Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Normalised Channel Steepness (ksn)
2.2.2. Hypsometric Integral (HI)
2.2.3. Ratios of Valley Floor Width to Valley Height (Vf)
2.2.4. χ and Gilbert Metrics
3. Results
3.1. Geomorphic Indices
3.2. χ and Gilbert Metrics
4. Discussion
4.1. Influencing Factors
4.2. Divide Migration
4.3. Tectonic Implications
4.4. The Model of Geomorphic Evolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Research Group of “Active Fault System around Ordos Margin”. State Seismological Administration. Active Fault System around Ordos, 1st ed.; Seismological Press: Beijing, China, 1988. [Google Scholar]
- Chen, L.; Ran, Y.; Yang, X. Late Quarternary Activity and Segmentation Model of the Sertengshan Piedmont Fault. Earthq. Res. China 2003, 19, 255–265. [Google Scholar]
- Zhang, H.; He, Z.; Ma, B.; Long, J.; Liang, K.; Wang, J. The vertical slip rate of the Sertengshan piedmont fault, Inner Mongolia, China. J. Asian Earth Sci. 2017, 143, 95–108. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Ma, B.; Long, J.; Wang, J.; Zhang, H. New Progress in Paleoearthquake Studies of the East Sertengshan Piedmont Fault, Inner Mongolia, China. J. Earth Sci. 2018, 29, 441–451. [Google Scholar] [CrossRef]
- Yang, X.; Ran, Y.; Hu, B.; Guo, W. Active Fault and Paleoearthquakes of the Piedmont Fault (Wuju-Mengkou-Dongfeng Village) for Seertang Mountains, Inner Mongolia. Earthq. Res. China 2002, 18, 9–22. [Google Scholar]
- Zhang, H. Late Quanternary Activity of the Sertengshan Piedmont Fault Zone; The Institute of Crustal Dynamics, CEA: Beijing, China, 2017. [Google Scholar]
- Chen, L.; Ran, Y.; Chang, Z. Characteristics of Late Quaternary Faulting and Paleoseismic Events on the East of Delingshan Segment of the Sertengshan Piedmont Fault. Seismol. Geol. 2003, 25, 555–565. [Google Scholar]
- Long, J.; He, Z.; Zhang, H.; Ma, B. Characteristics of Structural Geomorphology and Segmentation of Sertengshan Piedmont Fault from Dahoudian to Wayaotan. Geoscience 2017, 31, 71–80. [Google Scholar]
- Liang, K.; Ma, B.; Tian, Q.; Liu, S. Tectonic Evolution of the Turning Point of the Eastern and Western Section of the Seertengshan Piedmont Fault. Technol. Earthq. Disaster Prev. 2019, 14, 600–616. [Google Scholar]
- Dong, S.; Zhang, P.; Zheng, W.; Yu, Z.; Lei, Q.; Yang, H.; Liu, J.; Gong, H. Paleoseismic observations along the Langshan range-front fault, Hetao Basin, China: Tectonic and seismic implications. Tectonophys. Int. J. Geotecton. Geol. Phys. Inter. Earth 2018, 730, 63–80. [Google Scholar] [CrossRef]
- Alipoor, R.; Poorkermani, M.; Zare, M.; Hamdouni, R.E. Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology 2011, 128, 1–14. [Google Scholar] [CrossRef]
- Hamdouni, R.E.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Kumar, N.; Dumka, R.K.; Mohan, K.; Chopra, S. Relative active tectonics evaluation using geomorphic and drainage indices, in Dadra and Nagar Haveli, western India. Geod. Geodyn. 2022, 13, 219–229. [Google Scholar] [CrossRef]
- Mahmood, S.A.; Gloaguen, R. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Saber, R.; Caglayan, A.; Isik, V. Relative tectonic activity assessment and kinematic analysis of the North Bozgush fault Zone, NW Iran. J. Asian Earth Sci. 2018, 164, 219–236. [Google Scholar] [CrossRef]
- Chen, Y.; Sung, Q.; Cheng, K. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 2003, 56, 109–137. [Google Scholar] [CrossRef]
- Chebotarev, A.; Arzhannikova, A.; Arzhannikov, S. Long-term throw rates and landscape response to tectonic activity of the Tunka Fault (Baikal Rift) based on morphometry. Tectonophysics 2021, 810, 228864. [Google Scholar] [CrossRef]
