Trade-Off and Synergy Relationships and Spatial Bundle Analysis of Ecosystem Services in the Qilian Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of ES
2.3. ES Evaluation
2.3.1. InVEST Model
2.3.2. Calculation Methods and Parameters of Other ES
2.3.3. Data Requirement and Preparation
2.4. Exploratory Spatial Data Analysis Methods
2.5. Analysis of Trade-Off and Synergy Relationships
2.6. K-Means Clustering Analysis
2.7. Model Results Validation Methods
3. Results
3.1. Verification of Model Simulation Results
3.2. Changes in Ecosystem Areas
3.3. Identification of Ecosystem Services and Hotspots in the Qilian Mountains
3.4. Trade-Offs and Synergies between ES
3.5. k-Means Clustering Analysis
4. Discussion
4.1. Temporal and Spatial Evolution of ES
4.2. Trade-Offs and Synergies of ES
4.3. k-Means Clustering and Suggestions on Zoning Management
4.4. Strengths, Limitations, and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Changes in Spatial and Temporal Patterns of Ecosystem Services in the Qilian Mountains
Appendix A.2. InVEST Models and Parameterization
Appendix A.2.1. Water Yield Model
Land Use Types | Kc | Root_Depth |
---|---|---|
Farmland | 0.6 | 700 |
Forest | 1 | 7000 |
Shrubland | 0.85 | 4570 |
Grassland | 0.65 | 2000 |
Water | 1 | 1000 |
Wetland | 0.8 | 6300 |
Human settlement | 0.3 | 500 |
Desert | 0.2 | 10 |
Glacier | 0.5 | 10 |
Appendix A.2.2. Extension Model for Water Conservation
Ecosystem Type | Runoff Coefficient (%) |
---|---|
Farmland | 49 |
Forest | 3.52 |
Shrubland | 19.2 |
Grassland | 36 |
Water | 100 |
Wetland | 20 |
Human settlement | 80 |
Desert | 79 |
Glacier | 85 |
Appendix A.2.3. Sediment Delivery Ratio Module
Land Use Types | Usle_c | Usle_p |
---|---|---|
Farmland | 0.5 | 0.4 |
Forest | 0.003 | 0.2 |
Shrubland | 0.01 | 0.2 |
Grassland | 0.02 | 0.25 |
Water | 0.001 | 0.001 |
Wetland | 0.01 | 0.2 |
Human settlement | 0.001 | 0.001 |
Desert | 0.25 | 0.01 |
Glacier | 1 | 0.001 |
Appendix A.2.4. Nutrient Delivery Ratio (NDR) Module
Surface NDR
Subsurface NDR
Land-Use Type | Load_n | Eff_n |
---|---|---|
Farmland | 67.2 | 0.15 |
Forest | 17.4 | 0.7 |
Shrubland | 20.8 | 0.6 |
Grassland | 11.5 | 0.45 |
Water | 0.001 | 0.05 |
Wetland | 3.9 | 0.72 |
Human settlement | 10 | 0.05 |
Desert | 3.7 | 0.3 |
Glacier | 0.001 | 0.05 |
Appendix A.2.5. Habitat Quality Module
Ecosystem Type | Habitat Suitability Index | Farmland | Human Settlement | Railroad | Road I | Road II |
---|---|---|---|---|---|---|
Farmland | 0.3 | 0.3 | 0.35 | 0.2 | 0.2 | 0.2 |
Forest | 1 | 0.7 | 0.9 | 0.75 | 0.7 | 0.6 |
Shrubland | 0.6 | 0.4 | 0.6 | 0.45 | 0.4 | 0.3 |
Grassland | 0.6 | 0.3 | 0.5 | 0.35 | 0.3 | 0.2 |
Water | 0.9 | 0.7 | 0.9 | 0.75 | 0.7 | 0.6 |
Wetland | 0.6 | 0.7 | 0.9 | 0.75 | 0.7 | 0.6 |
Human settlement | 0 | 0 | 0 | 0 | 0 | 0 |
Desert | 0.2 | 0 | 0 | 0 | 0 | 0 |
Glacier | 1 | 0.7 | 0.9 | 0.75 | 0.7 | 0.6 |
Threat Factors | Maximum Effective Distance of Threats | Weights | Decay Type |
---|---|---|---|
Farmland | 8 | 0.7 | linear |
Human settlement | 12 | 1 | exponential |
Railroad | 5 | 0.6 | exponential |
Road I | 3 | 1 | linear |
Road II | 1 | 0.7 | linear |
Appendix A.3. Calculation Methods and Parameters of Other ES
Appendix A.3.1. Food Supply Service
Output Value of Food Supply Service | Ecosystem Type |
---|---|
Agricultural output value | Farmland ecosystem |
animal husbandry output value | Grassland ecosystem |
Fishery output value | Water ecosystem |
Appendix A.3.2. Raw Material Supply Service
Appendix A.3.3. Climate Regulation Service
Appendix A.3.4. Entertainment Tourism Service
Attribute | Parameter | Calculation Method |
---|---|---|
Accessibility | Road | Euclidean distance |
Unique natural landscapes or cultural sites | Protected areas, national parks | Euclidean distance |
Cultural spot | Euclidean distance | |
Tourism potential | Land use | Normalized assignment |
Tourism comfort | NPP | Normalized assignment |
Ecosystem Type | Horseback Riding | Mountain Climbing | Bird Watching | Ice Hiking | Fishing Viewing | Scientific Tourism | Camping | Total |
---|---|---|---|---|---|---|---|---|
Farmland | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Forest | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 5 |
Shrubland | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 4 |
Grassland | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 3 |
Water | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 3 |
Wetland | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2 |
Human settlement | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Desert | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Glacier | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 4 |
References
