Quantitative Analysis of Desertification-Driving Mechanisms in the Shiyang River Basin: Examining Interactive Effects of Key Factors through the Geographic Detector Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Model Input Parameters
2.3. Geographic Detector Model
2.3.1. Factor Detector
2.3.2. Risk Detector
2.3.3. Ecological Detector
2.3.4. Interactive Factor
Detector Type | Conceptual Explanation |
---|---|
Factor detector | This method uses the power determinant (q) to evaluate the impact of land cover, elevation, soil salinization, temperature, precipitation, wind velocity, water and road buffers on the spatial distribution of the mean annual aridity index for the past 20 years. Further, the F-test is performed to determine whether or not each subregion’s accumulated variance differs significantly from the variance of the whole region. |
Risk detector | This method compares the difference in the average aridity index between subregion strata. The t-test is conducted to identify whether or not the aridity index among different subregions is significantly different. |
Ecological detector | This method evaluates whether or not the impact of environmental and human factors on the aridity index is significantly different. The F-test is performed to compare the variance calculated in the subregion attributed to one triggering factor with the variance attributed to another. |
Interaction detector | This method evaluates the collective impact of two factors and determines their contributions. The process consists of seven components: enhance, enhance-bi, enhance-non-linear, weaken, weaken-uni, weaken-non-linear, and independent. Each component examines specific aspects of the interaction between the factors and provides insights into their combined and individual effects on desertification. |
2.4. Satellite-Based Aridity Index
3. Results
3.1. Spatial Distribution of the Aridity Index in the Shiyang River Basin
3.2. Change Trend Analysis of Aridity Level in the Shiyang River Basin
3.3. Quantitative Analysis of Factors Governing the Ecological Status and Dynamics in the Shiyang River Basin
3.4. Environmental Risk Detection of Desertification in the Shiyang River Basin
3.5. Interaction between Ecosystem’s Driving Factors in the Shiyang River Basin
4. Discussion
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kassas, M. Desertification: A general review. J. Arid. Environ. 1995, 30, 115–128. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H. Desertification in North China: Background, Anthropogenic impact and Failures in combating it. Land Degrad. Develop. 2005, 16, 367–376. [Google Scholar] [CrossRef]
- Feng, Q.; Ma, H.; Jiang, X. What Has Caused Desertification in China? Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.L.; Fernandes, L.F.S.; Junior, R.F.V.; Valera, C.A.; Pissarra, T.C.T. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Barbut, M.; Alexander, S. Land Degradation as a Security Threat Amplifier: The New Global Frontline. In Land Restoration: Reclaiming Landscapes for a Sustainable Future; Academic Press: Cambridge, MA, USA, 2016; pp. 3–12. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Dynamic Causal Patterns of Desertification. BioScience 2004, 54, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Pan, X.; Wang, D.; Shen, C.; Lu, Q. Combating desertification in China: Past, present and future. Land Use Policy 2010, 31, 313–331. [Google Scholar] [CrossRef]
- Yue, Y.; Geng, L.; Li, M. The impact of climate change on aeolian desertification: A case of the agro-pastoral ecotone in northern China. Sci. Total Environ. 2013, 859, 160126. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Yun, W. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Sterk, G.; Stoorvogel, J.J. Desertification–Scientific Versus Political Realities. Land 2020, 9, 156. [Google Scholar] [CrossRef]
- Neary, D.G. Wildfire contribution to desertification at local, regional, and global scale. In Desertification; Squires, V.R., Ariapour, A., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 200–222. Available online: https://www.fs.usda.gov/rm/pubs_journals/2018/rmrs_2018_neary_d002.pdf (accessed on 7 April 2023).
