Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai–Tibetan Plateau Using the New Ground Observation Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Gauge Precipitation Data
2.1.2. SPPs
2.2. Methods
2.2.1. Evaluation Criteria on Detecting Precipitation Occurrence
2.2.2. Evaluation Criteria for Simulating Precipitation Series
2.2.3. Comprehensive Evaluation Method
3. Results
3.1. Performance of SPPs in Detecting Precipitation Occurrence
3.2. Spatial and Temporal Performance of SPPs
3.3. Performance of SPPs at Measuring Precipitation Series
3.4. Comprehensive Evaluation of SPPs
4. Discussions
4.1. Limitations, Uncertainties and Novelty of the Study
4.2. The Performance of SPPs with Respect to Precipitation Levels, Indices, Spatial and Temporal Distribution
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golian, S.; Moazami, S.; Kirstetter, P.E.; Hong, Y. Evaluating the performance of merged multi-satellite precipitation products over a complex terrain. Water Resour. Manag. 2015, 29, 4885–4901. [Google Scholar]
- Terink, W.; Leijnse, H.; van den Eertwegh, G.; Uijlenhoet, R. Spatial resolutions in areal rainfall estimation and their impact on hydrological simulations of a lowland catchment. J. Hydrol. 2018, 563, 319–335. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, J.Z.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yang, T.; Zhang, S.; Zhao, F.; Hu, K.; Jiang, Y. Rainfall-induced landslides and debris flows in Mengdong Town, Yunnan Province, China. Landslides 2020, 17, 931–941. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Borga, M.; Creutin, J.D.; Marra, F. Estimation of debris flow triggering rainfall: Influence of rain gauge density and interpolation methods. Geomorphology 2015, 243, 40–50. [Google Scholar] [CrossRef]
- Kim, Y.H.; Mon, S.H.; Yoon, Y. Detection of precipitation and fog using machine learning on backscatter data from lidar ceilometer. Appl. Sci. 2020, 10, 6452. [Google Scholar] [CrossRef]
- McMurdie, L.A.; Heymsfield, G.M.; Yorks, J.E.; Braun, S.A.; Skofronick-Jackson, G.; Rauber, R.M.; Yuter, S.; Colle, B.; McFarquhar, G.M.; Poellot, M.; et al. Chasing snowstorms: The investigation of microphysics and precipitation for Atlantic coast-threatening snowstorms (IMPACTS) campaign. Bull. Am. Meteorol. Soc. 2022, 103, E1243–E1269. [Google Scholar] [CrossRef]
- Lolli, S.; Vivone, G.; Lewis, J.R.; Sicard, M.; Welton, E.J.; Campbell, J.R.; Comeron, A.; D’Adderio, L.P.; Tokay, A.; Giunta, A.; et al. Overview of the new version 3 NASA micro-pulse lidar network (MPLNET) automatic precipitation detection algorithm. Remote Sens. 2020, 12, 71. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Hodnebrog, Ø.; Daloz, A.S.; Sen, S.; Badiger, S.; Krishnaswamy, J. Measuring precipitation in Eastern Himalaya: Ground validation of eleven satellite, model and gauge interpolated gridded products. J. Hydrol. 2021, 599, 126252. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yong, B.; Shen, Y.; Liu, J.; Hong, Y.; Zhang, J. Comparison analysis of six purely satellite-derived global precipitation estimates. J. Hydrol. 2020, 581, 124376. [Google Scholar] [CrossRef]
- Wild, A.; Chua, Z.-W.; Kuleshov, Y. Triple collocation analysis of satellite precipitation estimates over Australia. Remote Sens. 2022, 14, 2724. [Google Scholar] [CrossRef]
- Tashima, T.; Kubota, T.; Mega, T.; Ushio, T.; Oki, R. Precipitation extremes monitoring using the near-real-time GSMaP Product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5640–5651. [Google Scholar] [CrossRef]
- Montes, C.; Acharya, N.; Hassan, S.M.Q.; Krupnik, T.J. Intense precipitation events during the monsoon season in Bangladesh as captured by satellite-based products. J. Hydrometeorol. 2021, 22, 1405–1419. [Google Scholar] [CrossRef]
- Peng, J.; Liu, T.; Huang, Y.; Ling, Y.; Li, Z.; Bao, A.; Chen, X.; Kurban, A.; De Maeyer, P. Satellite-based precipitation datasets evaluation using gauge observation and hydrological modeling in a typical arid land watershed of Central Asia. Remote Sens. 2021, 13, 221. [Google Scholar] [CrossRef]
