; Wan, A.; Yue, X.; Keutzer, K. SqueezeSeg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. ICRA 2018, 25, 1887–1893. [Google Scholar]
- Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. ICRA 2019, 39, 4376–4382. [Google Scholar]
- Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate Lidar Semantic Segmentation. In Proceedings of the IROS, Macau, China, 4–8 November 2019; pp. 4213–4220. [Google Scholar]
- Meng, H.Y.; Gao, L.; Lai, Y.K.; Manocha, D. VV-Net: Voxelvae Net with Group Convolutions for Point Cloud Segmentation. In Proceedings of the ICCV, Seoul, Republic of Korea, 29 October 2019; pp. 8499–8507. [Google Scholar]
- Rethage, D.; Wald, J.; Sturm, J.; Navab, N.; Tombari, F. Fully-Convolutional Point Networks for Large-Scale Point Clouds. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 235–242. [Google Scholar]
- Dai, A.; Nießner, M. 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 458–474. [Google Scholar]
- Jaritz, M.; Gu, J.; Su, H. Multi-View pointNet for 3D Scene Understanding. In Proceedings of the ICCVW, Seoul, Republic of Korea, 29 October 2019; pp. 3995–4003. [Google Scholar]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 23, 4338. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Tian, J.; Zhu, X.X. Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation. Geosci. Remote Sens. 2020, 8, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep Learning on Point Sets for 3d Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30, 4–7. [Google Scholar]
- Chen, Y.; Liu, G.; Xu, Y.; Pan, P.; Xing, Y. PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification. Remote Sens. 2021, 13, 472. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2018, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 29 October 2019; pp. 6410–6419. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114. [Google Scholar]
- Lu, H.; Chen, X.; Zhang, G.; Zhou, Q.; Ma, Y.; Zhao, Y. Scanet: Spatial-Channel Attention Network for 3D Object Detection. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1992–1996. [Google Scholar]
- Jing, Z.; Guan, H.; Zhao, P.; Li, D.; Yu, Y.; Zang, Y.; Wang, H.; Li, J. Multispectral LiDAR Point Cloud Classification Using SE-PointNet++. Remote Sens. 2021, 13, 2516. [Google Scholar] [CrossRef]
- Lin, L.; Huang, P.; Fu, C.-W.; Xu, K.; Zhang, H.; Huang, H. On Learning the Right Attention Point for Feature Enhancement. Sci. China Inf. Sci. 2022, 7, 1674–1686. [Google Scholar] [CrossRef]
- Liao, R.; Yang, L.; Ma, L.; Zhu, J. In-motion continuous point cloud measurement based on bundle adjustment fused with motion information of triple line-scan images. Opt. Express 2022, 30, 21544–21567. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Shi, S.; Sun, J.; Gong, W.; Yang, J.; Du, L.; Guo, K.; Wang, B.; Chen, B. Hyperspectral lidar point cloud segmentation based on geometric and spectral information. Opt. Express 2019, 27, 24043–24059. [Google Scholar] [CrossRef]
- Himmelsbach, M.; Hundelshausen, F.V.; Wuensche, H. Fast segmentation of 3D point clouds for ground vehicles. IEEE Intell. Veh. Symp. 2010, 11, 560–565. [Google Scholar]
- Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.Y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagabhushan, P.; Guru, D.S.; Shekar, B.H. Rapid and brief communication: Visual learning and recognition of 3D objects using two-dimensional principal component analysis: A robust and an efficient approach. Pattern Recognit. 2006, 39, 721–725. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Z.H. Letters: (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 2005, 69, 224–231. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Liu, X.Y.; Wang, H.J. Saliency detection via two-directional 2DPCA analysis of image patches. J. Light Electronoptic 2014, 1, 125–138. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Y. Theoretical Analysis of Illumination in PCA-Based Vision Systems. Pattern Recognit. 1999, 32, 547–564. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar]
- Turpin, A.; Scholer, F. User Performance Versus Precision Measures for Simple Search Tasks. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, 6–11 August 2006; pp. 11–18. [Google Scholar]
- Grouven, U.; Bender, R.; Ziegler, A.; Lange, S. The kappa coefficient. Dtsch. Med. Wochenschr. 2007, 132, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Du, S.; Li, M.; Zhao, W. Exploring GIS knowledge to improve building extraction and change detection from VHR imagery in urban areas. Int. J. Image Data Fusion 2015, 7, 42–62. [Google Scholar] [CrossRef]
Test area | OA (%) | mIOU (%) | F1-Score (%) | Kappa |
---|---|---|---|---|
Area11 | 95.25 | 80.56 | 85.80 | 0.93 |
Area12 | 96.07 | 81.12 | 85.19 | 0.94 |
Area13 | 94.45 | 82.97 | 89.08 | 0.90 |
Network Model | OA (%) | mIOU (%) | F1-Score (%) | Kappa | |
---|---|---|---|---|---|
Proposed Method | Area11 | 95.25 | 80.56 | 85.80 | 0.93 |
Area12 | 96.07 | 81.12 | 85.19 | 0.94 | |
Area13 | 94.45 | 82.97 | 89.08 | 0.90 | |
RandLA | Area11 | 94.24 | 69.14 | 76.64 | 0.90 |
Area12 | 93.07 | 72.31 | 78.93 | 0.89 | |
Area13 | 93.64 | 81.77 | 87.91 | 0.89 | |
PointNet | Area11 | 85.79 | 58.76 | 69.54 | 0.81 |
Area12 | 86.38 | 60.12 | 68.79 | 0.79 | |
Area13 | 82.56 | 61.03 | 70.16 | 0.76 | |
PointNet++ | Area11 | 95.04 | 69.60 | 76.24 | 0.91 |
Area12 | 95.97 | 78.90 | 83.35 | 0.93 | |
Area13 | 92.13 | 75.58 | 81.90 | 0.87 | |
KPConv | Area11 | 96.05 | 81.06 | 86.02 | 0.93 |
Area12 | 95.74 | 78.88 | 82.81 | 0.93 | |
Area13 | 94.37 | 82.95 | 88.74 | 0.91 | |
DGCNN | Area11 | 95.98 | 73.52 | 80.17 | 0.92 |
Area12 | 96.03 | 79.25 | 85.71 | 0.92 | |
Area13 | 94.12 | 78.42 | 88.42 | 0.90 |
Network Model | OA (%) | mIOU (%) | F1-Score (%) | Kappa | |
---|---|---|---|---|---|
Proposed Method | area11 | 95.25 | 80.56 | 85.80 | 0.93 |
area12 | 96.07 | 81.12 | 85.19 | 0.94 | |
area13 | 94.45 | 82.97 | 89.08 | 0.90 | |
RandLA | area11 | 94.24 | 69.14 | 76.64 | 0.90 |
area12 | 93.07 | 72.31 | 78.93 | 0.89 | |
area13 | 93.64 | 81.77 | 87.91 | 0.89 |
Network Model | OA (%) | mIOU (%) | F1-Score (%) | Kappa | |
---|---|---|---|---|---|
Added SVD | Area11 | 95.25 | 80.56 | 85.80 | 0.93 |
Area12 | 96.07 | 81.12 | 85.19 | 0.94 | |
Area13 | 94.45 | 82.97 | 89.08 | 0.90 | |
Without SVD | Area11 | 94.36 | 78.32 | 82.61 | 0.90 |
Area12 | 94.70 | 79.34 | 81.53 | 0.92 | |
Area13 | 93.07 | 80.06 | 85.70 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, K.; Qian, J.; Li, T.; Peng, Y. Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network. Remote Sens. 2023, 15, 243. https://doi.org/10.3390/rs15010243
Xiao K, Qian J, Li T, Peng Y. Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network. Remote Sensing. 2023; 15(1):243. https://doi.org/10.3390/rs15010243
Chicago/Turabian StyleXiao, Kai, Jia Qian, Teng Li, and Yuanxi Peng. 2023. "Multispectral LiDAR Point Cloud Segmentation for Land Cover Leveraging Semantic Fusion in Deep Learning Network" Remote Sensing 15, no. 1: 243. https://doi.org/10.3390/rs15010243