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turnel, B.L.; Mortimore, M.; Batterbury, S.P.J. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 5826. [Google Scholar] [CrossRef] [Green Version]
- Nickayin, S.S.; Coluzzi, R.; Marucci, A.; Bianchini, L.; Salvati, L.; Cudlin, P.; Imbreda, V. Desertification risk fuels spatial polarization in ‘affected’ and ‘unaffected’ landscapes in Italy. Sci. Rep. 2022, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ziadat, F.M.; Zdruli, P.; Christensen, S.; Caon, L.; Monem, A.; Fetsi, T. An Overview of Land Degradation and Sustainable Land Management in the Near East and North Africa. Sustain. Agric. Res. 2022, 11, 11–24. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Hasi, E.; Li, J. Desertification in China: An assessment. Earth-Sci. Rev. 2008, 88, 188–206. [Google Scholar] [CrossRef]
- Wang, X.; Ge, Q.; Geng, X.; Wang, Z.; Gao, L.; Bryan, B.A.; Chen, S.; Su, Y.; Cai, D.; Ye, J.; et al. Unintended consequences of combating desertification in China. Nat. Commun. 2023, 14, 1139. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, X.; Cheng, Y.; Wang, Z. Oasis Change Characteristics and Influencing Factors in the Shiyang River Basin, China. Sustainability 2022, 14, 14354. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, G.; Ma, H.; Yang, J.; Pan, H.; Guo, H.; Wan, Q.; Yong, L. Effects of Ecological Water Conveyance on the Hydrochemistry of a Terminal Lake in an Inland River: A Case Study of Qingtu Lake in the Shiyang River Basin. Water 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shi, J.; Chen, G.; Xue, L. Environmental effects induced by human activities in arid Shiyang River basin, Gansu province, northwest China. Environ. Geol. 2002, 43, 219–227. [Google Scholar] [CrossRef]
- Kang, S.; Su, X.; Tong, L.; Yang, X.; Yukuo, A. The impacts of human activities on the water-land environment of the Shiyang River basin, an arid region in northwest China. Hydrol. Sci. J. 2004, 49, 412–427. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Xue, X.; Liao, J.; Sahbeni, G.; Huang, C.; Xiang, S.; Duan, H. Synergic effects of land-use management systems towards the reclamation of Aeolian Desertified Land in the Shiyang River Basin. Ecol. Indic. 2022, 139, 108882. [Google Scholar] [CrossRef]
- Liao, J.; Wang, T.; Ma, S. Mapping the dynamic degree of aeolian desertification in the Shiyang River Basin from 1975 to 2010. Sci. Cold Arid. Reg. 2020, 12, 144–153. [Google Scholar]
- Schwilch, G.; Bestelmeyer, B.; Bunning, S.; Critchley, W.; Herrick, J.; Kellner, K.; Liniger, H.P.; Nachtergaele, F.; Ritsema, C.J.; Schuster, B.; et al. Experience in monitoring and assessment of sustainable land management. Land Degrad. Dev. 2011, 22, 214–225. [Google Scholar] [CrossRef]
- Vu, Q.M.; Le, Q.B.; Frossard, E.; Vlek, P.L.G. Socio-economic and Biophysical Determinants of Land Degradation in Vietnam: An Integrated Causal Analysis at The National Level. Land Use Policy 2014, 36, 605–617. [Google Scholar] [CrossRef]
- Marin, A.M.P.; Vendruscolo, J.; Salazar, J.R.Z.; Queiroz, H.A.A.; Magalhães, D.L.; Menezes, R.S.C.; Fernandez, I.M. Monitoring Desertification Using a Small Set of Biophysical Indicators in the Brazilian Semiarid Region. Sustainability 2022, 14, 9735. [Google Scholar] [CrossRef]
- Cerretelli, S.; Poggio, L.; Gimona, A.; Yakob, G.; SBoke, S.; Habte, M.; Coull, M.; Peressotti, A.; Black, H. Spatial assessment of land degradation through key ecosystem services: The role of globally available data. Sci. Total. Environ. 2018, 628–629, 539–555. [Google Scholar] [CrossRef]
