Impact of SO2 Flux Estimation in the Modeling of the Plume of Mount Etna Christmas 2018 Eruption and Comparison against Multiple Satellite Sensors
Abstract
:1. Introduction
2. Case Study: The Mount Etna Christmas 2018 Eruption
3. Observations
3.1. SO2 Flux Estimation of the Eruption
- The ground-based network FLAME (FLux Automatic Measurement) is composed of 9 DOAS spectrometers measuring SO in ultraviolet bands (UV) [23]. This network is managed at the observatory of Mount Etna (INGV). The nine spectrometers are located all around the volcano, on its flank (altitude around 900 m a.s.l.), and are spaced from one another by about 7 km (Figure 1 from [11]). Each instrument scans the sky for about 9 h and crosses the volcanic plume at a distance of 14 km from the craters. The complete scan with all the instruments provides a UV spectrum each 5 min, almost in real-time. Then, the transmitted spectra are analyzed using the DOAS technique with a clear sky standard spectrum. From these data, SO emissions fluxes are calculated. The uncertainty associated with those data are estimated between −22% and +36% [11]. The estimates of SO emission flux from FLAME are available a few hours per day with a frequency from 5 to 15 min from 24th December at 8:10 UTC to 30th December at 12:41 UTC.
- SEVIRI (Spinning Enhanced Visible and Infrared Imager) is a spaceborne instrument onboard the geostationary satellite MSG (Meteosat Second Generation). It measures SO in infrared bands and has a spatial resolution of 3 km × 3 km at nadir. The instrument has two temporal resolutions depending on the scanning mode: 5 min in a small area over Europe and North Africa (rapid scan) and 15 min for the entire hemisphere (full disk). SO emission flux is calculated using the wind speed simulated by the hydro-meteorological model of ARPA (Agenzia Regional per la Protezione Ambientale) interpolated at the plume height and the SO quantity retrieved at each pixel of SEVIRI using the VPR (Volcanic Plume Retrieval) procedure (more details in [11,12]). The uncertainty associated with those data is estimated at 45% [12]. Note that the effect of the ash is to absorb overall the TIR spectral range, then also in the channels used for the SO retrievals (8.7 microns). Even if the algorithm is designed to correct for this effect, an overestimation of the SO retrieved is still possible. The estimation of SO emission flux from SEVIRI is available from 24th December at 10:49 UTC to 30th December at 14:57 UTC each 15 min, except on the 25th. It has been validated by using many different observations collected from several polar satellite sensors such as MODIS, VIIRS, TROPOMI, IASI, and AIRS [12]. The plume height estimation is obtained by using the “dark pixel” method [24]. This method is based on the comparison between the minimal brightness temperature at 10.8 m of a fixed pixel located over Mount Etna’s summit crater and the vertical profile of temperature measured in the same area and at the same time. Due to the relatively small thickness of the volcanic plume, the “dark pixel” method could only be used on 24th December when the plume top was the highest.
- From 25th to 30th December, the volcanic plume height was retrieved using a ground-based network of visible cameras. There are two stations: one in Catania on the south flank of the volcano and another in Bronte on the west flank. By knowing the wind speed and direction, it is possible to retrieve the plume height on the camera’s recorded footage [11]. The uncertainty associated with those data is estimated at ±500 m [25].
3.2. SO2 Plume Concentrations
- The SO concentration columns retrieved by the instrument TROPOMI (TROPOspheric Monitoring Instrument) onboard the Sentinel-5 Precursor [26] are available since 2018. The spatial resolution of the instrument is 3.5 × 7.2 km for this study. After the first measurement period, during 2019, its spatial resolution was improved to 3.5 × 5.5 km at nadir. Its temporal resolution over the Mediterranean region is of one or two overflies per day (around from 11 to 12 UTC). Sulfur dioxide is measured by TROPOMI in the UV band. In this work, we use two datasets. The first one, named TROPOMI_OP, corresponds to the operational product [27], which uses a retrieval algorithm based on the DOAS method (Differential Optical Absorption Spectroscopy). The uncertainty associated with those data is estimated at 35% [26]. Here, we use the SO column interpolated at 5 km altitude from the 1 km and 7 km products. The 5 km altitude is chosen because it corresponds of the mean altitude over the whole eruption period. The second one, named TROPOMI_MPIC, is a personal communication from the Max Planck Institute for Chemistry (MPIC), which corresponds to a similar algorithm as the operational one but is based on [28] and was used as the verification algorithm for TROPOMI [27]. As for TROPOMI_OP, the SO column retrieval assumes a plume altitude of 5 km. The uncertainty associated with the TROPOMI_MPIC product is also estimated at 35%. Both TROPOMI_OP and TROPOMI_MPIC algorithms are optimized for the analysis of strong and variable volcanic plumes. In particular, they use a combination of different fit windows depending on the strength of the SO absorption. However, the exact choices of the wavelength ranges and the transition thresholds are different. Depending on the specific properties of the Etna plume (e.g., the SO column and the plume altitude), one of the two algorithms might be better suited, and the inclusion of both algorithms in the comparison better covers the possible range of retrieval results.The small differences in the analysis settings between TROPOMI_OP and TROPOMI_MPIC are detailed in Appendix A.