- Xie, H. Dynamic Divide Migration as a Response to Asymmetric Uplift: An Example from the Zhongtiao Shan, North China. Remote Sens. 2020, 12, 4188. [Google Scholar] [CrossRef]
- Ye, Y.; Tan, X.; Zhou, C. Initial topography matters in drainage divide migration analysis: Insights from numerical simulations and natural examples. Geomorphology 2022, 409, 108266. [Google Scholar] [CrossRef]
- He, C.; Rao, G.; Yang, R.; Hu, J.; Qi, Y.; Ci, J. Divide migration in response to asymmetric uplift: Insights from the Wula Shan horst, North China. Geomorphology 2019, 339, 44–57. [Google Scholar] [CrossRef]
- Willett, S.D.; Mccoy, S.W.; Perron, J.T.; Goren, L.; Chen, C. Dynamic Reorganization of River Basins. Science 2014, 343, 1117. [Google Scholar] [CrossRef]
- Whipple, K.X.; Forte, A.M.; Dibiase, R.A.; Gasparini, N.M.; Ouimet, W.B. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. J. Geophys. Res. Earth Surf. 2017, 122, 248–273. [Google Scholar] [CrossRef]
- Zeng, X.; Tan, X. Drainage divide migration in response to strike-slip faulting: An example from northern Longmen Shan, eastern Tibet. Tectonophysics 2023, 848, 229720. [Google Scholar] [CrossRef]
- Forte, A.M.; Whipple, K.X. Criteria and tools for determining drainage divide stability. Earth Planet. Sci. Lett. 2018, 493, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Tan, X.; Liu, Y.; Shi, F. A cross-divide contrast index (C) for assessing controls on the main drainage divide stability of a mountain belt. Geomorphology 2022, 398, 108071. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Ye, P.; He, Z.; Fu, L.; Jia, L.; He, X. Extraction of tectonic geomorphologic parameters based on DEM and analysis of difference on tectonic activity about Langshan Mountain, Inner Mongolia. J. Geomech. 2016, 22, 152–161. [Google Scholar]
- Dong, S.; Zhang, P.; Zheng, H.; Zheng, W.; Chen, H. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications. J. Earth Sci. 2018, 29, 197–213. [Google Scholar] [CrossRef]
- He, C.; Cheng, Y.; Rao, G.; Chen, P.; Hu, J.; Yu, Y.; Yao, Q. Geomorphological signatures of the evolution of active normal faults along the Langshan Mountains, North China. Geodin. Acta 2018, 30, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Fan, L. The Indicating Significance of the Geomorphic Parameters of the Lateral Water System in Wula Mountain, Inner Mongolia, to the Uplift of the Mountain. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. [Google Scholar]
- Gao, Z.; Liu, X.; Shao, Y.; Xie, H. Geomorphological Characteristics of Daqingshan Drainage Area in the Northern Margin of Hetao Basin. Seismol. Geol. 2019, 41, 1317–1332. [Google Scholar]
- Li, X. Bedrock Rivers in the Daqing Shan in Inner Mongolia, Northern China:Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution. Doctoral Dissertation, Institute of Geology, China Earthquake Administration, Beijing, China, 2020. [Google Scholar]
- Shahzad, F.; Gloaguen, R. TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Comput. Geosci. 2011, 37, 250–260. [Google Scholar] [CrossRef]
- Daxberger, H.; Dalumpines, R.; Scott, D.M.; Riller, U. The ValleyMorph Tool: An automated extraction tool for transverse topographic symmetry (T-) factor and valley width to valley height (Vf-) ratio. Comput. Geosci. 2014, 70, 154–163. [Google Scholar] [CrossRef]
