About the Assessment of Cover Crop Albedo Potential Cooling Effect: Risk of the Darkening Feedback Loop Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Climatic Data
2.1.2. ECOCLIMAP Classification
2.1.3. Vegetation Indices and Albedo Products
2.2. Calculation of the CC Albedo Effect
2.2.1. Regions and Periods of Cover Crop Introduction
- The fallow period after a summer crop and before a winter crop was considered too short for a CC introduction (no CC on RSW, see Table 1).
- The CC are introduced after winter crops and before summer crops or between two summer crops. Note that the RSW and RWS crop rotations are identical with a one-year shift.
- If the sowing date of the crop following the CC occurs in spring or in summer (i.e., before 21 September), at least one month of bare soil is required before the sowing of the following crop, causing early CC destruction. These agronomical rules typically aim at reducing water consumption before the sowing of a summer crop and reducing water stress at emergence.
- If the sowing date of the crop following the CC occurs after early fall (i.e., after 21 September), no fallow period is needed before the next crop. Therefore, the CC is destroyed at the same time as the sowing of the following crop.
- The value of αVEG_CC does not exceed 0.95 of the maximum value of αVEG in a given grid cell.
- That vegCC is defined by a constant value corresponding to 0.95 of the maximum vegetation index of the winter crop of the same pixel. A linear interpolation is applied for the first 32 days (4 × 8 days) to reach this value, which corresponds to the CC development.
2.2.2. Influence of Snow and SOC on Surface Albedo
2.2.3. Radiative Forcing Calculation
2.2.4. Conversion into Equivalent CO2
2.3. Simulation Scenarios
3. Results
3.1. Analysis of the Results for Each Scenario
3.1.1. Effect of the Extension of the Duration of CC Introduction
3.1.2. Impact of Snow Cover
3.1.3. Impact of the Soil Albedo Decrease following CC Introduction
3.1.4. Impact of Drastic Soil Darkening
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014 Summary Chapter for Policymakers Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- FAO. 2015. FAO Statistical Databases. Available online: http://faostat.fao.org/ (accessed on 10 May 2023).
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Boyd, P.; Turner, S.; Jickells, T.; Liss, P. Designing the next generation of ocean iron fertilization experiments. Mar. Ecol. Prog. Ser. 2008, 364, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, K.; Bala, G.; Cao, L. The Science of Geoengineering. Annu. Rev. Earth Planet. Sci. 2013, 41, 231–256. [Google Scholar] [CrossRef]
- Bao, L.; Trachtenberg, M.C. Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline. J. Membr. Sci. 2006, 280, 330–334. [Google Scholar] [CrossRef]
- Gray, M.L.; Champagne, K.J.; Fauth, D.; Baltrus, J.P.; Pennline, H. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int. J. Greenh. Gas Control. 2008, 2, 3–8. [Google Scholar] [CrossRef]
- Mahmoudkhani, M.; Keith, D.W. Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis. Int. J. Greenh. Gas Control. 2009, 3, 376–384. [Google Scholar] [CrossRef]
- Latham, J.; Rasch, P.; Chen, C.-C.; Kettles, L.; Gadian, A.; Gettelman, A.; Morrison, H.; Bower, K.; Choularton, T. Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 3969–3987. [Google Scholar] [CrossRef]
- Crutzen, P.J. Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? Clim. Change 2006, 77, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 2009, 36, L19703. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Change 2009, 94, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Ten Hoeve, J.E. Effects of Urban Surfaces and White Roofs on Global and Regional Climate. J. Clim. 2012, 25, 1028–1044. [Google Scholar] [CrossRef]
