Towards Unified Online-Coupled Aerosol Parameterization for the Brazilian Global Atmospheric Model (BAM): Aerosol–Cloud Microphysical–Radiation Interactions
Abstract
:1. Introduction
2. Model Development
2.1. AMIC—The Aerosol Module for BAM
2.2. Feedbacks between AMIC and BAM
2.2.1. Aerosol–Cloud Interactions
2.2.2. Impact of Aerosol–Cloud Interactions on Radiation
2.3. Aerosol Emissions and Forcings
3. Experimental Set Up and Observational Database
4. Results and Discussion
4.1. Global Aerosol Distributions
4.2. Cloud Microphysical Properties
4.3. Cloud Radiative Properties
4.4. Aerosol Optical Depth
4.5. Other Atmospheric Variables
4.6. Case Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols–A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 1974, 8, 1251–1256. [Google Scholar] [CrossRef]
- Twomey, S. Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Twomey, S. Aerosols, clouds and radiation. Atmos. Environ. 1991, 25A, 2435–2442. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Myhre, G.; Shindell, D.; Pongratz, J. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Zhang, Y. Online-coupled meteorology and chemistry models: History, current status, and outlook. Atmos. Chem. Phys. 2008, 8, 2895–2932. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Control of fossil-fuel particulate black carbon plus organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res. 2002, 107, 4410. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.H.; Seinfeld, J.H. Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. 2005, 110, 1102. [Google Scholar] [CrossRef]
- Penner, J.E.; Zhang, S.Y.; Chuang, C.C. Soot and smoke aerosol may not warm climate. J. Geophys. Res. 2003, 108, 4657. [Google Scholar] [CrossRef]
- Feichter, J.; Lohmann, U.; Schult, I. The atmospheric sulphur cycle in ECHAM-4 and its impact on the shortwave radiation. Clim. Dyn. 1997, 13, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U.; Feichter, J. Impact of sulfate aerosols on albedo and lifetime of clouds- A sensitivity study with the ECHAM GCM. J. Geophys. Res. 1997, 102, 13685–13700. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Schneider, T.L.; Rasch, P.J.; Barth, M.C.; Wong, J. Radiative forcing due to sulfate aerosols from simulations with the NCAR community climate model. J. Geophys. Res. 2000, 105, 1441–1457. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J.; Penner, J.E.; Leaitch, R. Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment. J. Geophys. Res. 2000, 105, 12193–12206. [Google Scholar] [CrossRef]
- Ghan, S.J.; Easter, R.C.; Chapman, E.G.; Abdul-Razzak, H.; Zhang, Y.; Leung, L.R.; Laulainen, N.S.; Saylor, R.D.; Zaveri, R.A. A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res. 2001, 106, 5279–5293. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Crutzen, P.J. Atmospheric aerosols: Bio-geochemical sources and role in atmospheric chemistry. Science 1997, 276, 1052–1058. [Google Scholar] [CrossRef] [Green Version]
- Spracklen, D.V.; Jimenez, J.L.; Carslaw, K.S.; Worsnop, D.R.; Evans, M.J.; Mann, G.W.; Zhang, Q.; Canagaratna, M.R.; Allan, J.; Coe, H.; et al. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 2011, 11, 12109–12136. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.E.; Rap, A.; Spracklen, D.V.; Forster, P.M.; Carslaw, K.S.; Mann, G.W.; Pringle, K.J.; Kivekäs, N.; Kulmala, M.; Lihavainen, H.; et al. The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2014, 14, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Glaccum, R.A.; Nees, R.T. Atmospheric transport of soil dust from Africa to South America. Nature 1981, 289, 570–572. [Google Scholar] [CrossRef]