- The total SO columns retrieved using the OMI (Ozone Monitoring Instrument) instrument onboard the Aura [29,30] satellite have been available since 2004. Their spatial resolution is 13 × 24 km at nadir and their temporal resolution over the Mediterranean region is of one or two overflies per day (around from 11 to 12 UTC). Similar to TROPOMI, sulfur dioxide is measured in the UV band. The uncertainty associated with those data is estimated at 30% [31]. The retrieval algorithm is based on a different method than the one used for TROPOMI’s products; the PCA method is used instead (Principal Component Analysis) [29].
- The total columns of SO retrieved using the IASI instrument (Infrared Atmospheric Sounding Interferometer) onboard Metop-A and Metop-B [13,32] have been available since 2006 and 2012, respectively. The spatial resolution of the instrument is a circle of 12 km diameter at nadir and its temporal resolution over the Mediterranean region is about four overflies a day (two around from 08 to 09 UTC and two around from 19 to 21 UTC). Unlike TROPOMI and OMI, sulfur dioxide is measured in the IR band, which means that it is sensible up to the pole. However, the sensitivity below 5 km altitude is strongly reduced. The uncertainty associated with those data is estimated at 50% [13].
4. Model and Simulation Description
4.1. MOCAGE Chemistry-Transport Model
4.2. Description of the Simulations
5. Results
5.1. 26th December
5.2. 27th December
5.3. 28th December
5.4. 29th December
5.5. 30th December
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Properties of the TROPOMI_MPIC Algorithm and Comparison with the TROPOMI_OP Algorithm
TROPOMI_OP | TROPOMI_MPIC | |||
---|---|---|---|---|
wavelength (nm) | DU threshold | wavelength | DU threshold | |
w1 | 312–326 | SCD < 15 | 312–324 | SCD < 11.5 |
transition w1/2 | - | - | interpolation | 11.5 < SCD < 30 |
w2 | 325–335 | 15 < SCD < 250 | 318.6–335.1 | 30 < SCD < 30 |
transition w2/3 | - | - | interpolation | 75 < SCD < 171 |
w3 | 360–390 | 250 < SCD | 323–335.1 | 171 < SCD |
References
- Lamotte, C.; Guth, J.; Marécal, V.; Cussac, M.; Hamer, P.D.; Theys, N.; Schneider, P. Modeling study of the impact of SO2 volcanic passive emissions on the tropospheric sulfur budget. Atmos. Chem. Phys. 2021, 21, 11379–11404. [Google Scholar] [CrossRef]
- Azzopardi, F.; Ellul, R.; Prestifilippo, M.; Scollo, S.; Coltelli, M. The effect of Etna volcanic ash clouds on the Maltese Islands. J. Volcanol. Geotherm. Res. 2013, 260, 13–26. [Google Scholar] [CrossRef]
- Schmidt, A.; Leadbetter, S.; Theys, N.; Carboni, E.; Witham, C.S.; Stevenson, J.A.; Birch, C.E.; Thordarson, T.; Turnock, S.; Barsotti, S.; et al. Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). J. Geophys. Res. 2015, 120, 9739–9757. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, P.; Zanetel, C.; di Sarra, A.; Salerno, G.; Tapparo, A.; Meloni, D.; Pace, G.; Caltabiano, T.; Briole, P.; Legras, B. The impact of Mount Etna sulfur emissions on the atmospheric composition and aerosol properties in the central Mediterranean: A statistical analysis over the period 2000–2013 based on observations and Lagrangian modelling. Atmos. Environ. 2016, 148, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Boichu, M.; Chiapello, I.; Brogniez, C.; Péré, J.C.; Thieuleux, F.; Torres, B.; Blarel, L.; Mortier, A.; Podvin, T.; Goloub, P.; et al. Current challenges in modelling far-range air pollution induced by the 2014–2015 Bárðarbunga fissure eruption (Iceland). Atmos. Chem. Phys. 2016, 16, 10831–10845. [Google Scholar] [CrossRef] [Green Version]
