Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations
Abstract
:1. Introduction
2. Data Set and Study Regions
2.1. SAGE III/ISS Data
2.2. Study Regions
3. Method
3.1. Inversion of Spectral sAOD Values into Aerosol Number/Volume Size Distributions
- i.
- The refractive index of stratospheric sulfate is assumed to be 1.45-i0 at all wavelengths [54].
- ii.
- The size distribution consisting of multiple log-normal distributions is considered as below:In this study, the wavelengths used in the retrieval are 449, 521, 602, 676, 756, 869, 1021, and 1544 nm, and M is fixed as 8 (i.e., equal to the number of wavelengths). The logarithm of is equally spaced with . The value of s depends on M, and is fixed at 1.221 for each log-normal distribution. The choice of or constrains the retrieval values of s and . The factor of 1.65 is empirically determined [41,55]. All of the log-normal distributions are assumed to have the same standard deviation s. The log value of this constant standard deviation is assumed to be proportional to 1/M. Thus, more distribution means a smaller s. The retrieval range of the particle radius is kept fixed from 0.1 m () to 1.0 m () [39,40]. In earlier studies, for example, by King et al. [52] and Kudo et al. [41], it was found that a satisfactory size distribution can be derived for the radius range between 0.1 and 1.0 m if the sAOD or EC values are available throughout the visible and near-infrared wavelength regions. Therefore, is fixed at 0.118, 0.164, 0.228, 0.316, 0.439, 0.611, and 0.848 m for each log-normal distribution. Now, the only free parameters in the inversion procedure are the .
- iii.
- Optical properties of spherical particles are calculated using the Mie theory.
3.2. Retrieval Assessment
4. Results and Discussion
4.1. Spatiotemporal Variability of Spectral Dependence and Size Distribution of Stratospheric Aerosols
4.2. Temporal Changes in the sAOD, Angstrom Exponent, Total Number Concentration, and R
4.3. Growth and Decay Characteristics of sAOD and AE
5. Radiative Impact of Ambae and Raikoke/Ulawun Eruptions with Other Well-Known Eruptions
Volcano Name | Eruption Date(s) | Latitude | VEI | Estimated | Change in the sAOD | Estimated RF | |
---|---|---|---|---|---|---|---|
(dd/mm/yyyy) | SO Loading | (-) | (W/m) | ||||
(Tg) | TOA | Surface | |||||
El Chichon [64,69,70] | 04/04/1982 | 17N | 5 | 7–12 | 0.10–0.14 (550 nm) | −2 to −4 (SW) | – |
(El) | |||||||
Nevado del Ruiz [70,71,72] | 14/11/1985 | 5S | 3 | ∼0.7 | 0.006 (550 nm) | – | – |
(Ne) | |||||||
Mt. Pinatubo [62,65,70,72,73] | 15/06/1991 | 15N | 6 | 20 | 0.15–0.20 (550 nm) | −4 to −5 (SW) | – |
(Pi) | −6 to −7 (LW) | – | |||||
Kasatochi [1,74,75] | 07/08/2008 | 52N | 4 | 0.7–2.2 | 0.0023 (550 nm) | −2.1 (SW, all-sky) | – |
(Ka) | −0.04 to −2.0 (SW, clear-sky) | ||||||
Sarychev [75,76,77] | 15/06/2009 | 48N | 4 | 1.2 ± 0.2 | 0.005 (550 nm) | −0.16 (SW) | – |
(Sv) | ≈0.012 | −0.2 ± 0.2 (SW) | |||||
Nabro [1,77,78,79] | 12–13/06/2011 | 13N | 4 | 1.3–2 | ≈0.09 (550 nm) | −1.03 (SW) | – |
(Nb) | |||||||
Ambae [30,31] | 5–6/04/2018 | 15S | 3 | 0.12 | 0.007–0.009 (532 nm) | −0.45 to −0.6 (SW, Global) | |
(Am) | 27/07/2018 | ≈0.36 | −0.13 (SW, Tropics) | – | |||
Raikoke [24] | 21–22/06/2019 | 48N | 4 | 1.5 ± 0.2 | ≈0.025 (at 675 nm; NH) | −0.27 to −0.38 (SW, clear-sky) | – |
(Ra) | −0.11 to −0.16 (SW, all-sky) | ||||||
Ulawun [24] | 26/06/2019 | 5S | 4 | 0.14 | 0.010 (449 nm, Tropics) | −0.09 to −0.13 (SW, clear-sky) | – |
(Ul) | 03/08/2019 | 0.30 | −0.04 to −0.05 (SW, all-sky) | ||||
Hunga Tonga-Hunga | 15/01/2022 | 20.6S | 5–6 | 0.4 | ∼0.22 (675 nm, Tropics) | −0.6 (SW + LW; aerosol) | −1.7 (SW + LW; aerosol) |
Ha-apai (HT) [42,59,60] | ∼0.15 (675 nm, SH) | +0.8 (SW + LW; water vapor) | +0.0018 (SW + LW; water vapor) | ||||
+0.2 (SW + LW; aerosol+water vapor) | −1.7 (SW + LW; aerosol+water vapor |
6. Summary and Conclusions
- i.