- Perry, K.D.; Cahill, T.A.; Eldred, R.A.; Dutcher, D.D.; Gill, T.E. Long-range transport of North African dust to the eastern United States. J. Geophys. Res. 1997, 102, 11225–11238. [Google Scholar] [CrossRef]
- Meywerk, J.; Ramanathan, V. Observations of the spectral clear-sky aerosol forcing over the Tropical Indian Ocean. J. Geophys. Res. 1999, 104, 24359–24370. [Google Scholar] [CrossRef]
- Parrington, J.R.; Zoller, W.H.; Aras, N.K. Asian dust: Seasonal transport to the Hawaiian Islands. Science 1983, 220, 195–197. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Tegen, I.; Harrison, S.P.; Kohfeld, K.; Prentice, I.C.; Heimann, M. The impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res. 2002, 107, 4576. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Mahowald, N.M.; del Corral, J. Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res. 2003, 108, 4447. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Tegen, I.; Perlwitz, J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res. 2004, 109, D04203. [Google Scholar] [CrossRef]
- Zender, C.S.; Miller, R.L.; Tegen, I. Quantifying mineral dust mass budgets: Systematic terminology, constraints, and current estimates. Eos Trans. AGU 2004, 85, 509–512. [Google Scholar] [CrossRef]
- Woodward, S. Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res. 2001, 106, 18155–18166. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Cakmur, R.V.; Perlwitz, J.; Geogdzhayev, I.V.; Ginoux, P.; Koch, D.; Kohfeld, K.E.; Prigent, C.; Ruedy, R.; Schmidt, G.A.; et al. Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J. Geophys. Res. 2006, 111, D06208. [Google Scholar] [CrossRef]
- Yoshioka, M.; Mahowald, N.M.; Conley, A.J.; Collins, W.D.; Fillmore, D.W.; Zender, C.S.; Coleman, D.B. Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming. J. Clim. 2007, 20, 1445–1467. [Google Scholar] [CrossRef]
- Blanchard, D.C. The Production, Distribution, and Bacterial Enrichment of the Sea-Salt Aerosol. In Air-Sea Exchange of Gases and Particles; Liss, P.S., Slinn, W.G.N., Reidel, D., Norwell, M., Eds.; Springer: Dordrecht, The Netherlands, 1983; pp. 407–454. [Google Scholar]
- Monahan, E.C.; Spiel, D.E.; Davidson, K.L. A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption. In Oceanic Whitecaps; Oceanographic Sciences Library Series; Monahan, E.C., Niocaill, G.M., Eds.; Springer: Dordrecht, The Netherlands, 1986; Volume 2. [Google Scholar] [CrossRef]
- Erickson, D.J.; Duce, R.A. On the global flux of atmospheric sea salt. J. Geophys. Res. 1988, 93, 14079. [Google Scholar] [CrossRef]
- Gong, S.L.; Barrie, L.A.; Prospero, J.; Savoie, D.L.; Ayers, G.P.; Blanchet, J.-P.; Spacek, L. Modeling sea-salt aerosols in the atmosphere, Part 2: Atmospheric concentrations and fluxes. J. Geophys. Res. 1997, 102, 3819–3830. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.L.; Barrie, L.A.; Blanchet, J.-P. Modeling sea-salt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. 1997, 102, 3805–3818. [Google Scholar] [CrossRef] [Green Version]
- Artaxo, P.; Martins, J.V.; Yamasoe, M.A.; Procopio, A.S.; Pauliquevis, T.M.; Andreae, M.O.; Guyon, P.; Gatti, L.V.; Leal, A.M.C. Physical and chemical properties of aerosols in the wet and dry season in Rondonia, Amazonia. J. Geophys. Res. 2002, 107, 8081e8095. [Google Scholar] [CrossRef]