- Costanza, R.; dArge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Scenarios: Findings of the Scenarios Working Group; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Fu, B.; Zhou, G.; Bai, Y.; Song, C.; Liu, J.; Zhang, H.; Lü, Y. The Main Terrestrial Ecosystem Services and Ecological Security in China. Adv. Earth Sci. 2009, 24, 571–576. (In Chinese) [Google Scholar]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Liu, J.; Zhu, W.; Ma, C.; Wang, J. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography. Geogr. Res. 2013, 32, 1379–1390. (In Chinese) [Google Scholar]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Change-Hum. Policy Dimens. 2014, 28, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Dai, E.; Zhang, M. A Review on InVEST Model for the Evaluation of Ecosystem Service Function. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2018, 39, 62–67. (In Chinese) [Google Scholar] [CrossRef]
- Li, B.Y.; Wang, W. Trade-offs and synergies in ecosystem services for the Yinchuan Basin in China. Ecol. Indic. 2018, 84, 837–846. [Google Scholar] [CrossRef]
- Vallet, A.; Locatelli, B.; Levrel, H.; Wunder, S.; Seppelt, R.; Scholes, R.J.; Oszwald, J. Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies. Ecol. Econ. 2018, 150, 96–106. [Google Scholar] [CrossRef]
- Wu, J.G. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Yu, D.; Hao, R. Research Progress and Prospect of Ecosystem Services. Adv. Earth Sci. 2020, 35, 804–815. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schagner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, D. Progress on the impact, risk and adaptation of climate change in China. China Popul. Resour. Environ. 2020, 30, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Dai, L.; Tang, H.; Zhang, Q.; Cui, F. The trade-off and synergistic relationship among ecosystem services: A case study in Duolun County, the agro-pastoral ecotone of Northern China. Acta Ecol. Sin. 2020, 40, 2863–2876. (In Chinese) [Google Scholar] [CrossRef]
- Yin, L.; Wang, X.; Zhang, K.; Xiao, F.; Cheng, C.; Zhang, X. Trade-offs and synergy between ecosystem services in National Barrier Zone. Geogr. Res. 2019, 38, 2162–2172. (In Chinese) [Google Scholar]
- Yu, Y.; Li, J.; Zhou, Z.; Ma, X.; Zhang, C. Multi-scale representation of trade-offs and synergistic relationship among ecosystem services in Qinling-Daba Mountains. Acta Ecol. Sin. 2020, 40, 5465–5477. (In Chinese) [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Liu, Y.; Fan, F.; Wei, J. Spatio-temporal differentiation of interaction of ecosystem services and regional responses in the “Belt and Road” area. Acta Ecol. Sin. 2020, 40, 3258–3270. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Zhao, J.; Hu, X. Analysison trade-offs and synergistic relationships among multiple ecosystem services in the Shiyang River Basin. Acta Ecol. Sin. 2018, 38, 7582–7595. (In Chinese) [Google Scholar] [CrossRef]
- Su, C.; Wang, Y. Evolution of ecosystem services and its driving factors in the upper reaches of the Fenhe River watershed, China. Acta Ecol. Sin. 2018, 38, 7886–7898. (In Chinese) [Google Scholar] [CrossRef]
- Qian, C.; Gong, J.; Zhang, J.; Liu, D.; Ma, X. Change and tradeoffs-synergies analysis on watershed ecosystem services: A case study of Bailongjiang Watershed, Gansu. Acta Ecol. Sin. 2018, 73, 868–879. (In Chinese) [Google Scholar]
- Zhang, J.; Zhu, W.; Zhu, L.; Li, Y. Multi-scale analysis of trade-off/synergistic effects of forest ecosystem services in the Funiu Mountain Region. J. Geogr. Sci. 2022, 32, 981–999. (In Chinese) [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, X.; Peng, J.; Qin, W. Function classification of ecological land in a small area based on ecosystem service bundles: A case study in Liangjiang New Area, China. Acta Ecol. Sin. 2015, 35, 3808–3816. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Hu, Y.; Wu, W. Ecological function zoning in Inner Mongolia Autonomous Region based on ecosystem service bundles. Chin. J. Appl. Ecol. 2017, 28, 2657–2666. (In Chinese) [Google Scholar] [CrossRef]
- Qi, N.; Zhao, J.; Yang, Y.; Gou, R.; Chen, J.; Zhao, P.; Li, W. Quantifying ecosystem service trade-offs and synergies in Northeast China based on ecosystem service bundles. Acta Ecol. Sin. 2020, 40, 2827–2837. (In Chinese) [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organized Formation of Topologically Correct Feature Maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Yan, X.; Li, X.; Liu, C.; Li, J.; Zhong, J. Spatial evolution trajectory of ecosystem services bundles and its social-ecological driven by geographical exploration: A case of Dalian. Acta Ecol. Sin. 2022, 42, 5734–5747. (In Chinese) [Google Scholar] [CrossRef]