- Nwachukwu, P.N.; Satge, F.; Yacoubi, S.E.; Pinel, S.; Bonnet, M.P. From TRMM to GPM: How reliable are satellite-based precipitation data across Nigeria? Remote Sens. 2020, 12, 3964. [Google Scholar] [CrossRef]
- Gunathilake, M.B.; Amaratunga, Y.V.; Perera, A.; Karunanayake, C.; Gunathilake, A.S.; Rathnayake, U. Statistical evaluation and hydrologic simulation capacity of different satellite-based precipitation products (SbPPs) in the Upper Nan River Basin, Northern Thailand. J. Hydrol. Reg. Stud. 2020, 32, 100743. [Google Scholar] [CrossRef]
- Le, M.H.; Lakshmi, V.; Bolten, J.; Bui, D.D. Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Yan, S.; Peng, J. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. J. Hydrol. 2022, 605, 127353. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Cao, Y.; Nan, Z.; Wang, W.; Ge, Y.; Wang, P.; Yu, W. Evaluation and integration of the top-down and bottom-up satellite precipitation products over mainland China. J. Hydrol. 2020, 581, 124456. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Ren, L.; Wang, M.; Zhang, L.; Liu, Y.; Yuan, F.; Yang, X. Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring across mainland China. Atmos. Res. 2021, 263, 105813. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Wang, R. Automatic identification of the lake area at Qinghai–Tibetan Plateau using remote sensing images. Quat. Int. 2019, 503, 136–145. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Wang, R.; Yu, G. Estimation of the Qinghai-Tibetan Plateau runoff and its contribution to large Asian rivers. Sci. Total Environ. 2020, 749, 141570. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Han, Z.; Tang, G.; Maguire, L.; Chu, Z.; Hong, Y. Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau. J. Hydrol. 2018, 556, 634–644. [Google Scholar] [CrossRef]
- Gao, Y.C.; Liu, M.F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2013, 17, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Lei, H.; Li, H.; Zhao, H.; Ao, T.; Li, X. Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies. Atmos. Res. 2021, 259, 105661. [Google Scholar] [CrossRef]
- Chen, J. The Meteorological Data Monitoring Dataset of Qinghai-Tibet Plateau Beiluhe Meteorological Station (2014.1–2018.10), National Tibetan Plateau/Third Pole Environment Data Center. 2019. Available online: https://doi.org/10.11888/Meteoro.tpdc.270460 (accessed on 28 January 2023).
- Chen, J.; Zhao, J.Y.; Li, K.; Sheng, Y. Discussion on applying an analytical method to optimize the anti-freeze design parameters for underground water pipelines in seasonally frozen areas. Sci. Cold Arid. Reg. 2016, 8, 467–476. [Google Scholar]
- Chen, R.; Song, Y.; Liu, J.; Yang, Y.; Qing, W.; Liu, Z.; Han, C. Evaporation and Precipitation Dataset in Hulugou Outlet in Upstream of Heihe River (2011), National Tibetan Plateau/Third Pole Environment Data Center. 2015. Available online: https://doi.org/10.3972/heihe.110.2013.db (accessed on 28 January 2023).
- Chen, R.S.; Song, Y.X.; Kang, E.S.; Han, C.T.; Liu, J.F.; Yang, Y.; Qing, W.W.; Liu, Z.W. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arct. Antarct. Alp. Res. 2014, 46, 505–523. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; La, Z.; Zhou, X.; Jiang, Y.; Tian, J. Hourly Rain Gauge Data of Warm Season (May–September) in the Central and Western Tibetan Plateau (2017–2020), National Tibetan Plateau/Third Pole Environment Data Center. 2022. Available online: https://doi.org/10.11888/Atmos.tpdc.272983 (accessed on 28 January 2023).
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zhou, D.; Jin, H.; Li, X.; Wu, Q. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. (In Chinese) [Google Scholar]
- Gao, H. The Meteorological Observation Data of the Xiying River on the East Section of the Qilian Mountains (2006–2010), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosphericPhysics.tpe.5.db (accessed on 28 January 2023).