- Artaxo, P.; Rizzo, L.V.; Brito, J.F.; Barbosa, H.M.J.; Arana, A.; Sena, E.T.; Cirino, G.G.; Bastos, W.; Martin, S.T.; Andreae, M.O. Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss. 2013, 165, 203–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.T.; Andreae, M.O.; Artaxo, P.; Baumgardner, D.; Chen, Q.; Goldstein, A.H.; Guenther, A.; Heald, C.L.; Mayol- Bracero, O.L.; McMurry, P.H.; et al. Sources and properties of Amazonian aerosol particles. Rev. Geophys. 2010, 48, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Vara-Vela, A.L.; Herdies, D.L.; Alvim, D.S.; Vendrasco, É.P.; Figueroa, S.N.; Pendharkar, J.; Reyes Fernandez, J.P. A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America. Bull. Am. Meteorol. Soc. 2021, 102, E1700–E1713. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Silva Dias, M.A.F.; Silva Dias, P.L.; Chatfield, R.; Prins, E.; Artaxo, P.; Grell, G.A.; Recuero, F.S. Monitoring the transport of biomass burning emissions in South America. Environ. Fluid Mech. 2005, 5, 135–167. [Google Scholar] [CrossRef]
- Andreae, M.; Artaxo, P.; Fischer, H.; Freitas, S.; Grégoire, J.-M.; Hansel, A.; Hoor, P.; Kormann, R.; Krejci, R.; Lange, L.; et al. Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophys. Res. Lett. 2001, 28, 951. [Google Scholar] [CrossRef] [Green Version]
- Alvim, D.S.; Chiquetto, J.B.; D’Amelio, M.T.S.; Khalid, B.; Herdies, D.L.; Pendharkar, J.; Corrêa, S.M.; Figueroa, S.N.; Frassoni, A.; Capistrano, V.B.; et al. Evaluating Carbon Monoxide and Aerosol Optical Depth Simulations from CAM-Chem Using Satellite Observations. Remote Sens. 2021, 13, 2231. [Google Scholar] [CrossRef]
- Martins, L.D.; Hallak, R.; Alves, R.C.; de Almeida, D.S.; Squizzato, R.; Moreira, C.A.; Beal, A.; da Silva, I.; Rudke, A.; Martins, J.A. Long-range Transport of Aerosols from Biomass Burning over Southeastern South America and their Implications on Air Quality. Aerosol Air Qual. Res. 2018, 18, 1734–1745. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, S.; Di Mauro, B.; Bonasoni, P. Black carbon, organic carbon, and mineral dust in South American tropical glaciers: A review. Glob. Planet. Change 2022, 213, 103837. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Shindell, D.T.; Josse, B.; Young, P.J.; Cionni, I.; Eyring, V.; Bergmann, D.; Cameron-Smith, P.; Collins, W.J.; Doherty, R.; et al. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev. 2013, 6, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.T.; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P.J.; Lee, Y.H.; Rotstayn, L.; Mahowald, N.; et al. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 2013, 13, 2939–2974. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Lamarque, J.-F.; Flanner, M.G.; Jiao, C.; Shindell, D.T.; Berntsen, T.; Bisiaux, M.M.; Cao, J.; Collins, W.J.; Curran, M.; et al. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 2607–2634. [Google Scholar] [CrossRef] [Green Version]
- Alvim, D.S.; Pendharkar, J.; Capistrano, V.B.; Frassoni, A.; Enoré, D.P.; Neto, O.L.D.M.; Gutierrez, E.R.; Choudhury, A.D.; Kubota, P.Y.; Da Silva, J.; et al. Aerosol distribution over Brazil with ECHAM-HAM and CAM5-MAM3 simulations and its comparison with ground-based and satellite data. Atmos. Pollut. Res. 2017, 8, 718–728. [Google Scholar] [CrossRef]
- Figueroa, S.N.; Bonatti, J.P.; Kubota, P.Y.; Grell, G.A.; Morrison, H.; Barros, S.R.M.; Fernandez, J.P.R.; Ramirez, E.; Siqueira, L.; Luzia, G.; et al. The Brazilian Global Atmospheric Model (BAM): Performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather. Forecast. 2016, 31, 1547–1572. [Google Scholar] [CrossRef]
- Nobre, P.; Siqueira, L.S.P.; de Almeida, R.A.F.; Malagutti, M.; Giarolla, E.; Castelão, G.P.; Bottino, M.J.; Kubota, P.; Figueroa, S.N.; Costa, M.C.; et al. Climate Simulation and Change in the Brazilian Climate Model. J. Clim. 2013, 26, 6716–6732. [Google Scholar] [CrossRef]