- The size distribution retrievals are strongly dependent on the choice of wavelengths, which in turn determines the shapes of the calculated curves.
- ii.
- While the log-normal number-size distributions of stratospheric aerosols exhibited mostly monomodal shapes in all regions with distinct total number concentrations during different time periods (even though the geometric width and median radii did not differ much); the corresponding volume size distributions were found to manifest bi- and tri-modal shapes with distinct differences over each region at different time periods.
- iii.
- The microphysical changes were not evidently visible through the derived R as the number-size distributions correspond to spectral sAOD values obtained for a fixed altitude range (from the tropopause to 30 km).
- iv.
- The strong fluctuations in N can result from the temporal variation in the spectral dependence of sAOD values, and the overestimation of the fine mode.
- v.
- The spectral dependency of sAOD was found to be lower and comparable in all regions during the pre-Ambae and Ambae1 periods. Although the sAOD values at all wavelengths are expected to increase in the Ambae2 period over the NH region and 10–20N latitude belt, they were found to be similar and close to the values observed during the pre-Ambae and Ambae1 periods, respectively. However, the number concentration at the principal mode radius (between 0.07 and 0.2 m) was found to be distinct and higher during the Ambae2 period followed by Ambae1, pre-Ambae, and post-Ambae periods over the NH region, clearly indicating an influence on the stratospheric aerosol concentrations.
- vi.
- Large variability around the mean sAOD values (at all wavelengths) was seen in both the latitude bands during the post-Ambae period, indicating the likely influence of large stratospheric perturbation associated with two distinct volcanic eruptions almost at the same time. During the post-Ambae period, distinct and enhanced magnitudes of sAOD (by 2–3 times) at all wavelengths were noticed in NH and global regions, including the 10–20N latitude band, indicating the influence of the Raikoke (June 2019) eruption. In contrast, slight enhancement of sAOD at shorter wavelengths was found in the SH region and 10–20S latitude band, possibly because of the influence of Ulawun eruption.
- vii.