- Feng, Z.; Peng, J.; Wu, J. Ecosystem service bundles based approach to exploring the trajectories of ecosystem service spatiotemporal change: A case study of Shenzhen City. Acta Ecol. Sin. 2020, 40, 2545–2554. (In Chinese) [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bocher, P.K.; Dalgaard, T.; Svenning, J.-C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Simonit, S.; Perrings, C. Bundling ecosystem services in the Panama Canal watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zheng, H.; Yi, Q.; Li, R. The change and driving factors of ecosystem service bundles: A case study of Daqing River Basin. Acta Ecol. Sin. 2021, 41, 5204–5213. (In Chinese) [Google Scholar] [CrossRef]
- O’Higgins, T.; Nogueira, A.A.; Lillebo, A.I. A simple spatial typology for assessment of complex coastal ecosystem services across multiple scales. Sci. Total Environ. 2019, 649, 1452–1466. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 2020, 702, 134581. [Google Scholar] [CrossRef]
- Gui, J.; Wang, X.; Li, Z.; Zou, H.; Li, A.G.G. Research on the response of vegetation change to human activities in typical cryosphere areas: Taking the Qilian Mountains as an example. J. Glaciol. Geocryol. 2019, 41, 1235–1243. (In Chinese) [Google Scholar] [CrossRef]
- Lü, R.; Zhao, W.; Tian, X.; Zhang, J. The tradeoffs among ecosystem services and their response to socio-ecological environment in Qilian Mountains. J. Glaciol. Geocryol. 2021, 43, 928–938. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Zhou, L. The vulnerability diagnosis of the pastoral area social-ecological system in northern Qilian Mountains: A case study on the Sunan Yugur Autonomous County in Gansu Province. J. Glaciol. Geocryol. 2021, 43, 370–380. (In Chinese) [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Ruitenbeek, H.J. Functions of nature: Evaluation of nature in environmental planning, management and decision making. Ecol. Econ. 1995, 14, 211–213. [Google Scholar] [CrossRef]
- TEEB (The Economics of Ecosystems and Biodiversity). The Economics of Ecosystems and Biodiversity: An Interim Report European Commission. 2008. Available online: www.teebweb.org (accessed on 26 October 2022).
- Braat, L.C.; de Groot, R. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- TEEB. The Economics of Ecosystems and Biodiversity. Guidance Manual for TEEB Country Studies. 2013. Available online: http://www.teebweb.org/resources/guidance-manual-for-teeb-country-studies/ (accessed on 26 October 2022).
- National Ecosystem Assessment United Kingdom. 2014. Available online: http://uknea.unep-wcmc.org/ (accessed on 26 October 2022).
- Hedden-Dunkhorst, B.; Braat, L.; Wittmer, H. TEEB emerging at the country level: Challenges and opportunities. Ecosyst. Serv. 2015, 14, 37–44. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Vergara, X.; Kusch, A.; Campos, G.; Droguett, D. Mapping ecosystem services for marine spatial planning: Recreation opportunities in Sub-Antarctic Chile. Mar. Policy 2017, 81, 211–218. [Google Scholar] [CrossRef]
- Wang, G.; Yue, D.; Niu, T.; Yu, Q. Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River. Remote Sens. 2022, 14, 718. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Gao, Y.; Zhu, W.; Liu, X.; Xu, Q. Hotspot identification and interaction analyses of the provisioning of multiple ecosystem services: Case study of Shaanxi Province, China. Ecol. Indic. 2019, 107, 105566. [Google Scholar] [CrossRef]
- Siderius, C.; Biemans, H.; Kashaigili, J.; Conway, D. Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agric. Water Manag. 2022, 266, 107548. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, L.; Jia, Y.; Niu, C.; Liu, X.; Liu, H. Evaluation of water conservation function of Beijiang River basin in Nanling Mountains, China, based on WEP-L model. Ecol. Indic. 2022, 134, 108383. [Google Scholar] [CrossRef]
- Bai, Y.; Zhuang, C.W.; Ouyang, Z.Y.; Zheng, H.; Jiang, B. Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecol. Complex. 2011, 8, 177–183. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Alatalo, J.M. Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, T.; Li, Q.; Wang, S. Quantifying the effect of environmental drivers on water conservation variation in the eastern Loess Plateau, China. Ecol. Indic. 2021, 125, 107493. [Google Scholar] [CrossRef]
- LI, C.; Zhang, X.; Wu, Y.; Hao, F.; Yin, G. Landscape pattern change of the ecological barrier zone in Beijing-Tianjin-Hebei region and its impact on water conservation. China Environ. Sci. 2019, 39, 2588–2595. (In Chinese) [Google Scholar] [CrossRef]
