Revealing a Shift in Solar Photovoltaic Planning Sites in Vietnam from 2019 to 2022
Abstract
:1. Introduction
2. Methodology
2.1. Flow Chart of the Study
2.2. Study Area
2.3. Input Data
2.4. Training, Validation, and Test Data Preparation
2.5. Solar PV Panel Detection Model and Accuracy Evaluation Metrics
2.6. Creating Solar PV Maps using Satellite Data from 2019 to 2022
2.7. Post-Processing the PV Panel Detection Results and the Built-Year Estimation of the PV Sites
2.8. LULC Change Analysis after PV Installation
2.9. Analysis of the Factors behind the Rapid Installation of PV Sites
3. Results
3.1. PV Detection Results
3.2. LULC Changes due to PV Site Installation
3.3. The Trend in PV Panel Installation and Site Selection in Vietnam
4. Discussion
4.1. Performance of PV Site Detection
4.2. Shift in the Distribution of the PV Sites
4.3. The Relationship between the Solar PV Site Installation and the Energy Grid
4.4. Implications for the Future Use of Solar Power in Vietnam
4.5. Limitations, Uncertainties, and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Global Goals. Available online: https://www.globalgoals.org/goals/7-affordable-and-clean-energy/ (accessed on 16 December 2022).
- Renewable Electricity. Available online: https://www.iea.org/reports/renewable-electricity (accessed on 16 December 2022).
- Snapshot of Global PV Markets. 2021. Available online: https://iea-pvps.org/wp-content/uploads/2021/04/IEA_PVPS_Snapshot_2021-V3.pdf (accessed on 28 March 2023).
- Tamura, T. Policy of Solar Photovoltaics in Japan 2022. In Proceedings of the 2nd Conference of the Japan Photovoltaic Society, Kanazawa, Japan, 28 June 2022. [Google Scholar]
- Yu, J.; Wang, Z.; Majumdar, A.; Rajagopal, R. DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule 2018, 2, 2605–2617. [Google Scholar] [CrossRef]
- Sota, H.; Takeo, T.; Masato, O.; Yousei, M.; Kenlo, N.N.; Koichi, I.; Naoyoshi, H.; Fumi, O.; Masanori, D.; Tsutomu, Y. Generation of High-Resolution Land Use and Land Cover Maps in Japan Version 21.11. J. Remote Sens. Soc. Jpn. 2022, 42, 199–216. [Google Scholar]
- Ryosuke, N.; Tomohiro, I.; Kiyokazu, N.; Hidenori, S.; Simo-serra, E.; Yoshihiko, M.; Satoshi, I.; Hiroshi, I. Object Recognition on Earth-Observing Satellite Imagery. In Proceedings of the 30th Annual Conference of the Japanese Society for Artificial Intelligence, Kita-Kyushu, Japan, 6 June 2016. [Google Scholar]
- Costa, M.V.; Carvalho, O.L.; Orlandi, A.G.; Hirata, I.; Albuquerque, A.O.; Silva, F.V.; Guimarães, R.F.; Gomes, R.A.; Júnior, O.A. Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation. Energies 2021, 14, 2960. [Google Scholar] [CrossRef]
- Darapaneni, N.; Jagannathan, A.; Natarajan, V.; Swaminathan, G.V.; Subramanian, S.; Paduri, A.R. Semantic Segmentation of Solar PV Panels and Wind Turbines in Satellite Images Using U-Net. In Proceedings of the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 26 November 2020; pp. 7–12. [Google Scholar]
- Castello, R.; Roquette, S.; Esguerra, M.; Guerra, A.; Scartezzini, J.-L. Deep Learning in the Built Environment: Automatic Detection of Rooftop Solar Panels Using Convolutional Neural Networks. J. Phys. Conf. Ser. 2019, 1343, 012034. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A Global Inventory of Photovoltaic Solar Energy Generating Units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef]
- Li, Q.; Feng, Y.; Leng, Y.; Chen, D. SolarFinder: Automatic Detection of Solar Photovoltaic Arrays. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, NSW, Australia, 21–24 April 2020; pp. 193–204. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, M.; Wang, S.; Huang, Y.; Xie, Z. Mapping Photovoltaic Power Plants in China Using Landsat, Random Forest, and Google Earth Engine. Earth Syst. Sci. Data 2022, 14, 3743–3755. [Google Scholar] [CrossRef]
- Shoki, S.; Wataru, T. Detection and Disaster Risk Evaluation of Solar Photovoltaic Cells in Satellite Remote Sensing Data. J. Remote Sens. Soc. Jpn. 2022, 42, 51–62. [Google Scholar]
- Plakman, V.; Rosier, J.; van Vliet, J. Solar Park Detection from Publicly Available Satellite Imagery. GIsci. Remote Sens. 2022, 59, 461–480. [Google Scholar] [CrossRef]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Ul Din, S.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sens. 2021, 13, 3337. [Google Scholar] [CrossRef]