- Han, C.T.; Chen, R.S.; Liu, Z.W.; Yang, Y.; Liu, J.F.; Song, Y.X.; Wang, L.; Liu, G.H.; Guo, S.H.; Wang, X.Q. Cryospheric hydrometeorology observation in the Hulu catchment (CHOICE), Qilian Mountains, China. Vadose Zone J. 2018, 17, 1–18. [Google Scholar] [CrossRef]
- He, Z. The Micro-Meterological Data at 3200 m High Altitude in Pailougou Watershed, National Tibetan Plateau/Third Pole Environment Data Center. 2014. Available online: https://doi.org/10.3972/heihe.073.2014.db (accessed on 28 January 2023).
- Hou, W. Surface Meteorological Data of Tianmogou in Bomi County (2020), National Tibetan Plateau/Third Pole Environment Data Center. 2022. Available online: https://doi.org/10.11888/Atmos.tpdc.272018 (accessed on 28 January 2023).
- Hu, Z.; Ma, M.; Wang, W.; Huang, G.; Zhang, Z.; Tan, J. WATER: Dataset of Automatic Meteorological Observations at the A′rou Freeze/Thaw Observation Station (2007–2015), National Tibetan Plateau/Third Pole Environment Data Center. 2015. Available online: https://doi.org/10.3972/water973.0279.db (accessed on 28 January 2023).
- Li, X. Qilian Mountains Integrated Observatory Network: Dataset of Qinghai Lake Integrated Observatory Network (an Observation System of Meteorological Elements Gradient of Subalpine Shrub, 2020, National Tibetan Plateau/Third Pole Environment Data Center. 2021. Available online: https://doi.org/10.11888/Meteoro.tpdc.271382 (accessed on 28 January 2023).
- Li, X. Qilian Mountains Integrated Observatory Network: Dataset of Qinghai Lake Integrated Observatory Network (an Observation System of Meteorological Elements Gradient of Yulei Station on Qinghai Lake, 2021), National Tibetan Plateau/Third Pole Environment Data Center. 2022. Available online: https://doi.org/10.11888/Atmos.tpdc.272685 (accessed on 28 January 2023).
- Li, X.; Li, X.W.; Li, Z.Y.; Ma, M.G.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.X.; Yan, G.J.; et al. Watershed allied telemetry experimental research. J. Geophys. Res. 2009, 114, D22103. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Ma, Y.J.; Huang, Y.M.; Hu, X.; Wu, X.C.; Wang, P.; Li, G.Y.; Zhang, S.Y.; Wu, H.W.; Jiang, Z.Y.; et al. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2016, 121, 10470–10485. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, X.F.; Ma, Y.J.; Hu, G.R.; Hu, X.; Wu, X.C.; Wang, P.; Huang, Y.M.; Cui, B.L.; Wei, J.Q. Qinghai lake basin critical zone observatory on the Qinghai-Tibet Plateau. Vadose Zone J. 2018, 17, 180069. [Google Scholar] [CrossRef]
- Liu, S.M.; Li, X.; Xu, Z.W.; Che, T.; Xiao, Q.; Ma, M.G.; Liu, Q.H.; Jin, R.; Guo, J.W.; Wang, L.X.; et al. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China. Vadose Zone J. 2018, 17, 180072. [Google Scholar] [CrossRef]
- Luo, L. Meteorological Observation Data from the Integrated Observation and Research Station of the Alpine Environment in Southeast Tibet (2007–2017), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosphericPhysics.tpe.68.db (accessed on 28 January 2023).
- Luo, L. Shergyla Mountain Meteorological Data (2005–2017), National Tibetan Plateau/Third Pole Environment Data Center. 2019. Available online: https://doi.org/10.11888/AtmosphericPhysics.tpe.249395.db (accessed on 28 January 2023).
- Luo, T.; Liu, X. Dataset of Alpine Timberlines in Southern Tibet (2005–2008), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Ecology.tpe.249285.db (accessed on 28 January 2023).
- Ma, M.; Wang, W.; Tan, J.; Huang, G.; Zhang, Z. WATER: Dataset of Automatic Meteorological Observations at the Dayekou Maliantan Grassland Station in the Dayekou Watershed from Nov to Dec, 2007, National Tibetan Plateau/Third Pole Environment Data Center. 2015. Available online: https://doi.org/10.3972/water973.0289.db (accessed on 28 January 2023).
- Ma, Y. Meteorological Observation Data from Qomolangma Station for Atmospheric and Environmental Observation and Research (2005–2016), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosEnviron.tpe.0000014.file (accessed on 28 January 2023).