- Boichu, M.; Favez, O.; Riffault, V.; Petit, J.E.; Zhang, Y.; Brogniez, C.; Sciare, J.; Chiapello, I.; Clarisse, L.; Zhang, S.; et al. Large-scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the 2014–2015 Holuhraun flood lava eruption of Bárðarbunga volcano (Iceland). Atmos. Chem. Phys. 2019, 19, 14253–14287. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Tong, D.Q.; Yang, K.; Lee, P.; Baker, B.; Crawford, A.; Luke, W.; Stein, A.; Campbell, P.C.; Ring, A.; et al. Air quality impacts of the 2018 Mt. Kilauea Volcano eruption in Hawaii: A regional chemical transport model study with satellite-constrained emissions. Atmos. Environ. 2020, 237, 117648. [Google Scholar] [CrossRef]
- Eckhardt, S.; Prata, A.J.; Seibert, P.; Stebel, K.; Stohl, A. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling. Atmos. Chem. Phys. 2008, 8, 3881–3897. [Google Scholar] [CrossRef] [Green Version]
- Fioletov, V.E.; McLinden, C.A.; Krotkov, N.; Li, C.; Joiner, J.; Theys, N.; Carn, S.; Moran, M.D. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2016, 16, 11497–11519. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Henze, D.; Li, C.; Theys, N.; Wang, Y.; Wang, J.; Wang, W.; Han, J.; Shim, C.; Dickerson, R.; et al. SO2 Emission Estimates Using OMI SO2 Retrievals for 2005–2017. J. Geophys. Res. Atmos. 2019, 124, 8336–8359. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near Real-Time Monitoring of the Christmas 2018 Etna Eruption Using SEVIRI and Products Validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Brenot, H.; Clarisse, L.; Merucci, L.; Pardini, F.; Prat, A.J.; Realmuto, V.J.; Stelitano, D.; Theys, N. Tropospheric Volcanic SO2 Mass and Flux Retrievals from Satellite. The Etna December 2018 Eruption. Remote Sens. 2021, 13, 2225. [Google Scholar] [CrossRef]
- Clarisse, L.; Hurtmans, D.; Clerbaux, C.; Hadji-Lazaro, J.; Ngadi, Y.; Coheur, P.F. Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI). Atmos. Meas. Tech. 2012, 5, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Rizza, U.; Brega, E.; Caccamo, M.T.; Castorina, G.; Morichetti, M.; Munaò, G.; Passerini, G.; Magazù, S. Analysis of the ETNA 2015 Eruption Using WRF–Chem Model and Satellite Observations. Atmosphere 2020, 11, 1168. [Google Scholar] [CrossRef]
- Boichu, M.; Menut, L.; Khvorostyanov, D.; Clarisse, L.; Clerbaux, C.; Turquety, S.; Coheur, P.F. Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: The 2010 Eyjafjallajökull eruption case study. Atmos. Chem. Phys. 2013, 13, 8569–8584. [Google Scholar] [CrossRef] [Green Version]
- Boichu, M.; Clarisse, L.; Péré, J.C.; Herbin, H.; Goloub, P.; Thieuleux, F.; Ducos, F.; Clerbaux, C.; Tanré, D. Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: Implications for long-range dispersal of volcanic clouds. Atmos. Chem. Phys. 2015, 15, 8381–8400. [Google Scholar] [CrossRef] [Green Version]