- Jaiswara, N.K.; Kotluri, S.K.; Pandey, P.; Pandey, A.K. MATLAB functions for extracting hypsometry, stream-length gradient index, steepness index, chi gradient of channel and swath profiles from digital elevation model (DEM) and other spatial data for landscape characterisation. Appl. Comput. Geosci. 2020, 7, 100033. [Google Scholar] [CrossRef]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2—MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Forte, A.M.; Whipple, K.X. Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox. Earth Surf. Dyn. 2019, 7, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Snyder, N.P.; Whipple, K.X.; Tucker, G.E.; Merritts, D.J. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 2000, 112, 1250–1263. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geol. Soc. Am. 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Venditti, J.G.; Li, T.; Deal, E.; Dingle, E.; Church, M. Struggles with stream power: Connecting theory across scales. Geomorphology 2020, 366, 106817. [Google Scholar] [CrossRef]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. Geol. Soc. Am. 2006, 398, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.D.; Kerby, G. Channel changes in badlands. Geol. Soc. Am. Bull. 1983, 94, 739–752. [Google Scholar] [CrossRef]
- Howard, A.D.; Dietrich, W.E.; Seidl, M.A. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 1994, 99, 13971–13986. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 1952, 63, 1117. [Google Scholar] [CrossRef]
- Wilson, R. Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis. Geol. Soc. Am. Bull. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Davis, W.M. The geographical cycle. Geogr. J. 1899, 14, 481–504. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic Geomorphology North and South of the Garlock Fault, California. In Geomorphology in Arid Regions; Routledge: London, UK, 1980; pp. 115–138. [Google Scholar] [CrossRef]
- Ntokos, D.; Lykoudi, E.; Rondoyanni, T. Geomorphic analysis in areas of low-rate neotectonic deformation: South Epirus (Greece) as a case study. Geomorphology 2016, 263, 156–169. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, R.; He, C.; He, J. Caution on determining divide migration from cross-divide contrast in χ. Geol. J. 2022, 57, 4090–4098. [Google Scholar] [CrossRef]
- Dal Pai, M.O.; Salgado, A.A.R.; de Sordi, M.V.; de Carvalho Junior, O.A.; de Paula, E.V. Comparing morphological investigation with χ index and gilbert metrics for analysis of drainage rearrangement and divide migration in inland plateaus. Geomorphology 2023, 423, 108554. [Google Scholar] [CrossRef]
- Amine, A.; El ouardi, H.; Zebari, M.; Ei makrini, H. Active tectonics in the Moulay Idriss Massif (South Rifian Ridges, NW Morocco): New insights from geomorphic indices and drainage pattern analysis. J. Afr. Earth Sci. 2020, 167, 103833. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Yu, Y.; Zhang, H.; Su, Q.; Miao, X.; Lu, H. The impacts of base level and lithology on fluvial geomorphic evolution at the tectonically active Laohu and Hasi Mountains, northeastern Tibetan Plateau. Sci. China Earth Sci. 2021, 51, 994–1008. [Google Scholar] [CrossRef]
- Bai, L.; Tan, X.; Zhou, C. Drainage divide stability at Wulashan, northern margin of the Ordos block, China: Evidence from the analysis of χ value. J. Geomech. 2022, 28, 513–522. [Google Scholar]
- Shi, X.; Yang, Z.; Dong, Y.; Zhou, B. Tectonic uplift of the northern Qinling Mountains (Central China) during the late Cenozoic: Evidence from DEM-based geomorphological analysis. J. Asian Earth Sci. 2019, 184, 104005. [Google Scholar] [CrossRef]
- Nativ, R.; Haviv, I. Constraining channel steepness index as a proxy for incision rate: Evolution of bedrock channels along the Golan Heights volcanic plateau. In Proceedings of the Israel Geological Society Meeting, Mizpe Ramon, Israel; 2017. [Google Scholar] [CrossRef]