- Ma, Y.; Wang, Y.; Wu, R.; Hu, Z.; Yang, K.; Li, M.; Ma, W.; Zhong, L.; Sun, F.; Chen, X.; et al. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2009, 13, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.M.; Kang, S.C.; Zhu, L.P.; Xu, B.Q.; Tian, L.D.; Yao, T.D. Tibetan Observation and Research Platform-Atmosphere-land interaction over a heterogeneous landscape. Bull. Am. Meteorol. Soc. 2008, 89, 1487–1492. [Google Scholar]
- Ma, Y.M.; Ma, W.Q.; Zhong, L.; Hu, Z.; Li, M.; Zhu, Z.; Han, C.; Wang, B.; Liu, X. Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia. Sci. Rep. 2017, 7, 44574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.M.; Zhong, L.; Wang, B.B.; Ma, W.Q.; Chen, X.L.; Li, M. Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in-situ data. Atmos. Chem. Phys. 2011, 11, 10461–10469. [Google Scholar] [CrossRef] [Green Version]
- Niu, F. Monitoring Data of Ground Temperature, Moisture and Meteorological Elements in the Field of Freezing Thawing Landslide and Freezing Thawing Mud Flow in Aila Mountain (2019–2020), National Tibetan Plateau/Third Pole Environment Data Center. 2021. Available online: https://doi.org/10.11888/Meteoro.tpdc.271282 (accessed on 28 January 2023).
- Qin, X. Daily Value Dataset of 10 m Meteorological Tower at Laohugou Glacier No.12 in the Qilian Mountains of China (V1.0) (2014–2018), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Glacio.tpdc.270004 (accessed on 28 January 2023).
- Wang, X. Observation Dataset of Forest Ecosystems on the Eastern Margin of the Tibet Plateau (2005–2008), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Ecology.tpe.13.db (accessed on 28 January 2023).
- Wang, Y.; Xu, B. Meteorological Observation Data from the Integrated Observation and Research Station of the Western Environment in Muztagh Ata (2003–2016), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosEnviron.tpe.00000045.file (accessed on 28 January 2023).
- Xu, T.; Liu, S.; Xu, L.; Chen, Y.; Jia, Z.; Xu, Z.; Nielson, J. Temporal upscaling and reconstruction of thermal remotely sensed instantaneous evapotranspiration. Remote Sen. 2015, 7, 3400–3425. [Google Scholar] [CrossRef] [Green Version]
- Yang, K. Ground Observed Precipitation Data in Yadong River Valley (2016–2019), National Tibetan Plateau/Third Pole Environment Data Center. 2020. Available online: https://doi.org/10.11888/Meteoro.tpdc.270319 (accessed on 28 January 2023).
- Yang, W. Conventional Ice Surface Meteorological Data for Parlung Glacier No. 4 and Debris-Covered 24K Glacier in Southeast Tibet from June to September (2016), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosPhys.tpe.249475.db (accessed on 28 January 2023).
- Yang, W.; Yao, T.D.; Zhu, M.L.; Wang, Y.J. Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau. J. Glaciol. 2017, 63, 1–15. [Google Scholar]
- Yang, X. The Stable Oxygen Isotope Data of Daily Precipitation in Lulang, Nuxia, and Guangzhou (2007–2014), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosPhys.tpe.249477.db (accessed on 28 January 2023).
- Zhan, C.H.; Chen, Y.Y.; Yang, K.; Lazhu; Zhou, X.; Jiang, Y.Z.; Ling, X.Y.; Tian, J.X.; Wang, Y.; Li, X.; et al. First evaluation of GPM-Era satellite precipitation products with new observations on the western Tibetan Plateau. Atmos. Res. 2023, 283, 106559. [Google Scholar] [CrossRef]
- Zhang, Y. Meteorological Observation Data of Kongque River Source (2012–2017), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Meteoro.tpdc.270005 (accessed on 28 January 2023).
- Zhang, Y. Meteorological Observation Data of Kunsha Glacier (2015–2017), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Meteoro.tpdc.270086 (accessed on 28 January 2023).
- Zhang, Y. Meteorological Observation Dataset of Shiquan River Source (2012–2015), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Meteoro.tpdc.270548 (accessed on 28 January 2023).
- Zhao, C.; Zhang, R. Qilian Mountains Integrated Observatory Network: Cold and Arid Research Network of Lanzhou University (an Observation System of Meteorological Elements Gradient of Liancheng Station, 2018), National Tibetan Plateau/Third Pole Environment Data Center. 2019. Available online: https://doi.org/10.11888/Geogra.tpdc.270165 (accessed on 28 January 2023).