- Ramsy, M.; Gad, A.; Abdelsalam, H.; Siwailam, M. A dynamic simulation model of desertification in Egypt. Egypt. J. Remote. Sens. Space Sci. 2010, 13, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Pulleman, M.; Creamer, R.; Hamer, U.; Helder, J.; Pelosi, C.; Peres, G.; Rutgers, M. Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Curr. Opin. Environ. Sustain. 2012, 4, 529–538. [Google Scholar] [CrossRef]
- Han, X.; Jia, G.; Yang, G.; Wang, N.; Liu, F.; Chen, H.; Guo, X. Spatiotemporal dynamic evolution and driving factors of desertification in the Mu Us Sandy Land in 30 years. Sci. Rep. 2020, 10, 21734. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Fan, Z.; Li, S.; Fang, H. Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data. Remote Sens. 2020, 12, 3170. [Google Scholar] [CrossRef]
- Hien, L.T.T.; Gobin, A.; Huong, P.T.T. Spatial indicators for desertification in southeast Vietnam. Earth Syst. Sci. 2019, 19, 2325–2337. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Fu, B.; Shi, P.; Thomas, C.; Zhang, J.; Xu, H. Satellite Monitoring the Spatial-Temporal Dynamics of Desertification in Response to Climate Change and Human Activities across the Ordos Plateau, China. Remote Sens. 2017, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guan, Q.; Du, Q.; Ni, F.; Mi, J.; Luo, H.; Shao, W. Spatial and temporal dynamics of desertification and its driving mechanism in Hexi region. Land Degrad. Dev. 2022, 33, 3539–3556. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Z.; Li, J.; Gang, C.; Zhang, C. Desertification dynamic and the relative roles of climate change and human activities in desertification in the Heihe River Basin based on NPP. J. Arid. Land 2013, 5, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing Land Degradation and Desertification UsingVegetation Index Data: Current Frameworksand Future Directions. Remote Sens. 2014, 5, 9552–9575. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Lu, J.; Jiang, H.; Liu, T.; Qin, J.; Zhou, C. Satellite-derived aridity index reveals China’s drying in recent two decades. iScience 2023, 26, 106185. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, T.; Wang, Y.; Su, B.; Tao, H.; Qin, J.; Zhai, J. Spatiotemporal variations of aridity index over the Belt and Road region under the 1.5 °C and 2.0 °C warming scenarios. J. Geogr. Sci. 2020, 30, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, W.; Wang, K.; Ma, X. Comparison of the aridity index and its drivers in eight climatic regions in China in recent years and in future projections. Int. J. Climatol. 2019, 39, 5256–5272. [Google Scholar] [CrossRef]
- Bohr, L.; Lyra, G.B.; Oliera-Júnior, J.F.; Zeri, M.; Zeri, G.C. Desertification susceptibility over Rio de Janeiro, Brazil, based on aridity indices and geoprocessing. Int. J. Climatol. 2021, 41, E2600–E2614. [Google Scholar] [CrossRef]
- Adams, M.P.; Smith, P.L. A systematic approach to model the influence of the type and density of vegetation cover on urban heat using remote sensing. Landsc. Urban. Plan. 2014, 132, 47–54. [Google Scholar] [CrossRef]
- Yang, L.; Shen, F.; Cai, Y.; Yi, F.; Zhou, C. Quantifying influences of natural and anthropogenic factors on vegetation changes using structural equation modeling: A case study in Jiangsu Province, China. J. Clean. Prod. 2021, 280, 124330. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Gong, J.; Dang, D.; Dou, H.; Lyu, X. Quantitative Analysis of Natural and Anthropogenic Factors Influencing Vegetation NDVI Changes in Temperate Drylands from a Spatial Stratified Heterogeneity Perspective: A Case Study of Inner Mongolia Grasslands, China. Remote Sens. 2022, 14, 3320. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Yu, Y.; Li, F.; Zhang, R.; Li, W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sens. 2022, 14, 5794. [Google Scholar] [CrossRef]