- Gong, S.; Xiao, Y.; Zheng, H.; Xiao, Y.; Ouyang, Z. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 2017, 37, 2455–2462. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Dong, Z. Establishing statistic model of wind erosion on small watershed basis. Bull. Soil Water Conserv. 1998, 18, 55–62. (In Chinese) [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groten, S.M.E. NDVI—Crop monitoring and early yield assessment of Burkina-Faso. Int. J. Remote Sens. 1993, 14, 1495–1515. [Google Scholar] [CrossRef]
- Mao, Q.; Peng, J.; Liu, Y.; Wu, W.; Zhao, M.; Wang, Y. An ecological function zoning approach coupling SOFM and SVM: A case study in Ordos. Acta Geogr. Sin. 2019, 74, 460–474. (In Chinese) [Google Scholar]
- Wang, Q.; Wu, C.; Chen, K.; Zhang, X.; Zhang, L.; Ding, J. Estimating grassland yield and carrying capacity in Qinghai Lake Basin based on MODIS NPP data. Ecol. Sci. 2019, 38, 178–185. (In Chinese) [Google Scholar]
- Piao, S.; Fang, J.; Guo, Q. Application of CASA model to the estimation of Chinese terrestrial net primary productivity. Acta Phytoecol. Sin. 2001, 25, 603. (In Chinese) [Google Scholar]
- Piao, S.; Fang, J.; He, J.; Xiao, Y. Spatial distribution of grassland biomass in China. Acta Phytoecol. Sin. 2004, 28, 491. (In Chinese) [Google Scholar]
- Pei, Y.; Luo, M.; Zhao, Y.; Han, L.; Yang, S.; Zhang, L. Multi-scale ecosystem service trade-offs and synergies: A case study of Yan’an City. Chin. J. Ecol. 2022, 41, 1351–1360. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Wu, P.; Shangguan, Z.; Deng, L. Spatial and temporal distribution and trade-off of water conservation, soil conservation and NPP services in the ecosystems of the Loess Plateau from 2000 to 2015. J. Soil Water Conserv. 2021, 35, 114–121. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. (In Chinese) [Google Scholar]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; RMcVicar, T.; Van Niel, T.G.; Yang, Q.; Li, R. Introduction of the Professional Interpolation Software for Meteorology Data: ANUSPLIN. Meteorol. Mon. 2008, 34, 92–100. (In Chinese) [Google Scholar]
- Qiao, B.; Zhu, C.; Cao, X.; Xiao, J.; Zhaxi, L.; Yan, Y.; Chen, G.; Shi, F. Spatial autocorrelation analysis of land use and ecosystem service value in Maduo County, Qinghai Province, China at the grid scale. Chin. J. Appl. Ecol. 2020, 31, 1660–1672. (In Chinese) [Google Scholar]
- Anselin, L. Interactive techniques and exploratory spatial data analysis. In Geographical Information Systems; Longley, P.A., Godchild, M.F., Maguire, D.J., Eds.; John Wiley & Sons: New York, NY, USA, 1999; Volume 37, pp. 291–296. [Google Scholar]
- Yueriguli, K.; Yang, S.; Zibibula, S. Impact of land use change on ecosystem service value in Ebinur Lake Basin, Xinjiang. Trans. Chin. Soc. Agric. Eng. 2019, 35, 260–269. (In Chinese) [Google Scholar] [CrossRef]
- Kasimu, E.Z.A.; Maitiniyazi, M.; Abudureyimu, A. Temporal and spatial variations of urban land cover / land use based on gridelement in northwest arid area of China: A case of Kashgar City in Xinjiang. Arid Land Geogr. 2018, 41, 625–633. (In Chinese) [Google Scholar] [CrossRef]
- Ma, X.; Pei, T. Exploratory Spatial Data Analysis of Regional Economic Disparities in Beijing during 2001–2007. Prog. Geogr. 2010, 29, 1555–1561. (In Chinese) [Google Scholar]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schroeter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Zheng, Z.; Fu, B.; Hu, H.; Sun, G. A method to identify the variable ecosystem services relationship across time: A case study on Yanhe Basin, China. Landsc. Ecol. 2014, 29, 1689–1696. [Google Scholar] [CrossRef]
- Wang, H.; Jin, H.; Wang, J.; Jiang, W. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance. Acta Geod. Et Cartogr. Sin. 2015, 44, 526–532. (In Chinese) [Google Scholar] [CrossRef]
- Zeng, H.; Li, L. Accuracy validation of TRMM 3B43 data in Lancang river basin. Acta Geogr. Sin. 2011, 66, 994–1004. (In Chinese) [Google Scholar]
- Zhou, Y.; He, Z.; Ma, L.; Yang, Y.; Zhang, T.; Chen, L. Spatial and temporal differentiation of China’s provincial scale energy consumption structure. Resour. Sci. 2017, 39, 2247–2257. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xie, Y. A New Urban Typology Model Adapting Data Mining Analytics to Examine Dominant Trajectories of Neighborhood Change: A Case of Metro Detroit. Ann. Am. Assoc. Geogr. 2018, 108, 1313–1337. [Google Scholar] [CrossRef]
- Delmelle, E.C. Five decades of neighborhood classifications and their transitions: A comparison of four US cities, 1970–2010. Appl. Geogr. 2015, 57, 1–11. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Luo, J.; Li, Z.; Sun, G. Analysis on change of precipitation in Qilian Mountains. Arid Zone Res. 2012, 29, 847–853. (In Chinese) [Google Scholar] [CrossRef]