- Ridgwell, A.; Singarayer, J.S.; Hetherington, A.M.; Valdes, P.J. Tackling Regional Climate Change by Leaf Albedo Bio-geoengineering. Curr. Biol. 2009, 19, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Singarayer, J.S.; Davies-Barnard, T. Regional climate change mitigation with crops: Context and assessment. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 4301–4316. [Google Scholar] [CrossRef] [Green Version]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning agriculture and climate policy. Nat. Clim. Change 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef] [Green Version]
- Lugato, E.; Cescatti, A.; Jones, A.; Ceccherini, G.; Duveiller, G. Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops. Environ. Res. Lett. 2020, 15, 094075. [Google Scholar] [CrossRef]
- Tribouillois, H.; Constantin, J.; Justes, E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Change Biol. 2018, 24, 2513–2529. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Carrer, D.; Meurey, C.; Ceamanos, X.; Roujean, J.-L.; Calvet, J.-C.; Liu, S. Dynamic mapping of snow-free vegetation and bare soil albedos at global 1 km scale from 10-year analysis of MODIS satellite products. Remote Sens. Environ. 2014, 140, 420–432. [Google Scholar] [CrossRef]
- Lenton, T.M.; Vaughan, N.E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 2009, 9, 5539–5561. [Google Scholar] [CrossRef] [Green Version]
- Sieber, P.; Ericsson, N.; Hansson, P.-A. Climate impact of surface albedo change in Life Cycle Assessment: Implications of site and time dependence. Environ. Impact Assess. Rev. 2019, 77, 191–200. [Google Scholar] [CrossRef]
- Carrer, D.; Pique, G.; Ferlicoq, M.; Ceamanos, X.; Ceschia, E. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 2018, 13, 044030. [Google Scholar]
- Pellerin, S.; Bamière, L.; Launay, C.; Martin, R.; Schiavo, M.; Angers, D.; Augusto, L.; Balesdent, J.; Doelsch, I.B.; Bellassen, V.; et al. Stocker du carbone dans les sols français, quel potentiel au regard de l’objectif 4 pour 1000 et à quel coût? INRA Science & Impact, 2019; p. 118. [Google Scholar]
- Hunter, M.C.; White, C.M.; Kaye, J.P.; Kemanian, A.R. Ground-Truthing a Recent Report of Cover Crop–Induced Winter Warming. Agric. Environ. Lett. 2019, 4, 190007. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J.; Karnieli, A.; Ben-Dor, E.; Królewicz, S.; Kaźmierowski, C. Shortwave Radiation Affected by Agricultural Practices. Remote Sens. 2018, 10, 419. [Google Scholar] [CrossRef] [Green Version]
- Ladoni, M.; Bahrami, H.A.; Alavipanah, S.K.; Norouzi, A.A. Estimating soil organic carbon from soil reflectance: A review. Precis. Agric. 2010, 11, 82–99. [Google Scholar] [CrossRef]
- Meyer, S.; Bright, R.M.; Fischer, D.; Schulz, H.; Glaser, B. Albedo Impact on the Suitability of Biochar Systems To Mitigate Global Warming. Environ. Sci. & Technol. 2012, 46, 12726–12734. [Google Scholar]
- Post, D.F.; Fimbres, A.; Matthias, A.D.; Sano, E.E.; Accioly, L.; Batchily, A.K.; Ferreira, L.G. Predicting Soil Albedo from Soil Color and Spectral Reflectance Data. Soil Sci. Soc. Am. J. 2000, 64, 1027. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Faroux, S.; Tchuenté, A.T.K.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev. 2013, 6, 563–582. [Google Scholar] [CrossRef] [Green Version]
- Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. Ecoclimap: A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Z.; Li, Z.; Erb, A.; Schaaf, C.B. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset. Int. J. Appl. Earth Obs. Geoinf. 2017, 14, 36–49. [Google Scholar] [CrossRef]