- Capistrano, V.B.; Nobre, P.; Tedeschi, R.; Silva, J.; Bottino, M.; da Silva, M.B., Jr.; Menezes Neto, O.L.; Figueroa, S.N.; Bonatti, J.P.; Kubota, P.Y.; et al. Overview of climate change in the BESM-OA2.5 climate model. Geosci. Model Dev. 2018, 12, 1613–1642. [Google Scholar] [CrossRef] [Green Version]
- Veiga, S.F.; Nobre, P.; Giarolla, E.; Capistrano, V.; Baptista, M.; Marquez, A., Jr.; Figueroa, S.N.; Bonatti, J.P.; Kubota, P.; Nobre, C.A. The Brazilian earth system model version 2.5: Evaluation of its CMIP5 historical simulation. Geosci. Model Dev. 2019, 12, 1613–1642. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, B.S.; Coelho, C.A.S.; Woolnough, S.J.; Kubota, P.Y.; Bastarz, C.F.; Figueroa, S.N.; Bonatti, J.P.; de Souza, D.C. Configuration and hindcast quality assessment of a brazilian global sub-seasonal prediction system. Q. J. R. Meteorol. Soc. 2020, 146, 1067–1084. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A.; Silveira, V.P.; Figueroa, S.N.; Kubota, P.Y.; Bonatti, J.P.; de Souza, D.C. Climate variability over South America-regional and large scale features simulated by the Brazilian Atmospheric Model (BAM-v0). Int. J. Climatol. 2019, 40, 2845–2869. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; de Souza, D.C.; Kubota, P.Y.; Costa, S.; Menezes, L.; Guimarães, B.S.; Figueroa, S.N.; Bonatti, J.P.; Cavalcanti, I.F.; Sampaio, G.; et al. Evaluation of climate simulations produced with the Brazilian global atmospheric model version 1.2. Clim. Dyn. 2021, 56, 873–898. [Google Scholar] [CrossRef]
- de Souza, D.C.; Kubota, P.Y.; Figueroa, S.N.; Gutierrez, E.M.A.R.; Coelho, C.A.S. Impacto da resolução horizontal na simulação dos jatos de baixos níveis na América do Sul usando o modelo global do CPTEC. In Estudos Interdisciplinares nas Ciências Exatas e da Terra e Engenharias 4, E82 ed.; Atena Editora: Ponta Grossa, Brasil, 2019; pp. 205–217. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, B.S.; Coelho, C.A.S.; Woolnough, S.J.; Kubota, P.Y.; Bastarz, C.F.; Figueroa, S.N.; Bonatti, J.P.; de Souza, D.C. An inter-comparison performance assessment of a Brazilian global sub-seasonal prediction model against four sub-seasonal to seasonal (S2S) prediction project models. Clim. Dyn. 2021, 56, 2359–2375. [Google Scholar] [CrossRef]
- Easter, R.C.; Ghan, S.J.; Zhang, Y.; Saylor, R.D.; Chapman, E.G.; Laulainen, N.S.; Abdul-Razzak, H.; Leung, L.R.; Bian, X.; Zaveri, R.A. MIRAGE: Model description and evaluation of aerosols and trace gases. J. Geophys. Res. Atmos. 2004, 109, D20210. [Google Scholar] [CrossRef]
- Liu, X.; Easter, R.C.; Ghan, S.J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, F.; et al. Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev. 2012, 5, 709–739. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R.C.; Ghan, S.J.; Rasch, P.J. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev. 2016, 9, 505–522. [Google Scholar] [CrossRef]
- Morrison, G.; Curry, J.A.; Khvorostyanov, V.I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Iacono, M.; Delamere, J.; Mlawer, E.; Shephard, M.; Clough, S.; Collins, W. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Tiedtke, M. The Sensitivity of the Time-Mean Large-Scale Flow to Cumulus Convection in the ECMWF Model. In Proceedings of the Workshop on Convection in Large-Scale Models, ECMWF, Reading, UK, 28 November–1 December 1983; pp. 297–316. [Google Scholar]
- Arakawa, A.; Schubert, W.H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Foley, J.A.; Delire, C.; Fisher, V.A.; Coe, M.T.; Lenters, J.D.; Young-Molling, C.; Ramankutty, N.; Norman, J.M.; Gower, S.T. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob. Biogeochem. Cycles 2000, 14, 795–826. [Google Scholar] [CrossRef]