- Jia, W. Temporal and spatial change of climate extremes in Qilian Mountains and Hexi Corridor during last fifty years. Arid Land Geogr. 2012, 35, 559–567. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Song, G.; Di, X. Research on atmospheric water-vapor distribution over Qilianshan Mountains. Acta Meteorol. Sin. 2007, 65, 633–643. (In Chinese) [Google Scholar]
- Kattel, D.B.; Yao, T.; Yang, K.; Tian, L.; Yang, G.; Joswiak, D. Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol. 2013, 113, 671–682. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, J.; Gao, Z.; Yang, W. Analyzing the water conservation service function of the forest ecosystem. Acta Ecol. Sin. 2018, 38, 1679–1686. (In Chinese) [Google Scholar] [CrossRef]
- Sun, L.; Zhang, B.; Hou, C.; Chi, X.; He, H. The Spatial Variation of Vegetation Net Primary Productivity in Qilian Mountains. Remote Sens. Technol. Appl. 2015, 30, 592–598. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, W.; Zhao, Y.; Liu, Y.; Zhao, Z.; Chen, J. Spatial-temporal variations of net primary productivity of qilian mountains vegetation based on CASA model. Acta Bot. Boreali-Occident. Sin. 2014, 34, 2085–2091. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Z.; Jia, W.; Zhao, Z.; Zhang, Y.; Liu, Y.; Chen, J. Spatial-temporal variations of vegetation and its correlation with climatic factors in Qilian Mountains from 2000 to 2012. Arid Land Geogr. 2015, 38, 1241–1252. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Y.; Lin, W. Evaluation of the glacier ecological service function in Qilian Mountains. J. Arid Land Resour. Environ. 2023, 37, 100–105. (In Chinese) [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.; Feng, Q.; Miu, C.; Deng, X.; Di, Z.; Ye, A.; Gong, W.; Zhang, B.; Gui, J. Spatiotemporal variation characteristics of water conservation amount in the Qilian Mountains from 1980 to 2017. J. Glaciol. Geocryol. 2022, 44, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- Shen, J.S.; Li, S.C.; Liang, Z.; Liu, L.B.; Li, D.L.; Wu, S.Y. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zheng, H.; Kong, L.Q.; Huang, B.B.; Xu, W.H.; Ouyang, Z.Y. Mapping ecosystem services bundles to detect high- and low-value ecosystem services areas for land use management. J. Clean. Prod. 2019, 225, 11–17. [Google Scholar] [CrossRef]
- Yang, S.L.; Bai, Y.; Alatalo, J.M.; Wang, H.M.; Jiang, B.; Liu, G.; Chen, J.Y. Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. J. Clean. Prod. 2021, 286, 125316. [Google Scholar] [CrossRef]
- Yang, G.; Ge, Y.; Xue, H.; Yang, W.; Shi, Y.; Peng, C.; Du, Y.; Fan, X.; Ren, Y.; Chang, J. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes. Landsc. Urban Plan. 2015, 136, 110–121. [Google Scholar] [CrossRef]
- Hao, M.; Ren, Z.; Sun, Y.; Zhao, S. The dynamic analysis of trade-off and synergy of ecosystem services in the Guanzhong Basin. Geogr. Res. 2017, 36, 592–602. (In Chinese) [Google Scholar]
- Wei, Y.; Qiao, X.; Zhang, Z.; Yang, Y.; Niu, H. Trade-off and driving mechanisms for farmland ecosystem services based on climatic zones and agricultural regionalization. Trans. Chin. Soc. Agric. Eng. 2022, 38, 220–228. (In Chinese) [Google Scholar] [CrossRef]
- Butler, J.R.A.; Wong, G.Y.; Metcalfe, D.J.; Honzak, M.; Pert, P.L.; Rao, N.; van Grieken, M.E.; Lawson, T.; Bruce, C.; Kroon, F.J.; et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 2013, 180, 176–191. [Google Scholar] [CrossRef]
- Wang, S.; Jin, T.; Yan, L.; Gong, J. Trade-off and synergy among ecosystem services and the influencing factors in the Ziwuling Region, Northwest China. Chin. J. Appl. Ecol. 2022, 33, 3087–3096. (In Chinese) [Google Scholar] [CrossRef]
- Shen, J.; Liang, Z.; Liu, L.; Li, D.; Zhang, Y.; Li, S. Trade-offs and synergies of ecosystem service bundles in Xiong’an New Area. Geogr. Res. 2020, 39, 79–91. (In Chinese) [Google Scholar]
- Liu, Y.; Li, T.; Zhao, W.; Wang, S.; Fu, B. Landscape functional zoning at a county level based on ecosystem services bundle: Methods comparison and management indication. J. Environ. Manag. 2019, 249, 109315. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model. Chin. J. Appl. Ecol. 2020, 31, 2731–2739. (In Chinese) [Google Scholar] [CrossRef]
- Fu, C.; Mao, A. Spatiotemporal Responses of Runoff to Land Use Change in Fuhe River Basin. Resour. Environ. Yangtze Basin 2021, 30, 342–350. (In Chinese) [Google Scholar] [CrossRef]
- Wei, X.; Bi, H.; Huo, Y.; Xiao, C.; Yang, X. Study on the factors influencing surface runoff coefficient in Festuca arundinacea grassland. J. Beijing For. Univ. 2017, 39, 82–88. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z. Factors Affecting the Variation of Glacier Surface Runoff-Coefficient in the Recent Years. Adv. Earth Sci. 2016, 31, 103. (In Chinese) [Google Scholar] [CrossRef]