- The rate of change (growth/decay) in the sAOD on a global scale resembled the changes in the SH unlike the time lag associated with the changes in the NH. These differences can be attributed to the prevailing horizontal and vertical dispersion mechanisms in the respective regions. Even the AE values exhibited higher magnitudes (>1.5) in different regions (with a time lag in the NH) during the Ambae volcanic eruption periods.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersson, S.M.; Martinsson, B.G.; Vernier, J.-P.; Friberg, J.; Brenninkmeijer, C.A.M.; Hermann, M.; van Velthoven, P.F.J.; Zahn, A. Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun. 2015, 6, 7692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Free, M.; Lanzante, J. Effect of Volcanic Eruptions on the Vertical Temperature Profile in Radiosonde Data and Climate Models. J. Clim. 2009, 22, 2925–2939. [Google Scholar] [CrossRef]
- Fujiwara, M.; Hibino, T.; Mehta, S.K.; Gray, L.; Mitchell, D.; Anstey, J. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets. Atmos. Chem. Phys. 2015, 15, 13507–13518. [Google Scholar] [CrossRef] [Green Version]
- Ming, A.; Hitchcock, P. What contributes to the inter-annual variability in tropical lower stratospheric temperatures? J. Geophys. Res. Atmos. 2022, 127, e2021JD035548. [Google Scholar] [CrossRef]
- Riese, M.; Ploeger, F.; Rap, A.; Vogel, B.; Konopka, P.; Dameris, M.; Forster, P. Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J. Geophys. Res. Atmos. 2012, 117, D16305. [Google Scholar] [CrossRef] [Green Version]
- Robrecht, S.; Vogel, B.; Grooß, J.-U.; Rosenlof, K.; Thornberry, T.; Rollins, A.; Krämer, M.; Christensen, L.; Müller, R. Mechanism of ozone loss under enhanced water vapour conditions in the mid-latitude lower stratosphere in summer. Atmos. Chem. Phys. bf 2019, 19, 5805–5833. [Google Scholar] [CrossRef] [Green Version]
- Diallo, M.; Ploeger, F.; Konopka, P.; Birner, T.; Müller, R.; Riese, M.; Garny, H.; Legras, B.; Ray, E.; Berthet, G.; et al. Significant Contributions of Volcanic Aerosols to Decadal Changes in the Stratospheric Circulation. Geophys. Res. Lett. bf 2017 em 44, 10780–10791. [CrossRef]
- Stenchikov, G. The Role of Volcanic Activity in Climate and Global Change. In Climate Change, 3rd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 607–643. [Google Scholar] [CrossRef]
- Tidiga, M.; Berthet, G.; Jégou, F.; Kloss, C.; Bègue, N.; Vernier, J.-P.; Renard, J.-B.; Bossolasco, A.; Clarisse, L.; Taha, G.; et al. Variability of the Aerosol Content in the Tropical Lower Stratosphere from 2013 to 2019: Evidence of Volcanic Eruption Impacts. Atmosphere 2022, 13, 250. [Google Scholar] [CrossRef]
- Aubry, T.J.; Staunton-Sykes, J.; Marshall, L.R.; Haywood, J.; Abraham, N.L.; Schmidt, A. Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions. Nat. Commun. 2021, 12, 4708. [Google Scholar] [CrossRef]
- Fadnavis, S.; Müller, R.; Chakraborty, T.; Sabin, T.P.; Laakso, A.; Rap, A.; Griessbach, S.; Vernier, J.-P.; Tilmes, S. The role of tropical volcanic eruptions in exacerbating Indian droughts. Sci. Rep. 2021, 11, 2714. [Google Scholar] [CrossRef]
- Schmidt, A.; Mills, M.J.; Ghan, S.; Gregory, J.M.; Allan, R.P.; Andrews, T.; Bardeen, C.G.; Conley, A.; Forster, P.M.; Gettelman, A.; et al. Volcanic Radiative Forcing From 1979 to 2015. J. Geophys. Res. Atmos. 2018, 123, 12491–12508. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Neely III, R.R.; Vernier, J.-P.; Dutton, E.G.; Thomason, L.W. The Persistently, Variable "Background" Stratospheric Aerosol Layer and Global Climate Change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, V.K.; Yu, S.; Anderson, J. Impact of stratospheric volcanic aerosols on climate: Evidence for aerosol shortwave and longwave forcing in the Southeastern U.S. Atmos. Environ. 1997, 31, 4211–4221. [Google Scholar] [CrossRef]