- Phan, D.C.; Trung, T.H.; Truong, V.T.; Sasagawa, T.; Vu, T.P.T.; Bui, D.T.; Hayashi, M.; Tadono, T.; Nasahara, K.N. First Comprehensive Quantification of Annual Land Use/Cover from 1990 to 2020 across Mainland Vietnam. Sci. Rep. 2021, 11, 9979. [Google Scholar] [CrossRef] [PubMed]
- Mas, J.F.; Flores, J.J. The Application of Artificial Neural Networks to the Analysis of Remotely Sensed Data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Yuan, H.; Van Der Wiele, C.; Khorram, S. An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery. Remote Sens. 2009, 1, 243–265. [Google Scholar] [CrossRef]
- Shimada, S.; Takeuchi, W. A Machine-Learning Based Scheme for Solar PV Detection Using Medium-Resolution Satellite Images in Vietnam. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17 July 2022; pp. 255–258. [Google Scholar]
- Bui, Q.-T.; Chou, T.-Y.; Hoang, T.-V.; Fang, Y.-M.; Mu, C.-Y.; Huang, P.-H.; Pham, V.-D.; Nguyen, Q.-H.; Anh, D.T.N.; Pham, V.-M.; et al. Gradient Boosting Machine and Object-Based CNN for Land Cover Classification. Remote Sens. 2021, 13, 2709. [Google Scholar] [CrossRef]
- Alshari, E.A.; Abdulkareem, M.B.; Gawali, B.W. Classification of Land Use/Land Cover Using Artificial Intelligence (ANN-RF). Front. Artif. Intell. 2023, 5, 964279. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of Land Use and Land Cover Change (LULCC) Using Geospatial Techniques: A Case Study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef]
- Loukika, K.N.; Keesara, V.R.; Sridhar, V. Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability 2021, 13, 13758. [Google Scholar] [CrossRef]
- Kim, C. Land Use Classification and Land Use Change Analysis Using Satellite Images in Lombok Island, Indonesia. For. Sci. Technol. 2016, 12, 183–191. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Hoffacker, M.K.; Murphy-Mariscal, M.L.; Wu, G.C.; Allen, M.F. Solar Energy Development Impacts on Land Cover Change and Protected Areas. Proc. Natl. Acad. Sci. USA 2015, 112, 13579–13584. [Google Scholar] [CrossRef]
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential Is Greatest Over Croplands. Sci. Rep. 2019, 9, 11442. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. Current Site Planning of Medium to Large Solar Power Systems Accelerates the Loss of the Remaining Semi-Natural and Agricultural Habitats. Sci. Total Environ. 2021, 779, 146475. [Google Scholar] [CrossRef] [PubMed]
- Kiesecker, J.; Baruch-Mordo, S.; Heiner, M.; Negandhi, D.; Oakleaf, J.; Kennedy, C.; Chauhan, P. Renewable Energy and Land Use in India: A Vision to Facilitate Sustainable Development. Sustainability 2019, 12, 281. [Google Scholar] [CrossRef]
- Hao, K.; Ialnazov, D.; Yamashiki, Y. GIS Analysis of Solar PV Locations and Disaster Risk Areas in Japan. Front. Sustain. 2021, 2, 815986. [Google Scholar] [CrossRef]
- Tomohiro, T. Damages on Solar Photovoltaics after Natural Hazards. In Proceedings of the The 30th Conference of the Material Cycles and Waste Management Research, Sendai, Japan, 19 September 2019; pp. 13–14. [Google Scholar]
- van de Ven, D.-J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The Potential Land Requirements and Related Land Use Change Emissions of Solar Energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, X.; Xue, F. Impacts of Large Scale and High Voltage Level Photovoltaic Penetration on the Security and Stability of Power System. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–5. [Google Scholar]
- Hou, Q.; Zhang, N.; Du, E.; Miao, M.; Peng, F.; Kang, C. Probabilistic Duck Curve in High PV Penetration Power System: Concept, Modeling, and Empirical Analysis in China. Appl. Energy 2019, 242, 205–215. [Google Scholar] [CrossRef]
- Komiyama, R.; Fujii, Y. Optimal Integration Assessment of Solar PV in Japan’s Electric Power Grid. Renew. Energy 2019, 139, 1012–1028. [Google Scholar] [CrossRef]
- Vietnam’s Solar Power Boom: Policy Implications for Other Asean Member States. Available online: https://www.iseas.edu.sg/articles-commentaries/iseas-perspective/2021-28-vietnams-solar-power-boom-policy-implications-for-other-asean-member-states-by-thang-nam-do-and-paul-j-burke/ (accessed on 16 December 2022).