- Han, C.; Chen, R.; Liu, J.; Yang, Y.; Liu, Z. Hydrological characteristics in non-freezing period at the alpine desert zone of Hulugou watershed, Qilian Mountains. J. Glaciol. Geocryol. 2013, 35, 1536–1544. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Q.; Cun, Y.; Liu, Z.; Wang, K.; Wang, L. Study on runoff and sediment production on slope land of western plateau of Yunnan Province. Res. Soil Water Conserv. 2005, 12, 71–73. (In Chinese) [Google Scholar]
- Chen, T.; Jia, Y.; Wang, J.; Zhang, Y.; Li, P.; Liu, C. Current situation and function of soil conservation in national nature reserves in the Qilian Mountains based on InVEST model. Arid Zone Res. 2020, 37, 150–159. (In Chinese) [Google Scholar] [CrossRef]
- Yang, W.; Zhou, Z. Estimation on value of water and soil conservation of agricultural ecosystems in Xi’an metropolitan, Northwest China. Chin. J. Appl. Ecol. 2014, 25, 3637–3644. (In Chinese) [Google Scholar] [CrossRef]
- Yu, B.; Rosewell, C.J. A robust estimator of the R-factor for the universal soil loss equation. Trans. ASAE 1996, 39, 559–561. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, J. Rainfall erosivity estimation under different rainfall amount. Resour. Sci. 2003, 25, 35–41. (In Chinese) [Google Scholar]
- Xu, D.; Wu, F.; He, L.; Liu, H.; Jiang, Y. Impact of land use change on ecosystem services: Case study of the Zhangjiakou-Chengde area. Acta Ecol. Sin. 2019, 39, 7493–7501. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Li, Q.; Hu, S.; Wang, J.; Li, W. Water and soil conservation and their trade-off and synergistic relationship under changing environment in Zhangjiakou-Chengde area. Acta Ecol. Sin. 2022, 42, 5391–5403. (In Chinese) [Google Scholar] [CrossRef]
- Reckhow, K.H.; Beaulac, M.N.; Simpson, J.T. Modeling Phosphorus Loading and Lake Response Under Uncertainty: A Manual and Compilation of Export Coefficients; Environmental Protection Agency, Office of Water Regulations and Standards, Criteria & Standards Division: Washington, DC, USA, 1980. [Google Scholar]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef] [Green Version]
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus export from agricultural tile drainage. J. Environ. Qual. 2000, 29, 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Weitzman, J.N.; Kaye, J.P. Variability in Soil Nitrogen Retention Across Forest, Urban, and Agricultural Land Uses. Ecosystems 2016, 19, 1345–1361. [Google Scholar] [CrossRef]
- White, M.; Harmel, D.; Yen, H.; Arnold, J.; Gambone, M.; Haney, R. Development of Sediment and Nutrient Export Coefficients for US Ecoregions. J. Am. Water Resour. Assoc. 2015, 51, 758–775. [Google Scholar] [CrossRef]
- Teng, Y.; Xie, M.; Wang, H.; Chen, Y.; Li, F. Land use transition in resource-based cities and its impact on habitat quality: A case of Wuhai City. Acta Ecol. Sin. 2022, 42, 7941–7951. (In Chinese) [Google Scholar] [CrossRef]
- Yue, W.; Haoxuan, X.; Tong, W.; Jinhui, X.; Pengyu, Z.; Yang, C. Spatio-temporal evolution of habitat quality and ecological red line assessment in Zhejiang Province. Acta Ecol. Sin. 2022, 42, 6406–6417. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, S.; Li, L.; Xing, L.; Wu, G.; Guo, H.; Wang, X.; Bao, G. Impact of the villages on habitat quality of Yunnan snub-nosed monkey in northwest Yunnan. Acta Ecol. Sin. 2022, 42, 1213–1223. (In Chinese) [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Cherubini, F.; Hu, X.; Pereira, P. Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. Landsc. Ecol. 2021, 36, 3451–3471. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhao, W.; Liu, Y.; Yang, S.; Hu, X.; Cherubini, F. Relationships of multiple landscape services and their influencing factors on the Qinghai-Tibet Plateau. Landsc. Ecol. 2021, 36, 1987–2005. [Google Scholar] [CrossRef]
- Zeng, C.; Wu, J.; Zhang, X. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau. PLoS ONE 2015, 10, e0135173. [Google Scholar] [CrossRef]
- Wu, X.; Wang, R.; Li, C.; Jiang, Y.; Peng, Q.; Li, Y. Spatial-Tem-poral Characteristics of NPP and Its Response to Climatic Factors in Tianshan Mountains Region. Ecol. Environ. Sci. 2016, 25, 1848–1855. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.; Zhou, M.; Wang, Y.; Zhu, T.; Sun, H.; Yin, H.; Cao, H.; Han, H.-y. Inter-annual variation of vegetation net primary productivity and the contribution of spatial temporal and climate factors in arid Northwest China: A case study of Hexi Corridor. Chin. J. Ecol. 2020, 39, 3265–3275. (In Chinese) [Google Scholar] [CrossRef]
- He, H.; Yu, G.; Liu, X.; Su, W.; Niu, D.; Yue, Y. Study on spatialization technology of terrestrial eco-information in the China (II): Solar radiation. J. Nat. Resour. 2004, 19, 679–687. (In Chinese) [Google Scholar] [CrossRef]