- Ren, D.; Caio, A. Analysis of the heterogeneity of landscape risk evolution and driving factors based on a combined GeoDa and Geodetector model. Ecol. Indic. 2022, 144, 109568. [Google Scholar] [CrossRef]
- Wang, B.; Gao, X. Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China. Environ. Dev. Sustain. 2021, 23, 10038–10055. [Google Scholar] [CrossRef]
- Zhu, G.; Wan, Q.; TYong, L.; Zhang, Z.; Guo, H.; Zhang, Y.; Sun, Z.; Zhang, Z.; Ma, H. Dissolved organic carbon transport in the Qilian mountainous areas of China. Hydrol. Process. 2020, 34, 4985–4995. [Google Scholar] [CrossRef]
- Hu, L.; Wang, Z.; Tian, W.; Zhao, J. Coupled surface water-groundwater model and its application in the arid Shiyang River basin, China. Hydrol. Process. Int. J. 2009, 23, 2033–2044. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Zhang, X.; Tong, H.; Zhang, W.; Liu, Y. Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation. Sustainability 2021, 13, 5732. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Zhu, H.; Dang, X.; Ynang, Z.; Yin, L. Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang RiverBasin, NW China. Catena 2012, 95, 33–41. [Google Scholar] [CrossRef]
- Wang, Z.; Ficklin, D.L.; Zhang, Y.; Zhang, M. Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China. Hydrol. Process. 2011, 26, 2733–2744. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J.; Shen, B.; Shen, Q.; Yang, D.; Tian, F.; Tang, L.; Liu, Z. Study on Countermeasures for Water Resources Shortage and Changes of Ecological Environment in Shiyang River Basin; IAHS-AISH Publication: Wallingford, UK, 2008. [Google Scholar]
- Bao, C.; Fang, C. Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China. Ecol. Econ. 2007, 62, 508–517. [Google Scholar] [CrossRef]
- Chen, M.; Wang, P.; Chen, L. Population Distribution Evolution Characteristics and Shift Growth Analysis in Shiyang River Basin. J. Geosci. 2014, 5, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Wilson, J.P.; Gallant, J.C. Terrain Analysis. In The Handbook of Geographic Information Science; Wilson, J.P., Fotheringham, A.S., Eds.; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Pan, N.; Lin, J.; Xu, C.; Wang, F.; Liu, Z. Greening and Browning of the Hexi Corridor in Northwest China: Spatial Patterns and Responses to Climatic Variability and Anthropogenic Drivers. Remote Sens. 2018, 10, 1270. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Du, W.; Chen, J.; Wang, C.; Wang, J.; Sun, W.; Chai, X.; Ma, L.; Xu, Z. Climatic and Topographical Effects on the Spatiotemporal Variations of Vegetation in Hexi Corridor, Northwestern China. Diversity 2022, 14, 370. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Poppiel, R.R.; Ruiz, L.F.C.; Bonfatti, B.R.; Mello, F.A.M.; Rizzo, R.; Demattê, J.A.M. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 400. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, B.; Xi, X.; Xing, Q. Classification system of China land cover for carbon budget. Acta Ecol. Sin. 2014, 34, 7158–7166. [Google Scholar] [CrossRef] [Green Version]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 1–17. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Xue, X.; Liao, J.; Ghada, S.; Huang, C.; Duan, H.; Song, X. Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sens. Appl. Soc. Environ. 2022, 28, 100847. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y. Identification of the driving factors’ influences on regional energy-related carbon emissions in China based on geographical detector method. Environ. Sci. Pollut. Res. 2018, 25, 9626–9635. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban. Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Pan, J.; Zhang, Y.; Dang, X.; Cao, X.; Cui, J.; Yang, Z. Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China. Sustainability 2022, 14, 9659. [Google Scholar] [CrossRef]