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (an Observation System of Meteorological Elements Gradient of Suganhu Station, 2020), National Tibetan Plateau/Third Pole Environment Data Center. 2021. Available online: https://doi.org/10.11888/Meteoro.tpdc.271379 (accessed on 28 January 2023).
- Zhao, H. Meteorological Data of the Integrated Observation and Research Station of Ngari for Desert Environment (2009–2017), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosphericPhysics.tpe.62.db (accessed on 28 January 2023).
- Zhao, H. Mass Balance (2008–2018) on Naimonanyi Glacier and Related Meteorological Data (2011–2018), National Tibetan Plateau/Third Pole Environment Data Center. 2021. Available online: https://doi.org/10.11888/Meteoro.tpdc.271606 (accessed on 28 January 2023).
- Zhao, L. Meteorological Datasets of Xidatan Station (XDT) on the Tibetan Plateau in 2014–2018, National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/Meteoro.tpdc.270084 (accessed on 28 January 2023).
- Zhao, L.; Zou, D.; Wu, T.; Du, E.; Liu, G.; Xiao, Y.; Li, R.; Pang, Q.; Qiao, Y.; Wu, X.; et al. A Synthesis Dataset of Permafrost for the Qinghai-Xizang (Tibet) Plateau, China (2002–2018), National Tibetan Plateau/Third Pole Environment Data Center. 2021. Available online: https://doi.org/10.11888/Geocry.tpdc.271107 (accessed on 28 January 2023).
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafrost Periglac. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.F.; Hu, G.J.; Wu, T.H.; Du, E.J.; Liu, G.Y.; Xiao, Y.; Li, R.; Pang, Q.Q.; Qiao, Y.P.; et al. A synthesis dataset of permafrost thermal state for the Qinghai-Xizang (Tibet) Plateau, China. Earth Syst. Sci. Data 2021, 13, 4207–4218. [Google Scholar] [CrossRef]
- Zhao, X. The Meteorological Observation Dataset of Guoluo Meadow on the Tibetan Plateau (2005–2009), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://doi.org/10.11888/AtmosphericPhysics.tpe.74.db (accessed on 28 January 2023).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Xie, P. Kalman filter–based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era. In Satellite Precipitation Measurement; Springer: Cham, The Netherlands, 2020; pp. 355–373. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Month 0.1 Degree × 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://doi.org/10.5067/GPM/IMERG/3B-MONTH/06 (accessed on 28 January 2023).
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Updegraff, G.; Hsu, K.; Kuligowski, B.; et al. The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.; Bolvin, D.; Ralph, M.F. PERSIANN dynamic infrared-rain rate (PDIR-Now): A near-real time, quasi-global satellite precipitation dataset. J. Hydrometeorol. 2020, 21, 2893–2906. [Google Scholar] [CrossRef] [PubMed]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc. 2015, 96, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences: Forecast Verification, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 369–483. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to roc analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part 1-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Helmi, A.M.; Abdelhamed, M.S. Evaluation of CMORPH, PERSIANN-CDR, CHIRPS V2.0, TMPA 3B42 V7, and GPM IMERG V6 satellite precipitation datasets in Arabian arid regions. Water 2023, 15, 92. [Google Scholar] [CrossRef]
- Fu, G.; Liu, Z.; Charles, S.P.; Xu, Z.; Yao, Z. A score-based method for assessing the performance of GCMs: A case study of southeastern Australia. J. Geophys. Res. Atmos. 2013, 118, 4154–4167. [Google Scholar] [CrossRef]