- Andersson, S.M.; Martinsson, B.G.; Friberg, J.; Brenninkmeijer, C.A.M.; Rauthe-Schöch, A.; Hermann, M.; van Velthoven, P.F.J.; Zahn, A. Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations. Atmos. Chem. Phys. 2013, 13, 1781–1796. [Google Scholar] [CrossRef] [Green Version]
- Moxnes, E.D.; Kristiansen, N.I.; Stohl, A.; Clarisse, L.; Durant, A.; Weber, K.; Vogel, A. Separation of ash and sulfur dioxide during the 2011 Grìmsvotn eruption. J. Geophys. Res. Atmos. 2014, 119, 7477–7501. [Google Scholar] [CrossRef] [Green Version]
- Pitari, G.; Di Genova, G.; Mancini, E.; Visioni, D.; Gandolfi, I.; Cionni, I. Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time. Atmosphere 2016, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Malinina, E.; Rozanov, A.; Rieger, L.; Bourassa, A.; Bovensmann, H.; Burrows, J.P.; Degenstein, D. Stratospheric aerosol characteristics from space-borne observations: Extinction coefficient and Ångström exponent. Atmos. Meas. Tech. 2019, 12, 3485–3502. [Google Scholar] [CrossRef] [Green Version]
- Thomason, L.W.; Kovilakam, M.; Schmidt, A.; von Savigny, C.; Knepp, T.; Rieger, L. Evidence for the predictability of changes in the stratospheric aerosol size following volcanic eruptions of diverse magnitudes using space-based instruments. Atmos. Chem. Phys. 2021, 21, 1143–1158. [Google Scholar] [CrossRef]
- Lurton, T.; Jégou, F.; Berthet, G.; Renard, J.-B.; Clarisse, L.; Schmidt, A.; Brogniez, C.; Roberts, T.J. Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in situ and satellite observations. Atmos. Chem. Phys. bf 2018, 18, 3223–3247. [Google Scholar] [CrossRef]
- Zhu, Y.; Toon, O.B.; Kinnison, D.; Harvey, L.; Mills, M.; Bardeen, C.; Pitts, M.; Bègue, N.; Renard, J.-B.; Berthet, G.; et al. Stratospheric aerosols, polar stratospheric clouds and polar ozone depletion after the Mount Calburo eruption in 2015. J. Geophys. Res. Atmos. 2018, 123, 12308–12331. [Google Scholar] [CrossRef]
- Vernier, J.-P.; Thomason, L.W.; Pommereau, J.-P.; Bourassa, A.; Pelon, J.; Garnier, A.; Hauchecorne, A.; Blanot, L.; Trepte, C.; Degenstein, D.; et al. Major influence of tropical volcanic eruptions on the stratopsheric aerosol layer during the last decade. Geophys. Res. Lett. 2011, 38, L12807. [Google Scholar] [CrossRef] [Green Version]
- Sandvik, O.S.; Friberg, J.; Martinsson, B.G.; van Velthoven, P.F.J.; Hermann, M.; Zahn, A. Intercomparison of in situ aircraft and satellite aerosol measurements in the stratosphere. Sci. Rep. 2019, 9, 15576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloss, C.; Berthet, G.; Sellitto, P.; Ploeger, F.; Taha, G.; Tidiga, M.; Eremenko, M.; Bossolasco, A.; Jégou, F.; Renard, J.-B.; et al. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing. Atmos. Chem. Phys. 2021, 21, 535–560. [Google Scholar] [CrossRef]
- Berthet, G.; Jégou, F.; Catoire, V.; Krysztofiak, G.; Renard, J.-B.; Bourassa, A.E.; Degenstein, D.A.; Brogniez, C.; Dorf, M.; Kreycy, S.; et al. Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: Balloon-borne observations and model calculations. Atmos. Chem. Phys. 2017, 17, 2229–2253. [Google Scholar] [CrossRef] [Green Version]