- Yin, H.; Chen, C.; Dong, Q.; Zhang, P.; Chen, Q.; Zhu, L. Analysis of Spatial Heterogeneity and Influencing Factors of Ecological Environment Quality in China’s North-South Transitional Zone. Int. J. Environ. Res. Public Health 2022, 19, 2236. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, F.; Xu, C.; Li, B.; Guo, L.; Wang, Z. Evaluating the suitability of urban development land with a Geodetector. Ecol. Indic. 2021, 123, 107339. [Google Scholar] [CrossRef]
- Liang, X.; Li, P.; Wang, J.; Chan, F.K.; Togtokh, C.; Ochir, A.; Davaasuren, D. Research Progress of Desertification and Its Prevention in Mongolia. Sustainability 2021, 13, 6861. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Wu, P. Robust geographical detector. Int. J. Appl. Earth Obs. Geoinf. 2022, 109. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIsci Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, T.; Watson, J. Scenario analysis of China’s emissions pathways in the 21st century for low carbon transition. Energy Policy 2010, 38, 3537–3546. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Cao, F.; Ge, Y.; Wang, J. Optimal discretization for geographical detectors-based risk assessment. GIsci Remote Sens. 2013, 50, 78–92. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, J.; Bao, Y.; Zhang, F. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China. Sustainability 2016, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Wang, M.; Zhou, C.; Yang, Q. Analysis of the spatial association of geographical detector-based landslides and environmental factors in the southeastern Tibetan Plateau, China. PLoS ONE 2021, 16, e0251776. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Recent Trends of Annual Aridity Indices and Classification of Arid Regions with Satellite-Based Aridity Indices. Remote Sens. Earth Syst. Sci. 2019, 2, 88–95. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Use of a Satellite-Based Aridity Index to Monitor Decreased Soil Water Content and Grass Growth in Grasslands of North-East Asia. Remote Sens. 2020, 12, 3556. [Google Scholar] [CrossRef]
- Kirkham, M.B. Potential Evapotranspiration. In Principles of Soil and Plant Water Relations, 2nd ed; Academic Press: Cambridge, MA, USA, 2014; pp. 501–514. [Google Scholar] [CrossRef]
- Niu, K.; Qiu, J.; Cai, S.; Zhang, W.; Mu, X.; Park, E.; Yang, X. Use of a MODIS Satellite-Based Aridity Index to Monitor Drought Conditions in the Pearl River Basin from 2001 to 2021. ISPRS Int. J. Geo-Inf. 2022, 11, 541. [Google Scholar] [CrossRef]
- Kimura, R.; Moriyama, M. Determination by MODIS satellite-based methods of recent global trends in land surface aridity and degradation. J. Agric. Meteorol. 2019, 75, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R.; Moriyama, M. Use of A MODIS Satellite-Based Aridity Index to Monitor Drought Conditions in Mongolia from 2001 to 2013. Remote Sens. 2021, 13, 2561. [Google Scholar] [CrossRef]
- Stefanidis, K.; Kostara, A.; Papastergiadou, E. Implications of Human Activities, Land Use Changes and Climate Variability in Mediterranean Lakes of Greece. Water 2016, 8, 483. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra, R.A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Gabriel, C.B. The modified Mann-Kendall test: On the performance of three variance correction approaches. Agrometeorology 2013, 72, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Lamchin, M.; Lee, W.K.; Seong, W.J.; Sonam, W.W.; Lim, C.; Song, C.; Sung, M. Corrigendum to “Mann-Kendall Monotonic Trend Test and Correlation Analysis using Spatio-temporal Dataset: The case of Asia using vegetation greenness and climate factors”. MethodsX 2019, 6, 1379–1383. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Theil’s Contributions to Economics and Econometrics. Advanced Studies in Theoretical and Applied Econometrics; Raj, B., Koerts, J., Eds.; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar] [CrossRef]