- Hu, X.; Pan, B.; Kirby, E.; Li, Q.; Geng, H.; Chen, J. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chin. Sci Bull 2010, 55, 3205–3214. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Vanacker, V.; Blanckenburg, F.V.; Govers, G.; Molina, A.; Campforts, B.; Kubik, P.W. Transient river response, captured by channel steepness and its concavity. Geomorphology 2015, 228, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquake, Uplift, and Landscape, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Dong, S. Late Quaternary Tectonic Activity and Paleoseismology along the Langshan Range-Front Fault. Doctoral Dissertation, Institute of Geology, China Earthquake Administration, Beijing, China, 2016. [Google Scholar]
- Duvall, A.; Kirby, E.; Burbank, D. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. J. Geophys. Res. Earth Surf. 2004, 109, F03002. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Zhang, X.; He, Z.; He, X.; Wu, F.; Zhou, Y.; Fu, L.; Zhao, J. Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China. Geomorphology 2015, 234, 109–121. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, X.; Ye, P.; Zhao, X.; He, Z.; He, X.; Zhou, Q.; Li, J.; Ye, M.; Wang, Z.; et al. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China: Implications for the evolution of the Yellow River in the Hetao area since the late Pleistocene. Geomorphology 2016, 263, 87–98. [Google Scholar] [CrossRef]
- Ackermann, R.V.; Schlische, R.W.; Withjack, M.O. The geometric and statistical evolution of normal fault systems: An experimental study of the effects of mechanical layer thickness on scaling laws. J. Struct. Geol. 2001, 23, 1803–1819. [Google Scholar] [CrossRef]
- Cowie, P.A.; Sornette, D.; Vanneste, C. Multifractal Scaling Properties of a Growing Fault Population. Geophys. J. Int. 1995, 122, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Cowie, P.A.; Vanneste, C.; Sornette, D. Statistical physics model for the spatiotemporal evolution of faults. J. Geophys. Res. Solid Earth 1993, 98, 21809–21821. [Google Scholar] [CrossRef]
- Crider, J.G.; Pollard, D.D. Fault linkage: Three-dimensional mechanical interaction between echelon normal faults. J. Geophys. Res. Solid Earth 1998, 103, 24373–24391. [Google Scholar] [CrossRef]
- Trudgill, B.; Cartwright, J. Relay-ramp forms and normal-fault linkages, Canyonlands National Park, Utah. Geol. Soc. Am. Bull. 1994, 106, 1143–1157. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J. Geometry and development of relay ramps in normal fault systems. AAPG Bull. 1994, 78, 147–165. [Google Scholar] [CrossRef]
- Loget, N.; Driessche, J. Wave train model for knickpoint migration. Geomorphology 2009, 106, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; He, Z.; Ma, B.; Tian, Q.; Liu, S. Joint-rupture pattern and newly generated structure of fault intersections on the northern margin of the Linhe Basin, northwestern Ordos Block, China. Tectonics 2021, 40, e2021TC006845. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, J.; Lin, Y.; Qi, J.; Zhang, B.; Niu, P.; Yun, L.; Zhang, Y.; Wang, Y. Relay structures and linkage characteristics of normal fault: An example from the Langshan piedmont normal fault zone. Acta Geol. Sin. 2019, 93, 1601–1617. [Google Scholar]
- Zhao, H.; Zhang, J.; Li, Y.; Qü, J.; Zhang, B.; Zhang, Y.; Yun, L.; Wang, Y. Characteristics of Cenozoic faults in Langshan area, Inner Mongolia: Constraint on the development of normal faults. Geol. China 2019, 46, 1433–1453. [Google Scholar]
- Shi, F.; Tan, X.; Zhou, C.; Liu, Y. Impact of asymmetric uplift on mountain asymmetry: Analytical solution, numerical modeling, and natural examples. Geomorphology 2021, 389, 107862. [Google Scholar] [CrossRef]
Channel Number | Channel Length (km) | Drainage Area (km2) | ksn | HI | Vf |
---|---|---|---|---|---|
1 | 18.0415 | 88.68 | 69.7042 | 0.5296 | 0.5390 |
2 | 30.9545 | 169.40 | 47.9802 | 0.5370 | 1.2068 |
3 | 41.2436 | 294.86 | 39.2661 | 0.5036 | 4.9532 |