- Deshler, T.; Anderson-Sprecher, R.; Jäger, H.; Barnes, J.; Hofmann, D.J.; Clemesha, B.; Simonich, D.; Osborn, M.; Grainger, R.G.; Godin-Beekmann, S. Trends in the non-volcanic component of stratospheric aerosol over the period 1971-2004. J. Geophys. Res. Atmos. 2006, 111, D01201. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.-B.; Berthet, G.; Robert, C.; Chartier, M.; Pirre, M.; Brogniez, C.; Herman, M.; Verwaerde, C.; Balois, J.-Y.; Ovarlex, J.; et al. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization, and counting measurements. App. Opt. 2002, 41, 7540–7549. [Google Scholar] [CrossRef]
- Vernier, J.-P.; Fairlie, T.D.; Deshler, T.; Natarajan, M.; Knepp, T.; Foster, K.; Wienhold, F.G.; Bedka, K.M.; Thomason, L.; Trepte, C. in situ and space-based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere. J. Geophys. Res. Atmos. 2016, 121, 11104–11118. [Google Scholar] [CrossRef]
- Kloss, C.; Sellitto, P.; Renard, J.-B.; Baron, A.; Bègue, N.; Legras, B.; Berthet, G.; Briaud, E.; Carboni, E.; Duchamp, C.; et al. Aerosol characterization of the stratospheric plume from the volcanic eruption at Hunga Tonga 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL099394. [Google Scholar] [CrossRef]
- Kloss, C.; Sellitto, P.; Legras, B.; Vernier, J.-P.; Ratnam, M.V.; Suneel Kumar, B.; Madhavan, B.L.; Berthet, G. Impact of the 2018 Ambae Eruption on the Global Stratospheric Aerosol Layer and Climate. J. Geophys. Res. Atmos. 2020, 125, e2020JD032410. [Google Scholar] [CrossRef]
- Malinina, E.; Rozanov, A.; Niemeier, U.; Wallis, S.; Arosio, C.; Wrana, F.; Timmreck, C.; von Savigny, C.; Burrows, J.P. Changes in stratospheric aerosol extinction coefficient after the 2018 Ambae eruption as seen by OMPS-LP and MAECHAM5-HAM. Atmos. Chem. Phys. 2021, 21, 14871–14891. [Google Scholar] [CrossRef]
- Legras, B.; Duchamp, C.; Sellitto, P.; Podglajen, A.; Carboni, E.; Siddans, R.; Grooß, J.-U.; Khaykin, S.; Ploeger, F. The evolution and dynamics of the Hunga Tonga-Hunga Ha’apai sulfate aerosol plume in the stratosphere. Atmos. Chem. Phys. 2022, 22, 14957–14970. [Google Scholar] [CrossRef]
- Chen, Z.; Bhartia, P.K.; Torres, O.; Jaross, G.; Loughman, R.; DeLand, M.; Colarco, P.; Damadeo, R.; Taha, G. Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations. Atmos. Meas. Tech. 2020, 13, 3471–3485. [Google Scholar] [CrossRef]
- Kar, J.; Lee, K.-P.; Vaughan, M.A.; Tackett, J.L.; Trepte, C.R.; Winker, D.M.; Lucker, P.L.; Getzewich, B.J. CALIPSO level 3 stratospheric aerosol profile product: Version 1.00 algorithm description and initial assessment. Atmos. Meas. Tech. 2019, 12, 6173–6191. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, P.; Salerno, G.; La Spina, A.; Caltabiano, T.; Scollo, S.; Boselli, A.; Leto, G.; Sanchez, R.Z.; Crumeyrolle, S.; Hanoune, B.; et al. Small-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPL-RADIO campaigns. Sci. Rep. 2020, 10, 15224. [Google Scholar] [CrossRef] [PubMed]
- Renard, J.-B.; Brogniez, C.; Berthet, G.; Bourgeois, Q.; Gaubicher, B.; Chartier, M.; Balois, J.-Y.; Verwaerde, C.; Auriol, F.; François, P.; et al. Vertical distribution of the different types of aerosols in the stratosphere, Detection of solid particles and analysis of their spatial variability. J. Geophys. Res. 2008, 113, D21303. [Google Scholar] [CrossRef] [Green Version]
- Thomason, L.W.; Poole, L.R.; Deshler, T. A global climatology of stratospheric aerosol sulfate area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994. J. Geophys. Res. 1997, 102, 8967–8976. [Google Scholar] [CrossRef]