- World Bank Harnessing the Potential of the Services Sector for Growth. Available online: https://documents1.worldbank.org/curated/en/099544403132351453/pdf/IDU0343e48530e212043860bee605aae66cfb04a.pdf (accessed on 17 March 2023).
- International Trade Administration Vietnam—Country Commercial Guide, Power Generation, Transmission, and Distribution. Available online: https://www.trade.gov/country-commercial-guides/vietnam-power-generation-transmission-and-distribution (accessed on 17 March 2023).
- International Trade Administration, Vietnam Solar Power Sector. Available online: https://www.trade.gov/market-intelligence/vietnam-solar-power-sector (accessed on 18 May 2023).
- Anze, Z. Improving Cloud Detection with Machine Learning. Available online: http://web.archive.org/web/20221130122809/https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (accessed on 12 May 2023).
- Shoki, S.; Wataru, T. A New Spectral Index to Characterize Solar Photovoltaic Panels for Sentinel-2 Data 2022 In Proceedings of the 43rd Asian Conference on Remote Sensing (ACRS2022), Ulaanbaatar, Mongolia, 3–5 October 2022.
- Google Earth Engine Resampling and Reducing Resolution. Available online: https://developers.google.com/earth-engine/guides/resample#resampling (accessed on 12 May 2023).
- Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Dippel, J.; Lenga, M.; Goerttler, T.; Obermayer, K.; Höhne, J. Transfer Learning for Segmentation Problems: Choose the Right Encoder and Skip the Decoder. arXiv 2022, arXiv:2207.14508. [Google Scholar]
- Yakubovskiy, P. Segmentation Models Pytorch. Available online: https://github.com/qubvel/segmentation_models.pytorch (accessed on 9 January 2023).
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proc. Mach. Learn. Res. 2019, 97, 6105–6114. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Annual Land Use and Land Cover Maps across Mainland Vietnam from 1990 to 2020 (Released in September 2021/Version 21.09). Available online: https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc/lulc_vnm_v2109_e.htm (accessed on 21 February 2022).
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A High-Accuracy Map of Global Terrain Elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Global Solar Atlas. Available online: https://globalsolaratlas.info/download/vietnam (accessed on 19 October 2022).
- World Pop. Available online: https://hub.worldpop.org/geodata/summary?id=48780 (accessed on 19 October 2022).
- Open Street Map. Available online: https://www.openstreetmap.org (accessed on 7 January 2023).
- Evnnpt Overview of the National Power Transmission System. Available online: https://web.archive.org/web/20230428074556/https://www.npt.com.vn/c3/en-US/he-thong-truyen-tai-dien (accessed on 28 April 2023).
- Supe, H.; Avtar, R.; Singh, D.; Gupta, A.; Yunus, A.P.; Dou, J.; Ravankar, A.A.; Mohan, G.; Chapagain, S.K.; Sharma, V.; et al. Google Earth Engine for the Detection of Soiling on Photovoltaic Solar Panels in Arid Environments. Remote Sens. 2020, 12, 1466. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Lou, Q.; Xu, X. Achieving a Sustainable Development Process by Deployment of Solar PV Power in Asean: A SWOT Analysis. Processes 2021, 9, 630. [Google Scholar] [CrossRef]
- IEA-PVPS Snapshot of Global PV Markets. 2022. Available online: https://iea-pvps.org/snapshot-reports/snapshot-2022/ (accessed on 24 February 2023).