- Tong, C.; Zhang, W.; Tang, Y.; Wang, H. Estimation of daily solar radiation in China. Chin. J. Agrometeorol. 2005, 26, 165–169. (In Chinese) [Google Scholar]
- Yan, X.; Zeng, J.; Wu, D. Study on spatial structures characteristic of mountain ecotourism resources in western Hunan Province. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 246–256. (In Chinese) [Google Scholar] [CrossRef]
Type of Ecosystem Service | Evaluation Indicators |
---|---|
Provisioning services | Food supply |
Raw material supply | |
Water resource supply | |
Regulating services | Water conservation |
Climate regulation | |
Soil conservation | |
Water purification | |
Habitat services | Habitat quality |
Cultural services | Entertainment tourism |
Data | Type | Data Source | Note | Related Ecosystem Services |
---|---|---|---|---|
Land use | Raster | Resource and Environmental Science and Data Center, http://www.resdc.cn (accessed on 15 October 2022) | Resolution is 30 m × 30 m | FS, RMS, WS, WC, SC, WP, HQ, ET |
Digital Elevation Model | Raster | Geospatial Data Cloud, https://www.gscloud.cn (accessed on 15 October 2022) | Resolution is 30 m × 30 m | SC, WP |
Temperature | Point | National Meteorological Information Center, http://data.cma.cn (accessed on 15 October 2022) | Interpolated to 30 m × 30 m in ANUSPLIN software | RMS, RC, ET |
Precipitation | Point | National Meteorological Information Center, http://data.cma.cn (accessed on 15 October 2022) | Interpolated to 30 m × 30 m in ANUSPLIN software | RMS, WS, WC, RC, SC, WP, ET |
Sunshine duration | Point | National Meteorological Information Center, http://data.cma.cn (accessed on 15 October 2022) | Interpolated to 30 m × 30 m in ANUSPLIN software | RMS, RC, ET |
Evapotranspiration | Point | National Meteorological Information Center, http://data.cma.cn (accessed on 15 October 2022) | Calculated using the Penman–Monteith formula modified by the Food and Agriculture Organization of the United Nations and interpolated to 30 m × 30 m in ANUSPLIN software | WS, WC |
Normalized difference vegetation index | Raster | Geospatial Data Cloud, https://www.gscloud.cn (accessed on 15 October 2022) | Using Google Earth Engine software to extract remote sensing images in months based on the maximum synthesis method and resampling to 30 m × 30 m in ArcGIS | FS, RMS, RC, SC, ET |
Average wind speed | Point | National Meteorological Information Center, http://data.cma.cn (accessed on 15 October 2022) | Interpolated to 30 m × 30 m in ANUSPLIN software | SC |
Soil data | Raster | National Tibetan Plateau Data Center, https://data.tpdc.ac.cn (accessed on 15 October 2022) | Resolution is 1 km × 1 km | SC |
Social and economic data | Excel | National Bureau of Statistics, http://www.stats.gov.cn (accessed on 15 October 2022) Gansu Province of Statistics, http://tjj.gansu.gov.cn/ (accessed on 15 October 2022) Qinghai Provincial Bureau of Statistics, http://tjj.qinghai.gov.cn (accessed on 15 October 2022) | Includes runoff, sediment, and river water quality | FS, RMS |
Questionnaire data | Excel | On-the-spot investigation | 133 valid questionnaires | RMS |
Involved in Ecosystem Services | Catchments Involved | Data Source |
---|---|---|
Water resource supply | Changmabao watershed, Yingluoxia watershed, Dangchengwan watershed | Hydrological Stations |
Soil conservation | Dangchengwan watershed, Jiutiaoling watershed | Hydrological Stations |
Water purification | Yingluoxia watershed, Jiutiaoling watershed, Zamusi watershed | Hydrological Stations |
Climate regulation | 115 sampling points | Field sampling |
Type | 2000 | 2010 | 2018 | |||
---|---|---|---|---|---|---|
Ecosystem Area | Proportion | Ecosystem Area | Proportion | Ecosystem Area | Proportion | |
Farmland | 5961.39 | 3.09 | 6119.73 | 3.17 | 6159.85 | 3.19 |
Forest | 6299.03 | 3.26 | 6323.96 | 3.27 | 6386.96 | 3.31 |
Shrubland | 10,299.41 | 5.33 | 10,222.01 | 5.29 | 10,285.44 | 5.33 |
Grassland | 82,458.37 | 42.69 | 86,143.71 | 44.60 | 86,033.73 | 44.54 |
Water | 5337.90 | 2.76 | 5514.74 | 2.86 | 5534.67 | 2.87 |
Wetland | 5212.63 | 2.70 | 5377.62 | 2.78 | 5407.95 | 2.80 |
Human settlement | 453.27 | 0.23 | 512.42 | 0.27 | 540.39 | 0.28 |
Desert | 75,363.53 | 39.02 | 71,335.79 | 36.93 | 71,254.09 | 36.89 |
Glacier | 1756.76 | 0.91 | 1592.34 | 0.82 | 1539.21 | 0.80 |
Total | 193,142.30 | 100.00 | 193,142.30 | 100.00 | 193,142.30 | 100.00 |
Period | Ecosystem Type | Farmland | Forest | Shrubland | Grassland | Water | Wetland | Human Settlement | Desert | Glacier |
---|---|---|---|---|---|---|---|---|---|---|