- Carn, S.; Fioletov, V.; McLinden, C.; Li, C.; Krotkov, N. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, 44095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laiolo, M.; Ripepe, M.; Cigolini, C.; Coppola, D.; Della Schiava, M.; Genco, R.; Innocenti, L.; Lacanna, G.; Marchetti, E.; Massimetti, F. Space- and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano. Remote Sens. 2019, 11, 1182. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E. The VEI 2 Christmas 2018 Etna Eruption: A small but intense eruptive event or the starting phase of a larger one? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Borzi, A.M.; Giuffrida, M.; Zuccarello, F.; Palano, M.; Viccaro, M. The Christmas 2018 Eruption at Mount Etna: Enlightening How the Volcano Factory Works Through a Multiparametric Inspection. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009226. [Google Scholar] [CrossRef]
- Paonita, A.; Liuzzo, M.; Salerno, G.; Federico, C.; Bonfanti, P.; Caracausi, A.; Giuffrida, G.; Spina, A.L.; Caltabiano, T.; Gurrieri, S.; et al. Intense overpressurization at basaltic open-conduit volcanoes as inferred by geochemical signals: The case of the Mt. Etna December 2018 eruption. Sci. Adv. 2021, 7, eabg6297. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Lombardo, V.; Merucci, L.; Musacchio, M.; Prestifilippo, M.; Scollo, S.; Silvestri, M.; Spata, G.; Stelitano, D. Proximal Monitoring of the 2011–2015 Etna Lava Fountains Using MSG-SEVIRI Data. Geosciences 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Salerno, G.; Burton, M.; Oppenheimer, C.; Caltabiano, T.; Randazzo, D.; Bruno, N. Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses and uncertainties in flux retrieval. J. Volcanol. Geotherm. Res. 2009, 183, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J.; Grant, I.F. Retrieval and morphological properties of volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Eruption column height estimation of the 2011–2013 Etna laval fountains. Annu. Geophys. 2014, 57. [Google Scholar] [CrossRef] [Green Version]
- Theys, N.; Hedelt, P.; De Smedt, I.; Lerot, C.; Yu, H.; Vlietinck, J.; Pedergnana, M.; Arellano, S.; Galle, B.; Fernandez, D.; et al. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci. Rep. 2019, 9, 2643. [Google Scholar] [CrossRef] [Green Version]
- Theys, N.; De Smedt, I.; Yu, H.; Danckaert, T.; van Gent, J.; Hörmann, C.; Hedelt, P.; Wagner, T.; Bauer, H.; Lerot, C.; et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Hörmann, C.; Sihler, H.; Bobrowski, N.; Beirle, S.; Penning de Vries, M.; Platt, U.; Wagner, T. Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument. Atmos. Chem. Phys. 2013, 13, 4749–4781. [Google Scholar] [CrossRef]
- Li, C.; Joiner, J.; Krotkov, N.; Bhartia, P. A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument. Geophys. Res. Lett. 2013, 40, 6314–6318. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Krotkov, N.A.; Leonard, P.; Joiner, J. OMI/Aura Sulphur Dioxide (SO2) Total Column 1-Orbit L2 Swath 13 × 24 km V003. 2020. Available online: https://disc.gsfc.nasa.gov/datasets/OMSO2_003/summary (accessed on 1 February 2020).
- Krueger, A.; Krotkov, N.; Datta, S.; Flittner, D.; Dubovik, O. OMI Algorrithm Theoretical Basis Document: SO2; ATBD-OMI-02; Smithsonian Astrophysical Observatory: Cambridge, MA, USA, 2002; Volume 4, Chapter 4; pp. 49–59. [Google Scholar]
- Clarisse, L. Daily IASI/Metop-A ULB-LATMOS Sulphur Dioxide (SO2) L2 Product (Columns and Altitude). 2019. Available online: https://en.aeris-data.fr/landing-page/?uuid=2aa161be-a188-477b-8d83-71c08e533767 (accessed on 1 August 2021).