- Akritas, M.G.; Murphy, S.A.; La Valley, M. The Theil-Sen Estimator with Doubly Censored Data and Applications to Astronomy. J. Am. Stat. Assoc. 1995, 90, 170–177. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Maestre, F.T.; Kemp, P.R.; Smith, D.M.S.; Lambin, E. Natural and Human Dimensions of Land Degradation in Drylands: Causes and Consequences. In Terrestrial Ecosystems in a Changing World. Global Change; Canadell, J.G., Pataki, D.E., Pitelka, L.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 247–257. [Google Scholar] [CrossRef]
- Hu, X.; Jin, Y.; Ji, L.; Zeng, J.; Cui, Y.; Song, Z.; Sun, D.; Cheng, G. Land use/cover change and its eco-environment effects in Shiyang River Basin. In Proceedings of the 4th International Conference on Water Resource and Environment (WRE 2018), Kaohsiung City, Taiwan, 17–21 July 2018. [Google Scholar]
- Lancaster, N. Response of Aeolian Processes and Landforms to Climate Change and Variability. In Treatise on Geomorphology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 9, pp. 318–339. [Google Scholar]
- Zhang, F.; Wang, C.; Wang, Z. Response of Natural Vegetation to Climate in Dryland Ecosystems: A Comparative Study between Xinjiang and Arizona. Remote Sens. 2020, 12, 3567. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Webb, N.P. Vegetation in Drylands: Effects on Wind Flow and Aeolian Sediment Transport. Land 2017, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, N. Response of eolian geomorphic systems to minor climate change: Examples from the southern Californian deserts. Geomorphology 1997, 19, 333–347. [Google Scholar] [CrossRef]
- Alvarez, L.J.; Epstein, H.E.; Li, J.; Okin, G.S. Aeolian process effects on vegetation communities in an arid grassland ecosystem. Ecol. Evol. 2012, 2, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Heindel, R.C.; Culler, L.E.; Virginia, R.A. Rates and processes of aeolian soil erosion in West Greenland. Holocene 2017, 27, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Catto, N.R.; Bachhuber, F.W. Aeolian Geomorphic Response to Climate Change: An Example from the Estancia Valley, Central New Mexico, USA. In Linking Climate Change to Land Surface Change; McLaren, S.J., Kniveton, D.R., Eds.; Springer: Dordrecht, The Netherlands, 2000; Volume 6. [Google Scholar]
- Dousari, A.A.; Ramadan, A.; Qattan, A.A.; Arteeqi, S.A.; Dashti, H.; Ahmed, M.; Dousari, N.A.; Hashash, N.A.; Othman, A. Cost and effect of native vegetation change on aeolian sand, dust, microclimate and sustainable energy in Kuwait. J. Taibah Univ. Sci. 2020, 14, 628–639. [Google Scholar] [CrossRef]
- Edwards, B.L.; Webb, N.P.; Brown, D.P.; Elias, E.; Peck, D.E.; Pierson, F.B.; Williams, C.J.; Herrick, J.E. Climate change impacts on wind and water erosion on US rangelands. J. Soil Water Conserv. 2019, 74, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Li, X.; Zhou, X.; Zhao, K.; Yang, Q. Holocene Vegetation Succession and Response to Climate Change on the South Bank of the Heilongjiang-Amur River, Mohe County, Northeast China. Adv. Meteorol. 2016, 2450697, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Tomar, U.K.; Singh, B.; Sharma, S. A Manual for Dryland Afforestation and Management; Scientific Publishers—AFARI: Jodhpur, India, 2017. [Google Scholar]