- Launay, C.; Constantin, J.; Chlebowski, F.; Houot, S.; Graux, A.; Klumpp, K.; Martin, R.; Mary, B.; Pellerin, S.; Therond, O. Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling. Glob. Change Biol. 2021, 27, 1645–1661. [Google Scholar] [CrossRef]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. DAYCENT and its land surface submodel: Description and testing. Glob. Planet. Change 1998, 19, 35–48. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Sakowska, K.; Alberti, G.; Genesio, L.; Peressotti, A.; Delle Vedove, G.; Gianelle, D.; Colombo, R.; Rodeghiero, M.; Panigada, C.; Juszczak, R.; et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant: Photosynthesis of a Chl-deficient mutant. Plant Cell Environ. 2018, 41, 1427–1437. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Pongratz, J.; 2014 Myhre, G.; Shindell, D.; Pongratz, J. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis; IPCC: Geneva, Switzerland, 2014; pp. 659–740. [Google Scholar]
- Cherubini, F.; Bright, R.M.; Strømman, A.H. Site-specific global warming potentials of biogenic CO2 for bioenergy: Contributions from carbon fluxes and albedo dynamics. Environ. Res. Lett. 2012, 7, 045902. [Google Scholar] [CrossRef]
- Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 2013, 13, 2793–2825. [Google Scholar] [CrossRef] [Green Version]
- Brisson, N.; Launay, M.; Mary, B.; Beaudoin, N. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model; Editions Quae: Versailles, France, 2009. [Google Scholar]
- Ceschia, E.; Mary, B.; Ferlicoq, M.; Pique, G.; Carrer, D.; Dejoux, J.-F.; Dedieu, G. Potentiel d’atténuation des changements climatiques par les couverts intermédiaires. Innov. Agron. 2017, 62, 43–58. [Google Scholar]
- Bright, R.M.; Bogren, W.; Bernier, P.; Astrup, R. Carbon-equivalent metrics for albedo changes in land management contexts: Relevance of the time dimension. Ecol. Appl. 2016, 26, 1868–1880. [Google Scholar] [CrossRef] [PubMed]
- Guardia, G.; Aguilera, E.; Vallejo, A.; Sanz-Cobena, A.; Alonso-Ayuso, M.; Quemada, M. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J. Clean. Prod. 2019, 241, 118307. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardozzi, D.L.; Bonan, G.B.; Wieder, W.; Grandy, A.S.; Morris, C.; Lawrence, D.L. Cover Crops May Cause Winter Warming in Snow-Covered Regions. Geophys. Res. Lett. 2018, 45, 9889–9897. [Google Scholar] [CrossRef]
- Davin, E.L.; Seneviratne, S.I.; Ciais, P.; Olioso, A.; Wang, T. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 2014, 111, 9757–9761. [Google Scholar] [CrossRef] [Green Version]
Year n | Year n+1 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J | F | M | A | M | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D | |
RSS | ||||||||||||||||||||||||
RWW | ||||||||||||||||||||||||
RSW | ||||||||||||||||||||||||
RWS |
Albedo Change | Cover Crop Introduction Area (km²) | Albedo-Induced Radiative Forcing (W.m−2) | Global Warming Potential (MtCO2-eq.yr−1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCarrer_et_al | SCC_extension | SSnow | SAlb_dec | SCarrer_et_al | SCC_extension | SSnow | SAlb_dec | SCarrer_et_al | SCC_extension | SSnow | SAlb_dec | SCarrer_et_al | SCC_extension | SSnow | SAlb_dec | |
Austria | 0.012 | 0.018 | 0.011 | 0.018 | 3093 | 7504 | −0.61 | −0.58 | −0.42 | −0.37 | 0.04 | 0.08 | 0.06 | 0.05 | ||
Belgium | 0.012 | 0.028 | 0.025 | 0.028 | 1973 | 3973 | −0.48 | −0.69 | −0.64 | −0.83 | 0.02 | 0.06 | 0.06 | 0.07 | ||
Bulgaria | 0.012 | 0.029 | 0.020 | 0.029 | 17,100 | 24,925 | −0.86 | −1.49 | −1.15 | −0.98 | 0.19 | 0.47 | 0.36 | 0.31 | ||
Croatia | 0.014 | 0.028 | 0.020 | 0.028 | 2580 | 5618 | −0.58 | −1.03 | −0.81 | −0.97 | 0.03 | 0.13 | 0.10 | 0.12 | ||
Cyprus | / | 0.010 | 0.010 | 0.010 | / | 323 | / | −2.04 | −2.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | ||
Czech Republic | 0.012 | 0.012 | 0.006 | 0.012 | 3474 | 25,066 | −0.51 | −0.30 | −0.19 | −0.24 | 0.03 | 0.12 | 0.07 | 0.09 | ||
Denmark | 0.012 | 0.004 | 0.003 | 0.004 | 1100 | 16,410 | −0.53 | −0.08 | −0.07 | −0.04 | 0.01 | 0.03 | 0.02 | 0.01 | ||
Estonia | 0.013 | 0.032 | 0.010 | 0.032 | 337 | 4186 | −0.22 | −0.33 | −0.17 | −0.18 | 0.00 | 0.02 | 0.01 | 0.01 | ||