- Thomason, L.W.; Burton, S.P.; Luo, B.-P.; Peter, T. SAGE II measurements of stratospheric aerosol properties at non-volcanic levels. Atmos. Chem. Phys. 2008, 8, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.K. A new approach to retrieval of aerosol size distributions and integral properties from SAGE II aerosol extinction spectra. J. Geophys. Res. 1999, 104, 27491–27506. [Google Scholar] [CrossRef]
- Yue, G.K. Retrieval of aerosol size distributions and integral properties from simulated extinction measurements at SAGE III wavelengths by the linear minimizing error method. J. Geophys. Res. 2000, 105, 14719–14736. [Google Scholar] [CrossRef]
- Kudo, R.; Diémoz, H.; Estellés, V.; Campanelli, M.; Momoi, M.; Marenco, F.; Ryder, C.L.; Ijima, O.; Uchiyama, A.; Nakashima, K.; et al. Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals. Atmos. Meas. Tech. 2021, 14, 3395–3426. [Google Scholar] [CrossRef]
- Sellitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bégue, N.; et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun Earth Environ 2022, 3, 288. [Google Scholar] [CrossRef]
- Kloss, C.; Berthet, G.; Sellitto, P.; Ploeger, F.; Bucci, S.; Khaykin, S.; Jégou, F.; Taha, G.; Thomason, L.W.; Barret, B.; et al. Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation. Atmos. Chem. Phys. 2019, 19, 13547–13567. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J.R.; Damadeo, R.; Flittner, D.; Kramarova, N.; Taha, G.; Davis, S.; Thompson, A.M.; Strahan, S.; Wang, Y.; Froidevaux, L.; et al. Validation of SAGE III/ISS solar occultation ozone products with correlative satellite and ground based measurements. J. Geophys. Res. Atmos. 2020, 125, e2020JD032430. [Google Scholar] [CrossRef]
- Wrana, F.; von Savigny, C.; Zalach, J.; Thomason, L.W. Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths. Atmos. Meas. Tech. 2021, 14, 2345–2357. [Google Scholar] [CrossRef]
- Kremser, S.; Thomason, L.W.; von Hobe, M.; Hermann, M.; Deshler, T.; Timmrech, C.; Toohey, M.; Stenke, A.; Schwarz, J.P.; Weigel, R.; et al. Stratospheric aerosol – Observations, processes, and impact on climate. Rev. Geophys. 2016, 54, 278–335. [Google Scholar] [CrossRef]
- Chen, Z.; Bhartia, P.K.; Loughman, R.; Colarco, P.; DeLand, M. Improvement of stratospheric aerosol extinction retrieval from OMPS/LP using a new aerosol model. Atmos. Meas. Tech. 2018, 11, 6495–6509. [Google Scholar] [CrossRef] [Green Version]
- Deshler, T.; Johnson, B.J.; Rozier, W.R. Balloon-borne measurements of the Pinatubo aerosol during 1991 and 1992 at 41∘ N: Vertical profiles, size distribution, and volatility. Geophys. Res. Lett. 1993, 20, 1435–1438. [Google Scholar] [CrossRef] [Green Version]
- Pueschel, R.F.; Russell, P.B.; Allen, D.A.; Ferry, G.V.; Snetsinger, K.G.; Livingston, J.M.; Verma, S. Physical and optical properties of the Pinatubo volcanic aerosol: Aircraft observations with impactors and a Sun-tracking photometer. J. Geophys. Res. 1994, 99, 12915–12922. [Google Scholar] [CrossRef]
- Malinina, E.; Rozanov, A.; Rozanov, V.; Liebing, P.; Bovensmann, H.; Burrows, J.P. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements. Atmos. Meas. Tech. 2018, 11, 2085–2100. [Google Scholar] [CrossRef]
- Yamamoto, G.; Tanaka, M. Determination of aerosol size distribution from spectral attenuation measurements. Appl. Opt. 1969, 8, 447–453. [Google Scholar] [CrossRef]