- Josse, B.; Simon, P.; Peuch, V. Radon global simulations with the multiscale chemistry and transport model MOCAGE. Tellus B Chem. Phys. Meteorol. 2004, 56, 339–356. [Google Scholar] [CrossRef]
- Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model Dev. 2016, 9, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Lacressonnière, G.; Peuch, V.H.; Vautard, R.; Arteta, J.; Déqué, M.; Joly, M.; Josse, B.; Marécal, V.; Saint-Martin, D. European air quality in the 2030s and 2050s: Impacts of global and regional emission trends and of climate change. Atmos. Environ. 2014, 92, 348–358. [Google Scholar] [CrossRef]
- Lachatre, M.; Mailler, S.; Menut, L.; Turquety, S.; Sellitto, P.; Guermazi, H.; Salerno, G.; Caltabiano, T.; Carboni, E. New strategies for vertical transport in chemistry transport models: Application to the case of the Mount Etna eruption on 18 March 2012 with CHIMERE v2017r4. Geosci. Model Dev. 2020, 13, 5707–5723. [Google Scholar] [CrossRef]
- Lacressonnière, G.; Watson, L.; Gauss, M.; Engardt, M.; Andersson, C.; Beekmann, M.; Colette, A.; Foret, G.; Josse, B.; Marécal, V.; et al. Particulate matter air pollution in Europe in a +2 C warming world. Atmos. Environ. 2017, 154, 129–140. [Google Scholar] [CrossRef]
- Lamarque, J.F.; Shindell, D.; Josse, B.; Young, P.; Cionni, I.; Eyring, V.; Bergmann, D.; Cameron-Smith, P.; Collins, W.; Doherty, R.; et al. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev. 2013, 6, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Cussac, M.; Marécal, V.; Thouret, V.; Josse, B.; Sauvage, B. The impact of biomass burning on upper tropospheric carbon monoxide: A study using MOCAGE global model and IAGOS airborne data. Atmos. Chem. Phys. 2020, 20, 9393–9417. [Google Scholar] [CrossRef]
- Rouil, L.; Honoré, C.; Bessagnet, B.; Malherbe, L.; Meleux, F.; Vautard, R.; Beekmann, M.; Flaud, J.M.; Dufour, A.; Martin, D.; et al. PREV’AIR: An operational forecasting and mapping system for air quality in Europe. Bull. Am. Meteorol. Soc. 2009, 90, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Marécal, V.; Peuch, V.H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Penner, J.; Prather, M. NOx from lightning: 1. global distribution based on lightning physics. J. Geophys. Res. Atmos. 1997, 102, 5929–5941. [Google Scholar] [CrossRef] [Green Version]
- Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 1997, 102, 25847–25879. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, F.; Brasseur, P.; Folkins, I.; Smith, A.K.; Simon, P. Chemistry of the 1991–1992 stratospheric winter: Three-dimensional simulations. J. Geophys. Res. 1994, 99, 8183–8195. [Google Scholar] [CrossRef]
- Martet, M.; Peuch, V.; Laurent, B.; Marticorona, B.; Bergametti, G. Evaluation of long-range transport and deposition of desert dust with the CTM MOCAGE. Tellus B 2009, 61, 449–463. [Google Scholar] [CrossRef]
- Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. Modelling of primary aerosols in the chemical transport model MOCAGE: Development and evaluation of aerosol physical parametrizations. Geosci. Model Dev. 2015, 8, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Descheemaecker, M.; Plu, M.; Marécal, V.; Claeyman, M.; Olivier, F.; Aoun, Y.; Blanc, P.; Wald, L.; Guth, J.; Sič, B.; et al. Monitoring aerosols over Europe: An assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager. Atmos. Meas. Tech. 2019, 12, 1251–1275. [Google Scholar] [CrossRef] [Green Version]
- Nenes, A.; Pilinis, C.; Pandis, N. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for inorganic aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.M.; Pio, C.; Harrison, R.M.; Smith, D. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 27771–27781. [Google Scholar] [CrossRef]
- Williamson, D.L.; Rasch, P.J. Two dimensional semi-lagrangian transport with shape-preserving interpolation. Mon. Weather Rev. 1989, 117, 102–129. [Google Scholar] [CrossRef]
- Bechtold, P.; Bazile, E.; Guichard, F.; Mascart, P.; Richard, E. A mass-flux convection scheme for regional and global models. Q. J. R. Meteorol. Soc. 2001, 127, 869–886. [Google Scholar] [CrossRef]
- Louis, J.F. A parametric model of vertical eddy fluxes in the atmopshere. Bound. Layer Meteorol. 1979, 17, 187–202. [Google Scholar] [CrossRef]