Finland | 0.013 | 0.039 | 0.012 | 0.039 | 425 | 4986 | −0.24 | −0.34 | −0.21 | −0.34 | 0.00 | 0.06 | 0.04 | 0.06 | ||
France | 0.009 | 0.018 | 0.016 | 0.018 | 33,704 | 89,247 | −0.84 | −0.84 | −0.81 | −0.70 | 0.60 | 1.59 | 1.53 | 1.32 | ||
Germany | 0.011 | 0.009 | 0.007 | 0.009 | 15,713 | 87,383 | −0.63 | −0.26 | −0.22 | −0.24 | 0.18 | 0.41 | 0.35 | 0.39 | ||
Greece | 0.008 | 0.024 | 0.019 | 0.024 | 3899 | 6046 | −0.94 | −1.69 | −1.51 | −1.38 | 0.08 | 0.23 | 0.21 | 0.19 | ||
Hungary | 0.013 | 0.025 | 0.017 | 0.025 | 15,591 | 28,885 | −0.50 | −0.77 | −0.61 | −0.54 | 0.13 | 0.37 | 0.29 | 0.26 | ||
Ireland | 0.008 | 0.007 | 0.007 | 0.007 | 300 | 1541 | −0.47 | −0.20 | −0.20 | −0.24 | 0.01 | 0.01 | 0.01 | 0.01 | ||
Italy | 0.009 | 0.022 | 0.019 | 0.022 | 10,055 | 39,160 | −0.91 | −1.20 | −1.09 | −1.13 | 0.14 | 0.73 | 0.66 | 0.69 | ||
Latvia | 0.013 | 0.024 | 0.009 | 0.024 | 1320 | 8439 | −0.23 | −0.29 | −0.15 | −0.18 | 0.00 | 0.02 | 0.01 | 0.01 | ||
Lithuania | 0.013 | 0.022 | 0.009 | 0.022 | 2304 | 17,981 | −0.25 | −0.29 | −0.15 | −0.18 | 0.01 | 0.06 | 0.03 | 0.03 | ||
Luxembourg | 0.011 | 0.013 | 0.010 | 0.013 | 15 | 160 | −0.48 | −0.34 | −0.28 | −0.21 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Malta | / | 0.007 | 0.007 | 0.007 | / | 12 | / | −0.46 | −0.46 | −0.68 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Netherlands | 0.012 | 0.027 | 0.025 | 0.027 | 1773 | 4763 | −0.37 | −0.56 | −0.53 | −0.48 | 0.02 | 0.06 | 0.06 | 0.05 | ||
Norway | 0.013 | 0.030 | 0.008 | 0.030 | 120 | 1910 | −0.23 | −0.65 | −0.19 | −0.02 | 0.00 | 0.02 | 0.01 | 0.00 | ||
Poland | 0.011 | 0.013 | 0.007 | 0.013 | 24,639 | 96,582 | −0.43 | −0.28 | −0.20 | −0.20 | 0.14 | 0.36 | 0.25 | 0.25 | ||
Portugal | 0.007 | 0.026 | 0.026 | 0.026 | 657 | 1937 | −1.49 | −2.25 | −2.25 | −1.44 | 0.02 | 0.07 | 0.07 | 0.04 | ||
Romania | 0.013 | 0.031 | 0.020 | 0.031 | 32,526 | 54,608 | −0.62 | −1.14 | −0.83 | −0.93 | 0.34 | 1.05 | 0.76 | 0.85 | ||
Slovakia | 0.013 | 0.018 | 0.010 | 0.018 | 2892 | 8221 | −0.59 | −0.51 | −0.35 | −0.25 | 0.04 | 0.09 | 0.06 | 0.04 | ||
Slovenia | 0.014 | 0.030 | 0.019 | 0.030 | 327 | 510 | −0.57 | −1.02 | −0.72 | −0.74 | 0.01 | 0.02 | 0.01 | 0.01 | ||
Spain | 0.004 | 0.010 | 0.009 | 0.010 | 6386 | 26,206 | −0.77 | −1.03 | −1.01 | −0.90 | 0.09 | 0.49 | 0.48 | 0.43 | ||
Sweden | 0.014 | 0.025 | 0.011 | 0.025 | 590 | 9879 | −0.25 | −0.32 | −0.22 | −0.29 | 0.00 | 0.06 | 0.04 | 0.06 | ||
Switzerland | 0.011 | 0.012 | 0.006 | 0.012 | 290 | 998 | −0.67 | −0.49 | −0.31 | −0.33 | 0.01 | 0.02 | 0.01 | 0.01 | ||
United Kingdom | 0.010 | 0.004 | 0.004 | 0.004 | 4001 | 45,197 | −0.62 | −0.12 | −0.12 | −0.07 | 0.04 | 0.10 | 0.10 | 0.05 | ||
All | 0.011 | 0.017 | 0.012 | 0.017 | 18,7183 | 62,2656 | −0.66 | −0.62 | −0.52 | −0.50 | 2.17 | 6.74 | 5.68 | 5.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pique, G.; Carrer, D.; Lugato, E.; Fieuzal, R.; Garisoain, R.; Ceschia, E. About the Assessment of Cover Crop Albedo Potential Cooling Effect: Risk of the Darkening Feedback Loop Effects. Remote Sens. 2023, 15, 3231. https://doi.org/10.3390/rs15133231
Pique G, Carrer D, Lugato E, Fieuzal R, Garisoain R, Ceschia E. About the Assessment of Cover Crop Albedo Potential Cooling Effect: Risk of the Darkening Feedback Loop Effects. Remote Sensing. 2023; 15(13):3231. https://doi.org/10.3390/rs15133231
Chicago/Turabian StylePique, Gaétan, Dominique Carrer, Emanuele Lugato, Rémy Fieuzal, Raphaël Garisoain, and Eric Ceschia. 2023. "About the Assessment of Cover Crop Albedo Potential Cooling Effect: Risk of the Darkening Feedback Loop Effects" Remote Sensing 15, no. 13: 3231. https://doi.org/10.3390/rs15133231
APA StylePique, G., Carrer, D., Lugato, E., Fieuzal, R., Garisoain, R., & Ceschia, E. (2023). About the Assessment of Cover Crop Albedo Potential Cooling Effect: Risk of the Darkening Feedback Loop Effects. Remote Sensing, 15(13), 3231. https://doi.org/10.3390/rs15133231