- King, M.D.; Byrne, D.M.; Herman, B.M.; Reagan, J.A. Aerosol Size Distributions Obtained by Inversion of Spectral Optical Depth Measurements. J. Atmos. Sci. 1978, 35, 2153–2167. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessment of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Ridley, D.A.; Solomon, S.; Barnes, J.E.; Burlakov, V.D.; Deshler, T.; Dolgil, S.I.; Herber, A.B.; Nagai, T.; Neely, R.R., III; Nevzorov, A.V.; et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 2014, 41, 7763–7769. [Google Scholar] [CrossRef] [Green Version]
- Momoi, M.; Kudo, R.; Aoki, K.; Mori, T.; Miura, K.; Okamoto, H.; Irie, H.; Shoji, Y.; Uchiyama, A.; Ijima, O.; et al. Development of on-site calibration and retrieval methods for sky-radiometer observations of precipitable water vapor. Atmos. Meas. Tech. 2020, 13, 2635–2658. [Google Scholar] [CrossRef]
- Kudo, R.; Nishizawa, T.; Aoyagi, T. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements. Atmos. Meas. Tech. 2016, 9, 3223–3243. [Google Scholar] [CrossRef] [Green Version]
- Jorge, H.G.; Ogren, J.A. Sensitivity of Retrieved Aerosol Properties to Assumptions in the Inversion of Spectral Optical Depths. J. Atmos. Sci. 1996, 53, 3669–3683. [Google Scholar] [CrossRef]
- Deshler, T.; Hervig, M.E.; Hofmann, D.I.; Rosen, J.M.; Liley, J.B. Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41∘ N), using balloon-borne instruments. J. Geophys. Res. 2003, 108, 4167. [Google Scholar] [CrossRef]
- Poli, P.; Shapiro, N.M. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha’apai Explosion From Teleseismic Waves. Geophys. Res. Lett. 2022, 49, e2022GL098123. [Google Scholar] [CrossRef]
- Yuen, D.A.; Scruggs, M.A.; Spera, F.J.; Zheng, Y.; Hu, H.; McNutt, S.R.; Thompson, G.; Mandli, K.; Keller, B.R.; Wei, S.S.; et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightening, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthq. Res. Adv. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of climate forcings. J. Geophys. Res. Atmos. 2005, 110, D18104. [Google Scholar] [CrossRef]
- Stenchikov, G.L.; Kirchner, I.; Robock, A.; Graf, H.-F.; Antuña Grainger, R.G.; Lambert, A.; Thomason, L. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. 1998, 103, 13837–13857. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Nazarenko, L.; Ruedy, R.; Lacis, A.; Koch, D.; Tegen, I.; Hall, T.; Shindell, D.; Santer, B.; et al. Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res. 2002, 107, ACL 2-1–ACL 2-37. [Google Scholar] [CrossRef]
- Robock, A.; Mao, J. The volcanic signal in surface temperature observations. J. Clim. 1995, 8, 1086–1103. [Google Scholar] [CrossRef]
- Minnis, P.; Harrison, E.F.; Stowe, L.L.; Gibson, G.G.; Denn, F.M.; Doelling, D.R.; Smith, W.L., Jr. Radiative Climate Forcing by the Mount Pinatubo Eruption. Science 1993, 259, 1411–1415. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Wang, J.; Park, S.; Zeng, J.; Ge, C.; Yang, K.; Carn, S.; Kritkov, N.; Omar, A.H. Modeling of 2008 Kasatochi volcanic sulfate radiative forcing: Assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations. Atmos. Chem. Phys. 2013, 12, 1895–1912. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, P.; Belhadji, R.; Kloss, C.; Legras, B. Radiative impacts of the Australian bushfires 2019–2020—Part 1: Large-scale radiative forcing. Atmos. Chem. Phys. 2022, 22, 9299–9311. [Google Scholar] [CrossRef]
- Krueger, A.; Kritkov, N.; Carn, S. El Chichon: The genesis of volcanic sulfur dioxide monitoring from space. J. Volcanol. Geotherm. Res. 2008, 175, 408–414. [Google Scholar] [CrossRef]
- Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 1992, 19, 151–154. [Google Scholar] [CrossRef]