- Kubota, P.Y. Variability of Storage Energy in the Soil-Canopy System and its Impact on the Definition of Precipitation Standard in South America (in Portuguese with abstract in English). Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil, 2012; 285p. [Google Scholar]
- Giorgi, F. Development of an Atmospheric Model for Studies of Global Budgets and Effects of Airborne Particulate Material. Ph.D. Thesis, The Georgia Institute of Technology, Atlanta, GA, USA, 1986. [Google Scholar]
- Ghan, S.J.; Laulainen, N.S.; Easter, R.C.; Wagener, R.; Nemesure, S.; Chapman, E.G.; Zhang, Y.; Leung, L.R. Evaluation of aerosol direct radiative forcing in MIRAGE. J. Geophys. Res. 2001, 106, 5295–5316. [Google Scholar] [CrossRef]
- Poschl, U.; Canagaratna, M.; Jayne, J.T.; Molina, L.T.; Worsnop, D.R.; Kolb, C.E.; Molina, M.J. Mass accommodation coefficient of h2so4 vapor on aqueous sulfuric acid surfaces and gaseous diffusion coefficient of h2so4 in n-2/h2o. J. Phys. Chem. A 1998, 102, 10082–10089. [Google Scholar] [CrossRef]
- Seinfeld, J.F.; Pandis, S.N. Atmospheric Chemistry and Physics; John Wiley: Hoboken, NJ, USA, 1998; 1326p. [Google Scholar]
- Binkowski, F.S.; Shankar, U. The regional particulate matter model. 1. model description and preliminary results. J. Geophys. Res. Atmos. 1995, 100, 26191–26209. [Google Scholar] [CrossRef]
- Vehkamaki, H.; Kulmala, M.; Napari, I.; Lehtinen, K.E.J.; Noppel, T.T.N.; Laaksonen, A. An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res. Atmos. 2002, 107, 4622. [Google Scholar] [CrossRef]
- Kerminen, V.M.; Kulmala, M. Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sci. 2002, 33, 609–622. [Google Scholar] [CrossRef]
- Wilson, J.; Cuvelier, C.; Raes, F. A modeling study of global mixed aerosol fields. J. Geophys. Res. Atmos. 2001, 106, 34081–34108. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 community multiscale air quality (CMAQ) model aerosol component 1. model description. J. Geophys. Res. Atmos. 2003, 108, 4183. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Reidel Publishing Co.: Norwell, MA, USA, 1980; 714p. [Google Scholar]
- Abdul-Razzak, H.; Ghan, S.J. A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res. 2000, 105, 6837–6844. [Google Scholar] [CrossRef]
- Ghan, S.J.; Leung, L.R.; Easter, R.C.; Abdul-Razzak, H. Prediction of droplet number in a general circulation model. J. Geophys. Res. 1997, 102, 794. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Penner, J.E. Ice nucleation parameterization for global models. Meteor. Z. 2005, 14, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.A. Ice Initiation in Natural Clouds. In Precipitation Enhancement—A Scientific Challenge; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 1986; pp. 29–32. [Google Scholar]
- Meyers, M.P.; DeMott, P.J.; Cotton, W.R. New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Met. 1992, 31, 708–721. [Google Scholar] [CrossRef]
- Ghan, S.J.; Chung, C.C.; Penner, J.E. A parameterization of cloud droplet nucleation part I: Single aerosol type. Atmos. Res. 1993, 30, 198–221. [Google Scholar] [CrossRef]
- Ghan, S.J.; Zaveri, R.A. Parameterization of optical properties for hydrated internally mixed aerosol. J. Geophys. Res. 2007, 112, D10201. [Google Scholar] [CrossRef]
- Ghan, S.J.; Leung, L.R.; Hu, Q. Application of cloud microphysics to NCAR community climate model. J. Geophys. Res. 1997, 102, 16507–16527. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 1–17. [Google Scholar] [CrossRef]
- Zender, C.S. netCDF Operator (NCO) User Guide, Version 4.4.3. 2014. Available online: http://nco.sf.net/nco.pdf (accessed on 19 November 2022).