- Liu, Z. Accuracy of satellite precipitation products in data-scarce Inner Tibetan Plateau comprehensively evaluated using a novel ground observation network. J. Hydrol. Reg. Stud. 2023, 47, 101405. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Yao, Z.; Wang, R. Comprehensive assessment of Coupled Model Intercomparison Project Phase 5 global climate models using observed temperature and precipitation over mainland Southeast Asia. Int. J. Climatol. 2019, 39, 4139–4153. [Google Scholar] [CrossRef]
- Liu, Z. Estimating land evapotranspiration from potential evapotranspiration constrained by soil water at daily scale. Sci. Total Environ. 2022, 834, 155327. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z. Accuracy of five ground heat flux empirical simulation methods in the surface energy balance-based remote sensing evapotranspiration models. Hydrol. Earth Syst. Sci. 2022, 26, 6207–6226. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, M.; Rosenfeld, D.; Chen, B.; Liu, D.; Wu, X.; Hu, K.; Ding, S.; Zhu, Y.; Zeng, Y.; et al. Aircraft observation of fast initiation of mixed phase precipitation in convective cloud over the Tibetan Plateau. Atmos. Res. 2023, 285, 106627. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Q.; Huang, J.; Hua, S.; Jia, R. Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation. Atmos. Res. 2019, 209, 67–77. [Google Scholar] [CrossRef]
Product | Version | Spatial Resolution | Temporal Resolution | Period | Abbreviation |
---|---|---|---|---|---|
CHIRPS | V2 | 0.05° × 0.05° | Daily | 1981.01–present | CHI |
CMORPH | 8 km × 8 km | 3-hourly | 1998.01–present | CMO | |
GSMaP | MVK V7 | 0.1° × 0.1° | hourly | 2014.03–present | GaM |
NRT V7 | 0.1° × 0.1° | hourly | 2000.03–present | GaN | |
GPM | IMERG-Final | 0.1° × 0.1° | 3-hourly | 2000.06–present | GPM |
MSWEP | 0.1° × 0.1° | 3-hourly | 1979.01–present | MS | |
PERSIANN | CCS | 0.04° × 0.04° | 3-hourly | 2003.01–present | PCS |
PDIR-Now | 0.04° × 0.04° | 3-hourly | 2000.03–present | PDI | |
CDR | 0.25° × 0.25° | Daily | 2000.01–2020.12 | PDR | |
Initial version | 0.25° × 0.25° | 3-hourly | 2000.03–present | PER |
SPPs | A′ | CSI | FAR | FPR | POD | CC | IOA | KGE | NSE | RE | RSM | RSO | RSC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CHI | 0.67 | 0.29 | 0.39 | 0.14 | 0.38 | 0.82 | 0.92 | 0.45 | 0.65 | 0.21 | 0.92 | 0.33 | 0.62 |
CMO | 0.67 | 0.44 | 0.45 | 0.38 | 0.70 | 0.71 | 0.78 | 0.33 | 0.14 | 0.19 | 0.63 | 0.36 | 0.50 |
GaM | 0.74 | 0.44 | 0.43 | 0.26 | 0.64 | 0.53 | 0.75 | −0.03 | 0.05 | 0.31 | 0.39 | 0.54 | 0.46 |
GaN | 0.74 | 0.46 | 0.36 | 0.23 | 0.62 | 0.55 | 0.77 | 0.07 | 0.10 | 0.27 | 0.45 | 0.62 | 0.54 |
GPM | 0.75 | 0.44 | 0.25 | 0.12 | 0.53 | 0.75 | 0.79 | 0.39 | 0.28 | −0.13 | 0.74 | 0.75 | 0.75 |
MS | 0.74 | 0.58 | 0.40 | 0.47 | 0.96 | 0.87 | 0.88 | 0.46 | 0.51 | 0.29 | 0.84 | 0.65 | 0.75 |
PCS | 0.63 | 0.37 | 0.47 | 0.33 | 0.60 | −0.02 | 0.66 | −0.54 | 0.04 | −0.66 | 0.30 | 0.22 | 0.26 |
PDI | 0.70 | 0.48 | 0.43 | 0.37 | 0.79 | 0.74 | 0.88 | 0.35 | 0.50 | 0.17 | 0.82 | 0.49 | 0.65 |
PDR | 0.66 | 0.46 | 0.47 | 0.44 | 0.79 | 0.81 | 0.87 | 0.06 | 0.35 | 0.46 | 0.56 | 0.33 | 0.44 |
PER | 0.63 | 0.37 | 0.49 | 0.34 | 0.61 | 0.00 | 0.41 | −0.50 | −0.51 | −0.65 | 0.34 | 0.21 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z. Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai–Tibetan Plateau Using the New Ground Observation Network. Remote Sens. 2023, 15, 3381. https://doi.org/10.3390/rs15133381
Liu Z. Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai–Tibetan Plateau Using the New Ground Observation Network. Remote Sensing. 2023; 15(13):3381. https://doi.org/10.3390/rs15133381
Chicago/Turabian StyleLiu, Zhaofei. 2023. "Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai–Tibetan Plateau Using the New Ground Observation Network" Remote Sensing 15, no. 13: 3381. https://doi.org/10.3390/rs15133381
APA StyleLiu, Z. (2023). Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai–Tibetan Plateau Using the New Ground Observation Network. Remote Sensing, 15(13), 3381. https://doi.org/10.3390/rs15133381