- Carn, S.A.; Krueger, A.J.; Arellano, S.; Krotkov, N.A.; Yang, K. Daily monitoring of Ecuadorian volcanic degassing from space. Journal of Volcanology and Geothermal Research 2008, 176, 141–150. [Google Scholar] [CrossRef]
- Sato, M.; Hansen, J.E.; McCormick, M.P.; Pollack, J.B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 1993, 98, 22987–22994. [Google Scholar] [CrossRef]
- Ammann, C.A.; Meehl, G.A.; Washington, W. A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett. 2003, 30, 1657. [Google Scholar] [CrossRef] [Green Version]
- Günther, A.; Höpfner, M.; Sinnhuber, B.-M.; Griessbach, S.; Deshler, T.; von Clarmann, T.; Stiller, G. MIPAS Observations of Volcanic Sulfate Aerosol and Sulfur Dioxide in the Stratosphere. Atmos. Chem. Phys. 2018, 18, 1217–1239. [Google Scholar] [CrossRef] [Green Version]
- Haywood, J.M.; Jones, A.; Clarisse, L.; Bourassa, A.; Barnes, J.; Telford, P.; Bellouin, N.; Boucher, O.; Agnew, P.; Clerbaux, C.; et al. Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model. J. Geophys. Res. Atmos. 2010, 115, D21212. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Textor, C.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Dentener, F.; Guibert, S.; et al. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys. 2006, 6, 5225–5246. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Wang, J.; Carn, S.; Yang, K.; Ginoux, P.; Krotkov, N. Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012. J. Geophys. Res. Atmos. 2016, 121, 3446–3464. [Google Scholar] [CrossRef] [Green Version]
- Clarisse, L.; Hurtmans, D.; Clerbaux, C.; Hadji-Lazaro, J.; Ngadi, Y.; Coheur, P.-F. Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI). Atmos. Meas. Tech. 2012, 5, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Sawamura, P.; Vernier, J.-P.; Barnes, J.E.; Berkoff, T.A.; Welton, E.J.; Alados-Arboledas, L.; Navas-Guzmán, F.; Pappalardo, G.; Mona, L.; Madonna, F.; et al. Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over Northern Hemisphere. Environ. Res. Lett. 2012, 7, 034013. [Google Scholar] [CrossRef]
Model | Type | N/N | r | r | Simulated | Retrieved | |||
---|---|---|---|---|---|---|---|---|---|
(m) | (m) | R | R | R | |||||
(m) | (m) | (m) | |||||||
A | Monomodal | 1.00 | 0.07 | – | 1.86 | – | 0.19 | 0.22 | 0.21 |
(N = N) | |||||||||
B | Monomodal | 1.00 | 0.09 | – | 1.80 | – | 0.21 | 0.23 | 0.21 |
(N = N) | |||||||||
C | Bimodal | 1.76 | 0.11 | 0.43 | 1.67 | 1.36 | 0.50 | 0.49 | 0.53 |
D | Bimodal | 1.41 | 0.11 | 0.30 | 1.43 | 1.48 | 0.40 | 0.39 | 0.38 |
E | Bimodal | 0.98 | 0.13 | 0.56 | 1.58 | 1.26 | 0.61 | 0.62 | 0.64 |
F | Bimodal | 0.76 | 0.09 | 0.39 | 1.41 | 1.30 | 0.45 | 0.44 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhavan, B.L.; Kudo, R.; Ratnam, M.V.; Kloss, C.; Berthet, G.; Sellitto, P. Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations. Remote Sens. 2023, 15, 29. https://doi.org/10.3390/rs15010029
Madhavan BL, Kudo R, Ratnam MV, Kloss C, Berthet G, Sellitto P. Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations. Remote Sensing. 2023; 15(1):29. https://doi.org/10.3390/rs15010029
Chicago/Turabian StyleMadhavan, Bomidi Lakshmi, Rei Kudo, Madineni Venkat Ratnam, Corinna Kloss, Gwenaël Berthet, and Pasquale Sellitto. 2023. "Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations" Remote Sensing 15, no. 1: 29. https://doi.org/10.3390/rs15010029
APA StyleMadhavan, B. L., Kudo, R., Ratnam, M. V., Kloss, C., Berthet, G., & Sellitto, P. (2023). Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations. Remote Sensing, 15(1), 29. https://doi.org/10.3390/rs15010029