- Wu, J.; Kurosaki, Y.; Du, C. Evaluation of Climatic and Anthropogenic Impacts on Dust Erodibility: A Case Study in Xilingol Grassland, China. Sustainability 2020, 12, 629. [Google Scholar] [CrossRef] [Green Version]
- Ishizuka, M.; Mikami, M.; Yamada, Y.; Zeng, F. Threshold Friction Velocities of Saltation Sand Particles for Different Soil Moisture Conditions in the Taklimakan Desert. SOLA 2009, 5, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Singh, V.P.; Niu, J.; Hao, L. Spatiotemporal trends of aridity index in Shiyang River basin of northwest China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1571–1582. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y. Environmental Restoration in the Shiyang River Basin, China: Conservation, Reallocation and More Efficient Use of Water. Aquat. Procedia 2014, 2, 24–34. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, Z.; Meng, J.; Wu, S.; Zhu, S.; Zhang, Q.; Zheng, Z. Analysis of Runoff Variation and Future Trends in a Changing Environment: Case Study for Shiyanghe River Basin, Northwest China. Sustainability 2023, 15, 2173. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Wang, J.; Chen, Y.; Xiong, N.; Wang, Z.; Wang, J.; Xu, J. Impacts of Climate Change and Human Activities on NDVI in the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 587. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Li, X. Responses of vegetation growth to climate change over the Tibetan Plateau from 1982 to 2018. Environ. Res. Commun. 2022, 4, 045007. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, R.; Singh, V.P.; Xu, C.; Fan, K.; Shen, Z.; Wang, G.; Zhao, J. Dynamic vulnerability of ecological systems to climate changes across the Qinghai-Tibet Plateau, China. Ecol. Indic. 2022, 134, 108483. [Google Scholar] [CrossRef]
- Xu, C.D.; Wang, R.R.; Ding, L.Y.; Wen, Q.Y. Study on the Climate Change of Shiyang River Basin in Chinese Arid Inland Area. CEt 2015, 46, 769–774. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y. Verification of watershed vegetation restoration policies, arid China. Sci. Rep. 2016, 6, 30740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Ma, J.; Peng, H.; Wang, S.; Wei, J. Spatiotemporal changes of vegetation and their responsesto temperature and precipitation in upper Shiyang river basin. Adv. Space Res. 2017, 60, 969–979. [Google Scholar] [CrossRef]
- Dregne, H.E. Physics of desertification. In Desertification of Arid Lands; El-Baz, F., Hassan, M.H.A., Eds.; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Lin, N.F.; Tang, J. Geological environment and causes for desertification in arid-semiarid regions in China. Env. Geol. 2002, 41, 806–815. [Google Scholar] [CrossRef]
- Chen, N.; Guo, C.; Li, Z.; Liu, L. The grassland degradation problems of the Minqin oasis, in the lower reaches of the Shiyang River Basin. Acta Pratacult. Sin. 2010, 19, 62–71. [Google Scholar]
- Li, B. Soil Salinization. In Desertification and Its Control in China; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, D. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Zhu, G.; Wang, Y.; Ma, X.; Wang, J.; Guo, H.; Zhang, Y. Soil salinization in the oasis areas of downstream inland rivers —Case Study: Minqin oasis. Math. Probl. Eng. 2020, 537, 69–78. [Google Scholar] [CrossRef]
- Li, F.; Zhu, G.; Guo, C. Shiyang River ecosystem problems and countermeasures Int. J. Agric. Sci. 2013, 4, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Di Prima, S.; Stewart, R.; Biddocu, M.; Rahmati, M.; Alagna, V. Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas. Water 2022, 14, 1830. [Google Scholar] [CrossRef]