- Courtier, P.; Freydier, C.; Geleyn, J.F.; Rabier, F.; Rochas, M. The ARPEGE project at Météo-France. In Proceedings of the ECMWF Workshop—Seminar on Numerical Methods in Atmospheric Models, Reading, UK, 9–13 September 1991. [Google Scholar]
- Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.F.; Kuhn, U.; Stefani, P.; Knorr, W. Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014, 14, 9317–9341. [Google Scholar] [CrossRef] [Green Version]
- Kettle, A.; Andreae, M.O.; Amouroux, D.; Andreae, T.W.; Bates, T.S.; Berresheim, H.; Bingemer, H.; Boniforti, R.; Curran, M.; DiTullio, G.R.; et al. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Glob. Biogeochem. Cycles 1999, 13, 399–444. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, J. Tropospheric SO2 and NO2 in 2012–2018: Contrasting views of two sensors (OMI and OMPS) from space. Atmos. Environ. 2020, 223, 117214. [Google Scholar] [CrossRef]
- Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.F.; Van Roozendael, M.; et al. Volcanic SO2 fluxes derived from satellite data: A survey using OMI, GOME-2, IASI and MODIS. Atmos. Chem. Phys. 2013, 13, 5945–5968. [Google Scholar] [CrossRef] [Green Version]
- Hedelt, P.; Efremenko, D.; Loyola, D.; Spurr, R.; Clarisse, L. Sulfur dioxide layer height retrieval from Sentinel-5 Precursor/TROPOMI using FP_ILM. Atmos. Meas. Tech. 2019, 12, 5503–5517. [Google Scholar] [CrossRef] [Green Version]
- Rizza, U.; Donnadieu, F.; Magazu, S.; Passerini, G.; Castorina, G.; Semprebello, A.; Morichetti, M.; Virgili, S.; Mancinelli, E. Effects of Variable Eruption Source Parameters on Volcanic Plume Transport: Example of the 23 November 2013 Paroxysm of Etna. Remote Sens. 2021, 13, 4037. [Google Scholar] [CrossRef]
- Eskes, H.J.; Boersma, K.F. Averaging kernels for DOAS total-column satellite retrievals. Atmos. Chem. Phys. 2003, 3, 1285–1291. [Google Scholar] [CrossRef] [Green Version]
- Inness, A.; Ades, M.; Balis, D.; Efremenko, D.; Flemming, J.; Hedelt, P.; Koukouli, M.E.; Loyola, D.; Ribas, R. Evaluating the assimilation of S5P/TROPOMI near real-time SO2 columns and layer height data into the CAMS integrated forecasting system (CY47R1), based on a case study of the 2019 Raikoke eruption. Geosci. Model Dev. 2022, 15, 971–994. [Google Scholar] [CrossRef]
- Warnach, S. Bromine Monoxide in Volcanic Plumes—A Global Survey of Volcanic Plume Composition and Chemistry Derived from Sentinel-5 Precursor/TROPOMI Data. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Deutschmann, T.; Beirle, S.; Frieÿ, U.; Grzegorski, M.; Kern, C.; Kritten, L.; Platt, U.; Prados-Román, C.; Pukite, J.; Wagner, T.; et al. The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1119–1137. [Google Scholar] [CrossRef]
Day | Plume Height—FL | Plume Height—SV |
---|---|---|
24 | 8.0, 5.0 after 13:00 UTC | 8.0, 5.0 after 12:00 UTC |
25 | 4.0 | 4.0 |
26 | 4.0 | 4.0 |
27 | 4.5 | 4.5 |
28 | 5.5 | 5.5 |
29 | 4.5 | 4.5 |
30 | 4.5 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamotte, C.; Marécal, V.; Guth, J.; Salerno, G.; Corradini, S.; Theys, N.; Warnach, S.; Guerrieri, L.; Brenot, H.; Wagner, T.; et al. Impact of SO2 Flux Estimation in the Modeling of the Plume of Mount Etna Christmas 2018 Eruption and Comparison against Multiple Satellite Sensors. Remote Sens. 2023, 15, 758. https://doi.org/10.3390/rs15030758
Lamotte C, Marécal V, Guth J, Salerno G, Corradini S, Theys N, Warnach S, Guerrieri L, Brenot H, Wagner T, et al. Impact of SO2 Flux Estimation in the Modeling of the Plume of Mount Etna Christmas 2018 Eruption and Comparison against Multiple Satellite Sensors. Remote Sensing. 2023; 15(3):758. https://doi.org/10.3390/rs15030758
Chicago/Turabian StyleLamotte, Claire, Virginie Marécal, Jonathan Guth, Giuseppe Salerno, Stefano Corradini, Nicolas Theys, Simon Warnach, Lorenzo Guerrieri, Hugues Brenot, Thomas Wagner, and et al. 2023. "Impact of SO2 Flux Estimation in the Modeling of the Plume of Mount Etna Christmas 2018 Eruption and Comparison against Multiple Satellite Sensors" Remote Sensing 15, no. 3: 758. https://doi.org/10.3390/rs15030758
APA StyleLamotte, C., Marécal, V., Guth, J., Salerno, G., Corradini, S., Theys, N., Warnach, S., Guerrieri, L., Brenot, H., Wagner, T., & Bacles, M. (2023). Impact of SO2 Flux Estimation in the Modeling of the Plume of Mount Etna Christmas 2018 Eruption and Comparison against Multiple Satellite Sensors. Remote Sensing, 15(3), 758. https://doi.org/10.3390/rs15030758