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger Solar Power Plants Increase Local Temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Marabottini, R.; Massaccesi, L.; Marinari, S. Soil Properties Changes after Seven Years of Ground Mounted Photovoltaic Panels in Central Italy Coastal Area. Geoderma. Reg. 2022, 29, e00500. [Google Scholar] [CrossRef]
- Choi, C.S.; Cagle, A.E.; Macknick, J.; Bloom, D.E.; Caplan, J.S.; Ravi, S. Effects of Revegetation on Soil Physical and Chemical Properties in Solar Photovoltaic Infrastructure. Front. Env. Sci. 2020, 8, 140. [Google Scholar] [CrossRef]
- Solar Energy Development Programmatic EIS Solar Energy Development Environmental Considerations. Available online: http://web.archive.org/web/20230406092904/https://solareis.anl.gov/guide/environment/ (accessed on 12 May 2023).
- Akihiro, N. Examining Structural Causes of Trouble in the Course of Social Acceptance of Photovoltaic Generation for a Better Solution: An Outlook. J. Interdiscip. Res. Community Life 2015, 6, 61–70. [Google Scholar]
- Arderne, C.; Zorn, C.; Nicolas, C.; Koks, E.E. Predictive Mapping of the Global Power System Using Open Data. Sci. Data 2020, 7, 19. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, H.; Chen, J.; Sun, H. Automatic Detection of Power Transmission Series in Full Polarimetric SAR Imagery. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 789–793. [Google Scholar]
- Yang, W.; Xu, G.; Chen, J.; Sun, H. Power Transmission Towers Extraction in Polarimetric SAR Imagery Based on Genetic Algorithm. In Intelligent Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany; pp. 410–420.
- Peng, D.; Zhang, H.; Guo, W.; Yang, W. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory. Sensors 2016, 16, 1862. [Google Scholar] [CrossRef] [PubMed]
Accuracy Metrics | Metrics Values against the Test Dataset |
---|---|
IOU | 0.904 |
F-value | 0.932 |
Accuracy | 0.993 |
Precision | 0.974 |
Recall | 0.925 |
Background Land Cover | Number of Images | IOU Values |
---|---|---|
Barren land | 143 | 0.859 |
Cropland | 87 | 0.848 |
Forest | 79 | 0.972 |
Open water | 129 | 0.971 |
Rice paddies | 54 | 0.847 |
Shrub | 52 | 0.924 |
Estimated Built Year of PV Sites | Transmission Capacity | Share of the Capacity as the Closest Power Line to PV Sites (%) |
---|---|---|
2019 | 220 kV | 71.6 |
500 kV | 16.05 | |
110 kV | 8.64 | |
210 kV | 3.7 | |
2020 | 220 kV | 74.8 |
500 kV | 17.89 | |
110 kV | 4.47 | |
210 kV | 2.85 | |
2021 | 220 kV | 49.16 |
500 kV | 38.25 | |
110 kV | 12.19 | |
210 kV | 0.17 | |
220 kV; 110 kV | 0.11 | |
500 kV; 220 kV | 0.06 | |
230 kV | 0.03 | |
33 kV | 0.03 | |
2022 | 220 kV | 51.71 |
500 kV | 26.2 | |
110 kV | 21.16 | |
210 kV | 0.64 | |
220 kV; 110 kV | 0.16 | |
500 kV; 220 kV | 0.08 | |
33 kV | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, S.; Takeuchi, W. Revealing a Shift in Solar Photovoltaic Planning Sites in Vietnam from 2019 to 2022. Remote Sens. 2023, 15, 2756. https://doi.org/10.3390/rs15112756
Shimada S, Takeuchi W. Revealing a Shift in Solar Photovoltaic Planning Sites in Vietnam from 2019 to 2022. Remote Sensing. 2023; 15(11):2756. https://doi.org/10.3390/rs15112756
Chicago/Turabian StyleShimada, Shoki, and Wataru Takeuchi. 2023. "Revealing a Shift in Solar Photovoltaic Planning Sites in Vietnam from 2019 to 2022" Remote Sensing 15, no. 11: 2756. https://doi.org/10.3390/rs15112756
APA StyleShimada, S., & Takeuchi, W. (2023). Revealing a Shift in Solar Photovoltaic Planning Sites in Vietnam from 2019 to 2022. Remote Sensing, 15(11), 2756. https://doi.org/10.3390/rs15112756