- Wei, W.; Shi, P.; Zhao, J.; Wang, X.; Wang, X. Environmental Suitability Evaluation for Human Settlements in Arid Inland River Basin-A Case Study on the Shiyang River Basin. Adv. Mat. Res. 2012, 518–523, 4874–4884. [Google Scholar] [CrossRef]
- Kang, S.; Su, X.; Tong, L.; Zhang, J.; Zhang, L. A warning from an ancient oasis: Intensive human activities are leading to potential ecological and social catastrophe. Int. J. Sustain. Dev. 2010, 15, 440–447. [Google Scholar] [CrossRef]
- Jun, Z.; Ming, L.; Qiang, C.; Min, W.; Xin, P. Impacts of changing conditions on the ecological environment of the Shiyang River Basin, China. Water Supply 2022, 22, 5689. [Google Scholar] [CrossRef]
- Du, Z.; Xu, X.; Zhang, H.; Wu, Z.; Liu, Y. Geographical Detector-Based Identification of the Impact of Major Determinants on Aeolian Desertification Risk. PLoS ONE 2016, 11, e0151331. [Google Scholar] [CrossRef]
- Xu, C.; Li, Y.; Wang, J.; Xiao, G. Spatial-temporal detection of risk factors for bacillary dysentery in Beijing, Tianjin and Hebei, China. BMC Public Health 2017, 17, 743. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.; Hu, T. Geographical Detector-Based Spatial Modeling of the COVID-19 Mortality Rate in the Continental United States. Int. J. Environ. Res. Public Health 2021, 18, 6832. [Google Scholar] [CrossRef]
- Weber, K.; Horst, S. Desertification and livestock grazing: The roles of sedentarization, mobility and rest. Pastoralism 2011, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Wei, L.; Liu, Y.; Zhang, Y. Impact of desertification and global warming on soil carbon in northern China. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
Demonstration of Interaction Relationship | Factor Interaction Type |
---|---|
q (Xi ∩ Xj) < Min (q (Xi), q (Xj)) | The factors are weakened and non-linear. |
Min (q (Xi), q (Xj)) < q (Xi ∩ Xj) < Max (q (Xi)), q (Xj)) | The factors are weakened and univariate. |
q (Xi ∩ Xj) > Max (q(Xi), q (Xj)) | The factors are enhanced & bivariate |
q (Xi ∩ Xj) = q (Xi) + q (Xj) | The factors are independent. |
q (XiXj) > q (Xi) + q (Xj) | The factors are enhanced and non-linear. |
Climate Type | Aridity Index Range | SaBiA |
---|---|---|
Hyper-arid | <0.05 | SbAI > 0.025 |
Arid | 0.05–0.20 | 0.022 ≤ SbAI ≤ 0.025 |
Semi-arid | 02–0.5 | 0.017 ≤ SbAI < 0.022 |
Dry sub-humid | 0.5–0.75 | 0.015 ≤ SbAI < 0.017 |
Humid | >0.75 | <0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngabire, M.; Wang, T.; Liao, J.; Sahbeni, G. Quantitative Analysis of Desertification-Driving Mechanisms in the Shiyang River Basin: Examining Interactive Effects of Key Factors through the Geographic Detector Model. Remote Sens. 2023, 15, 2960. https://doi.org/10.3390/rs15122960
Ngabire M, Wang T, Liao J, Sahbeni G. Quantitative Analysis of Desertification-Driving Mechanisms in the Shiyang River Basin: Examining Interactive Effects of Key Factors through the Geographic Detector Model. Remote Sensing. 2023; 15(12):2960. https://doi.org/10.3390/rs15122960
Chicago/Turabian StyleNgabire, Maurice, Tao Wang, Jie Liao, and Ghada Sahbeni. 2023. "Quantitative Analysis of Desertification-Driving Mechanisms in the Shiyang River Basin: Examining Interactive Effects of Key Factors through the Geographic Detector Model" Remote Sensing 15, no. 12: 2960. https://doi.org/10.3390/rs15122960
APA StyleNgabire, M., Wang, T., Liao, J., & Sahbeni, G. (2023). Quantitative Analysis of Desertification-Driving Mechanisms in the Shiyang River Basin: Examining Interactive Effects of Key Factors through the Geographic Detector Model. Remote Sensing, 15(12), 2960. https://doi.org/10.3390/rs15122960