- Ibarra-Espinosa, S.; Schuch, D.; Dias de Freitas., E. eixport: An R package to export emissions to atmospheric models. J. Open Source Softw. 2018, 3, 607. [Google Scholar] [CrossRef]
- Buchholz, R.R.; Emmons, L.K.; Tilmes, S.; The CESM2 Development Team. CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions; Global Data January–March 2014 and July–September 2019, Accessed 2020; UCAR/NCAR-Atmospheric Chemistry Observations and Modeling Laboratory: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Emmons, L.K.; Schwantes, R.H.; Orlando, J.J.; Tyndall, G.; Kinnison, D.; Lamarque, J.-F.; Marsh, D.; Mills, M.J.; Tilmes, S.; Bardeen, C.; et al. The Chemistry Mechanism in the Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019MS001882. [Google Scholar] [CrossRef] [Green Version]
- Martensson, E.M.; Nilsson, E.D.; deLeeuw, G.; Cohen, L.H.; Hansson, H.C. Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. Atmos. 2003, 108, 682QU. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Climate 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Kato, S.; Rose, F.G.; Rutan, D.A.; Thorsen, T.E.; Loeb, N.G.; Doelling, D.R.; Huang, X.; Smith, W.L.; Su, W.; Ham, S.-H. Surface irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate 2018, 31, 4501–4527. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Adler, R.F. GPCP Version 1.2 One-Degree Daily Precipitation Data Set; Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder, CO, USA, 2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Karamchandani, P.; Glotfelty, T.; Streets, D.G.; Grell, G.; Nenes, A.; Yu, F.; Bennartz, R. Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem). J. Geophys. Res. 2012, 117, D20206. [Google Scholar] [CrossRef] [Green Version]
- Cooke, W.F.; Wilson, J.J.N. A global black carbon aerosol model. J. Geophys. Res. 1996, 101, 19395–19409. [Google Scholar] [CrossRef]
- Liousse, C.; Penner, J.E.C.; Chuang, J.; Walton, J.; Eddleman, H.; Cachier, H. A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 1996, 101, 19411–19432. [Google Scholar] [CrossRef]
- Chuang, C.C.; Penner, J.E.; Prospero, J.M.; Grant, K.E.; Rau, G.H.; Kawamoto, K. Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations. J. Geophys. Res. 2002, 107, 4564. [Google Scholar] [CrossRef]
- Martins, J.A.; Brand, V.S.; Capucim, M.N.; Felix, R.R.; Martins, L.D.; Freitas, E.D.; Gonçalves, F.L.T.; Hallak, R.; Silva Dias, M.A.F.; Cecil, D.J. Climatology of destructive hailstorms in Brazil. Atmos. Res. 2017, 184, 126–138. [Google Scholar] [CrossRef]
- Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; du Preez, D.J.; Cadet, J.-M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. [Google Scholar] [CrossRef]