2000–2010 | Farmland | 5755.04 | 14.16 | 9.21 | 324.93 | 0.87 | 7.39 | 8.22 | 1.09 | 0.00 |
Forest | 7.94 | 6078.58 | 133.40 | 84.68 | 0.24 | 0.75 | 0.19 | 16.71 | 0.03 | |
Shrubland | 11.59 | 67.85 | 10,015.55 | 96.05 | 0.28 | 2.34 | 0.25 | 24.33 | 0.28 | |
Grassland | 136.69 | 124.44 | 104.70 | 80,563.34 | 3.28 | 101.71 | 4.77 | 5093.92 | 12.87 | |
Water | 5.91 | 0.41 | 1.03 | 38.53 | 5291.12 | 86.60 | 6.50 | 84.20 | 0.42 | |
Wetland | 12.18 | 0.62 | 4.76 | 80.26 | 14.38 | 4974.30 | 0.06 | 288.09 | 2.84 | |
Human Settlement | 23.63 | 4.09 | 0.09 | 34.85 | 8.18 | 8.94 | 424.40 | 5.18 | 0.00 | |
Desert | 9.49 | 7.51 | 27.39 | 1234.96 | 19.48 | 30.22 | 5.82 | 69,810.45 | 192.21 | |
Glacier | 0.00 | 0.00 | 0.01 | 1.64 | 0.00 | 0.05 | 0.00 | 42.27 | 1547.72 | |
2010–2018 | Farmland | 5651.55 | 39.25 | 19.44 | 385.35 | 6.54 | 6.38 | 40.32 | 10.01 | 0.00 |
Forest | 49.15 | 5784.93 | 90.21 | 375.12 | 0.69 | 3.43 | 2.15 | 77.22 | 0.00 | |
Shrubland | 11.98 | 153.91 | 9645.67 | 394.62 | 3.94 | 10.95 | 0.31 | 58.32 | 0.04 | |
Grassland | 343.81 | 317.30 | 387.23 | 82,997.72 | 19.68 | 154.81 | 21.43 | 1758.92 | 21.33 | |
Water | 6.43 | 2.16 | 2.41 | 39.69 | 5422.02 | 22.35 | 13.48 | 25.40 | 0.01 | |
Wetland | 6.48 | 3.19 | 10.30 | 140.55 | 56.77 | 5135.19 | 0.87 | 53.57 | 0.05 | |
Human Settlement | 46.00 | 3.17 | 0.55 | 47.60 | 0.17 | 0.86 | 424.27 | 14.51 | 0.00 | |
Desert | 4.40 | 17.49 | 61.19 | 1749.41 | 4.91 | 43.46 | 6.44 | 69,193.23 | 166.24 | |
Glacier | 0.00 | 0.00 | 0.13 | 10.12 | 0.00 | 0.02 | 0.00 | 126.23 | 1400.93 |
Type | Item | 2000 | 2010 | 2018 |
---|---|---|---|---|
Food supply | Average (Yuan·ha−1) | 604.84 | 913.81 | 1643.67 |
Sum (106 Yuan) | 11,682.02 | 17,649.71 | 31,742.32 | |
Raw material supply | Average (Yuan·ha−1) | 1378.44 | 1670.76 | 1826.65 |
Sum (106 Yuan) | 26,623.57 | 32,269.93 | 35,276.12 | |
Water resource supply | Average (mm) | 114.94 | 154.65 | 170.39 |
Sum (108 m3) | 222.00 | 298.69 | 329.05 | |
Water conservation | Average (mm) | 0.90 | 1.92 | 8.70 |
Sum (108 m3) | 1.74 | 3.70 | 16.81 | |
Climate regulation | Average (tc·ha−1) | 2.46 | 2.89 | 3.06 |
Sum (106 tc) | 47.46 | 55.87 | 59.02 | |
Soil conservation | Average (t·ha−1) | 956.07 | 1101.05 | 996.08 |
Sum (106 t) | 18,465.67 | 21,266.24 | 19,236.18 | |
nitrogen export | Average (t·ha−1) | 2.06 | 1.99 | 2.14 |
Sum (106 t) | 39.81 | 38.52 | 41.25 | |
Habitat quality | Average | 0.46 | 0.47 | 0.47 |
Sum | - | - | - | |
Entertainment tourism | Average | 21.94 | 23.84 | 26.76 |
Sum | - | - | - |
Ecosystem Services | 2000 | 2010 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
Moran’s I | z-Score | p-Value | Moran’s I | z-Score | p-Value | Moran’s I | z-Score | p-Value | |
Food supply | 0.918 | 569.934 | <0.001 | 0.901 | 559.725 | <0.001 | 0.875 | 543.235 | <0.001 |
Raw material supply | 0.568 | 353.189 | <0.001 | 0.576 | 357.654 | <0.001 | 0.685 | 425.223 | <0.001 |
Water resources supply | 0.878 | 545.399 | <0.001 | 0.885 | 549.355 | <0.001 | 0.879 | 545.908 | <0.001 |
Water conservation | 0.485 | 300.948 | <0.001 | 0.492 | 305.556 | <0.001 | 0.489 | 303.844 | <0.001 |
Climate regulation | 0.564 | 350.014 | <0.001 | 0.595 | 369.320 | <0.001 | 0.611 | 379.635 | <0.001 |
Soil conservation | 0.641 | 401.228 | <0.001 | 0.678 | 421.054 | <0.001 | 0.722 | 448.167 | <0.001 |
Nitrogen export | 0.368 | 228.589 | <0.001 | 0.301 | 186.643 | <0.001 | 0.259 | 160.939 | <0.001 |
Habitat quality | 0.552 | 342.821 | <0.001 | 0.566 | 351.717 | <0.001 | 0.568 | 352.516 | <0.001 |
Entertainment tourism | 0.440 | 273.117 | <0.001 | 0.437 | 271.489 | <0.001 | 0.439 | 272.728 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cheng, H.; Wang, N.; Huang, C.; Zhang, K.; Qiao, B.; Wang, Y.; Wen, P. Trade-Off and Synergy Relationships and Spatial Bundle Analysis of Ecosystem Services in the Qilian Mountains. Remote Sens. 2023, 15, 2950. https://doi.org/10.3390/rs15112950
Wang Y, Cheng H, Wang N, Huang C, Zhang K, Qiao B, Wang Y, Wen P. Trade-Off and Synergy Relationships and Spatial Bundle Analysis of Ecosystem Services in the Qilian Mountains. Remote Sensing. 2023; 15(11):2950. https://doi.org/10.3390/rs15112950
Chicago/Turabian StyleWang, Yipeng, Hongyi Cheng, Naiang Wang, Chufang Huang, Kaili Zhang, Bin Qiao, Yuanyuan Wang, and Penghui Wen. 2023. "Trade-Off and Synergy Relationships and Spatial Bundle Analysis of Ecosystem Services in the Qilian Mountains" Remote Sensing 15, no. 11: 2950. https://doi.org/10.3390/rs15112950
APA StyleWang, Y., Cheng, H., Wang, N., Huang, C., Zhang, K., Qiao, B., Wang, Y., & Wen, P. (2023). Trade-Off and Synergy Relationships and Spatial Bundle Analysis of Ecosystem Services in the Qilian Mountains. Remote Sensing, 15(11), 2950. https://doi.org/10.3390/rs15112950