4 | 67.1569 | 771.96 | 31.4486 | 0.6026 | 6.8902 |
5 | 53.6410 | 332.82 | 27.3299 | 0.5685 | 14.1926 |
6 | 11.8655 | 64.01 | 31.6112 | 0.4833 | 2.4528 |
7 | 56.1104 | 368.46 | 31.8849 | 0.5922 | 7.5019 |
8 | 20.9291 | 100.96 | 24.6560 | 0.3525 | 2.9376 |
9 | 43.1443 | 511.60 | 27.5175 | 0.4467 | 1.2340 |
10 | 108.5899 | 1671.08 | 18.7664 | 0.4324 | 21.3076 |
11 | 99.8506 | 1982.52 | 19.6946 | 0.4820 | 15.9179 |
12 | 14.0053 | 60.97 | 15.0204 | 0.4906 | 7.6105 |
13 | 102.6259 | 611.18 | 20.5191 | 0.5485 | 17.6326 |
14 | 119.8767 | 2480.09 | 18.2455 | 0.6318 | 36.1077 |
15 | 22.6301 | 98.74 | 21.2843 | 0.3538 | 4.4545 |
16 | 51.2317 | 453.32 | 25.7044 | 0.4397 | 1.3657 |
17 | 114.3224 | 1993.47 | 20.1935 | 0.4757 | 32.8505 |
18 | 15.4526 | 63.98 | 28.1302 | 0.5127 | 3.4866 |
19 | 11.5364 | 64.43 | 31.1299 | 0.5767 | 6.0645 |
20 | 11.7734 | 87.85 | 23.5861 | 0.4914 | 5.0383 |
21 | 21.8073 | 203.29 | 21.5047 | 0.4309 | 7.3743 |
22 | 44.2517 | 434.99 | 19.7919 | 0.5077 | 6.6024 |
23 | 16.1142 | 60.89 | 11.8816 | 0.4740 | 6.4583 |
24 | 23.3534 | 62.69 | 16.1337 | 0.5932 | 4.6423 |
25 | 13.0265 | 57.22 | 16.1144 | 0.4944 | 3.3168 |
26 | 13.0265 | 39.80 | 16.7867 | 0.4736 | 2.4274 |
27 | 13.9020 | 46.71 | 19.5041 | 0.5588 | 10.2705 |
28 | 12.7873 | 38.38 | 16.0692 | 0.5484 | 3.5721 |
29 | 61.2326 | 372.94 | 17.1726 | 0.4946 | 6.1508 |
30 | 51.1520 | 330.33 | 18.6472 | 0.4266 | 5.4427 |
31 | 87.3702 | 605.25 | 15.1239 | 0.4305 | 37.8755 |
32 | 65.7811 | 492.32 | 16.8402 | 0.3653 | 2.2011 |
33 | 15.9333 | 114.98 | 9.8323 | 0.3936 | 16.5575 |
34 | 17.2439 | 70.30 | 10.3868 | 0.4575 | 28.0308 |
35 | 58.4227 | 808.73 | 16.7646 | 0.3781 | 21.2596 |
36 | 65.4357 | 813.99 | 11.7801 | 0.3685 | 12.6976 |
37 | 27.7993 | 73.11 | 7.4978 | 0.4981 | 19.5654 |
38 | 24.4831 | 182.21 | 8.9184 | 0.4264 | 9.7966 |
39 | 12.7595 | 50.27 | 12.3102 | 0.4010 | 12.9183 |
40 | 70.4409 | 697.61 | 24.2913 | 0.4536 | 2.8168 |
41 | 46.3211 | 395.42 | 22.2008 | 0.5393 | 0.8176 |
42 | 15.4153 | 63.44 | 13.6406 | 0.4196 | 10.0060 |
43 | 32.4410 | 120.77 | 20.7924 | 0.5183 | 1.8635 |
44 | 47.0339 | 295.04 | 21.7957 | 0.5376 | 2.1708 |
45 | 29.2615 | 100.06 | 19.4131 | 0.4602 | 8.1321 |
46 | 10.3806 | 32.82 | 14.1327 | 0.4385 | 10.2614 |
47 | 41.0706 | 191.94 | 21.6645 | 0.5063 | 2.3347 |
48 | 18.3920 | 75.17 | 13.1951 | 0.2948 | 10.8653 |
49 | 51.7964 | 509.43 | 19.7973 | 0.5060 | 4.1850 |
50 | 20.6488 | 144.76 | 18.2724 | 0.4967 | 15.7943 |
51 | 57.6715 | 754.55 | 17.5077 | 0.4656 | 9.1561 |
52 | 39.5572 | 215.53 | 17.3853 | 0.5039 | 15.9787 |
53 | 14.1947 | 63.68 | 13.2324 | 0.3737 | 17.9746 |
54 | 26.9263 | 101.91 | 14.3947 | 0.4323 | 7.1605 |
55 | 57.2147 | 347.74 | 14.4364 | 0.5491 | 13.4089 |
56 | 11.3504 | 43.12 | 11.7943 | 0.3930 | 25.4360 |
57 | 40.6436 | 250.15 | 13.8082 | 0.4305 | 7.5837 |
58 | 11.3401 | 26.09 | 7.3861 | 0.5179 | 9.8100 |
59 | 65.7696 | 656.90 | 15.15176 | 0.4533 | 23.5209 |
60 | 18.9097 | 101.16 | 13.9666 | 0.4196 | 15.1128 |
61 | 49.9219 | 581.19 | 12.7423 | 0.3228 | 11.2243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, K.; Dong, S.; Wang, Y. Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China. Remote Sens. 2023, 15, 3230. https://doi.org/10.3390/rs15133230
Shen K, Dong S, Wang Y. Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China. Remote Sensing. 2023; 15(13):3230. https://doi.org/10.3390/rs15133230
Chicago/Turabian StyleShen, Kainan, Shaopeng Dong, and Yizhou Wang. 2023. "Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China" Remote Sensing 15, no. 13: 3230. https://doi.org/10.3390/rs15133230
APA StyleShen, K., Dong, S., & Wang, Y. (2023). Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China. Remote Sensing, 15(13), 3230. https://doi.org/10.3390/rs15133230