- Zhang, Y.; Easter, R.C.; Ghan, S.J.; Abdul-Razzak, H. Impact of aerosol size representation on modeling aerosol-cloud interactions. J. Geophys. Res. 2002, 107, 4558. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Y.; Wang, S.; Wei, C.; Pöhlker, M.; Pöhlker, C.; Artaxo, P.; Shrivastava, M.; Andreae, M.O.; Pöschl, U.; et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: Relative importance of aerosol–cloud and aerosol–radiation interactions. Atmos. Chem. Phys. 2020, 20, 13283–13301. [Google Scholar] [CrossRef]
- Duarte, E.D.S.F.; Franke, P.; Lange, A.C.; Friese, E.; da Silva Lopes, F.J.; da Silva, J.J.; dos Reis, J.S.; Landulfo, E.; e Silva, C.M.S.; Elbern, H.; et al. Evaluation of atmospheric aerosols in the metropolitan area of São Paulo simulated by the regional EURAD-IM model on high-resolution. Atmos. Pollut. Res. 2021, 12, 451–469. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Wang, K.; He, J.; Leung, L.R.; Fan, J.; Nenes, A. Incorporating an advanced aerosol activation parameterization into WRF-CAM5: Model evaluation and parameterization intercomparison. J. Geophys. Res. Atmos. 2015, 120, 6952–6979. [Google Scholar] [CrossRef]
- Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A. Incorporation of advanced aerosol activation treatments into CESM/CAM5: Model evaluation and impacts on aerosol indirect effects. Atmos. Chem. Phys. 2014, 14, 7485–7497. [Google Scholar] [CrossRef]
Simulation Period | January–March 2014 and July–September 2019 | |
---|---|---|
BAM Configuration | Ref. | |
Domain | Global | [52] |
Horizontal resolution | T126 (1° × 1°) | |
Vertical resolution | 42 sigma levels | |
Microphysics | Morrison double-moment | [64] |
Shallow convection | Tiedtke | [66] |
Deep convection | Arakawa and Schubert | [67] |
Radiation | Rapid Radiative Transfer Model for GCMs | [65] |
Land surface | Integrated Biosphere Simulator (IBIS) | [68,69,70] |
Meteorological ICs | National Center for Environmental Prediction FNL | |
AMIC Configuration | ||
Modal configuration Aerosol species Gas species Geometric size (DgN) and standard deviation (σg) Aerosol activation Emission fluxes and forcings | 4-mode (M1: Accumulation; M2: Aitken, M3: Coarse; M4: Primary carbon) M1: sulfate, BC, POM, SOA, DU, SS, NUM M2: sulfate, SOA, SS, NUM M3: sulfate, DU, SS, NUM M4: POM, BC, NUM SO2, H2SO4, DMS, SOAG, H2O2 M1: 0.1 μm < DgN < 1.0 μm; σg = 1.6 M2: 0.01 μm < DgN < 0.1 μm; σg = 1.8 M3: 1.0 μm < DgN < 10 μm; σg = 1.8 M4: 0.02 μm < DgN < 0.2 μm; σg = 1.6 Abdul-Razzak and Ghan surface: SO2, BC, OC, PM2.5 PM10 (EDGARv6.1) BC, OC, PM2.5 → M1; PM10 → M3: DU; 1.4 × OC → M4: POM forcings: CAM-chem (0.9° × 1.25°; 56 hybrid levels) SS emission: cut-off size range (μm) 0.02–0.08 (M2); 0.08–1.0 (M1); 1.0–10 (M3) | [63] [81] [92,93] [35,94] |
Experiments for each simulation period | 1. BAM CTRL—no aerosols, constant CDNC | |
2. BAM AMIC | ||
Observational data | ||
CERES | SWCRF, LWCRF | [96,97] |
MODIS | CF, AOD | [95] |
GPCP | Total precipitation | [98] |
JFM2014 | JAS2019 | |||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
BC | 0.03 | 70.17 | 0.46 | 0.03 | 66.95 | 0.55 |
POM | 0.11 | 208.58 | 1.97 | 0.13 | 192.41 | 2.77 |
SOA | 0.0 | 2449.83 | 0.68 | 0.0 | 2504.90 | 0.66 |
Sulfate | 0.96 | 1138.78 | 4.13 | 0.71 | 1369.17 | 4.62 |
DU | 0.17 | 9769.65 | 74.35 | 0.05 | 11,222.20 | 95.11 |
SS | 0.46 | 196.41 | 24.72 | 0.44 | 531.77 | 26.84 |
BAM CTRL | BAM AMIC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Obs. Data | Mean Obs. | Mean Model | NMB (%) | RMSE | R | Mean Model | NMB (%) | RMSE | R |
SWCRF | CERES | −40.66 | −43.98 | 8 | 20.91 | 0.84 | −45.15 | 11 | 22.26 | 0.82 |
LWCRF | CERES | 22.08 | 19.24 | −13 | 10.57 | 0.72 | 15.96 | −28 | 11.23 | 0.76 |
OLR | CERES | 223 | 236.5 | 6 | 19.8 | 0.93 | 239.7 | 7.4 | 20.76 | 0.94 |
AOD | MODIS | 0.14 | - | - | - | - | 0.08 | −39 | 0.10 | 0.52 |
Precip. | GPCP | 1.28 | 2.37 | 85 | 3.39 | 0.21 | 2.51 | 97 | 3.55 | 0.23 |
BAM CTRL | BAM AMIC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Obs. Data | Mean Obs. | Mean Model | NMB (%) | RMSE | R | Mean Model | NMB (%) | RMSE | R |
SWCRF | CERES | −38.5 | −55.6 | 44 | 34.6 | 0.72 | −42 | 9 | 22.41 | 0.74 |
LWCRF | CERES | 22.6 | 20.3 | −10 | 10.3 | 0.73 | 15.7 | −30 | 11 | 0.78 |
OLR | CERES | 228.9 | 236.8 | 3 | 15.3 | 0.97 | 243 | 6 | 17.6 | 0.97 |
AOD | MODIS | 0.18 | - | - | - | - | 0.08 | −58 | 0.16 | 0.42 |
Precip. | GPCP | 2.29 | 2.45 | 7 | 3.72 | 0.05 | 2.60 | 14 | 3.85 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pendharkar, J.; Figueroa, S.N.; Vara-Vela, A.; Krishna, R.P.M.; Schuch, D.; Kubota, P.Y.; Alvim, D.S.; Vendrasco, E.P.; Gomes, H.B.; Nobre, P.; et al. Towards Unified Online-Coupled Aerosol Parameterization for the Brazilian Global Atmospheric Model (BAM): Aerosol–Cloud Microphysical–Radiation Interactions. Remote Sens. 2023, 15, 278. https://doi.org/10.3390/rs15010278
Pendharkar J, Figueroa SN, Vara-Vela A, Krishna RPM, Schuch D, Kubota PY, Alvim DS, Vendrasco EP, Gomes HB, Nobre P, et al. Towards Unified Online-Coupled Aerosol Parameterization for the Brazilian Global Atmospheric Model (BAM): Aerosol–Cloud Microphysical–Radiation Interactions. Remote Sensing. 2023; 15(1):278. https://doi.org/10.3390/rs15010278
Chicago/Turabian StylePendharkar, Jayant, Silvio Nilo Figueroa, Angel Vara-Vela, R. Phani Murali Krishna, Daniel Schuch, Paulo Yoshio Kubota, Débora Souza Alvim, Eder Paulo Vendrasco, Helber Barros Gomes, Paulo Nobre, and et al. 2023. "Towards Unified Online-Coupled Aerosol Parameterization for the Brazilian Global Atmospheric Model (BAM): Aerosol–Cloud Microphysical–Radiation Interactions" Remote Sensing 15, no. 1: 278. https://doi.org/10.3390/rs15010278
APA StylePendharkar, J., Figueroa, S. N., Vara-Vela, A., Krishna, R. P. M., Schuch, D., Kubota, P. Y., Alvim, D. S., Vendrasco, E. P., Gomes, H. B., Nobre, P., & Herdies, D. L. (2023). Towards Unified Online-Coupled Aerosol Parameterization for the Brazilian Global Atmospheric Model (BAM): Aerosol–Cloud Microphysical–Radiation Interactions. Remote Sensing, 15(1), 278. https://doi.org/10.3390/rs15010278