Sea Surface Chlorophyll-a Concentration Retrieval from HY-1C Satellite Data Based on Residual Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. HY-1C Satellite Data
2.1.2. OC-CCI Dataset
2.1.3. In situ Measurement
2.1.4. Data Preprocessing
2.2. Methodology
2.2.1. Structure of the ResNet and Other Models Settings
2.2.2. Feature Selection and Hyperparameter Determination Methods
2.2.3. Design of Comparative Experiments
2.2.4. Model Performance Evaluation Method
3. Results
3.1. What Are the Optimal Model Input Parameters?
3.2. Performance of the ResNet Model
3.2.1. Performance Evaluation with OC-CCI Products
3.2.2. Performance Evaluation with In Situ Measurements
4. Discussion
4.1. Consistency Evaluation with MODIS Observation
4.2. Reasons for Different Accuracy when Using Different Data Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Li, Y.; Pan, J. Characteristics of an Open Complex Giant System-Carbon Cycling System in the Ocean. Complex Syst. Complex. Sci. 2004, 1, 10. [Google Scholar]
- Silveira Kupssinsku, L.; Thomassim Guimaraes, T.; Menezes de Souza, E.; Zanotta, D.C.; Roberto Veronez, M.; Gonzaga, L., Jr.; Mauad, F.F. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors 2020, 20, 2125. [Google Scholar] [CrossRef] [Green Version]
- El-Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S.E. Comparative Analysis of Four Models to Estimate Chlorophyll-a Concentration in Case-2 Waters Using MODerate Resolution Imaging Spectroradiometer (MODIS) Imagery. Remote Sens. 2012, 4, 2373–2400. [Google Scholar] [CrossRef] [Green Version]
- Clay, S.; Pena, A.; DeTracey, B.; Devred, E. Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a Concentration in the Canadian Atlantic and Pacific Oceans. Remote Sens. 2019, 11, 2609. [Google Scholar] [CrossRef] [Green Version]
- Sauer, M.; Roesler, C.; Werdell, J.; Barnard, A. Under the hood of satellite empirical chlorophyll a algorithms: Revealing the dependencies of maximum band ratio algorithms on inherent optical properties. Opt. Express. 2012, 20, 20920–20933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T. Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in Case I waters. J. Geophys. Res. Oceans 2003, 108, 3286. [Google Scholar] [CrossRef]
- Syariz, M.A.; Lin, C.-H.; Nguyen, M.V.; Jaelani, L.M.; Blanco, A.C. WaterNet: A Convolutional Neural Network for Chlorophyll-a Concentration Retrieval. Remote Sens. 2020, 12, 1966. [Google Scholar] [CrossRef]
- Ali, K.A.; Moses, W.J. Application of a PLS-Augmented ANN Model for Retrieving Chlorophyll-a from Hyperspectral Data in Case 2 Waters of the Western Basin of Lake Erie. Remote Sens. 2022, 14, 3729. [Google Scholar] [CrossRef]
- Yu, B.; Xu, L.; Peng, J.; Hu, Z.; Wong, A. Global chlorophyll-a concentration estimation from moderate resolution imaging spectroradiometer using convolutional neural networks. J. Appl. Remote Sens. 2020, 14, 034520. [Google Scholar] [CrossRef]
- Ye, H.; Tang, S.; Yang, C. Deep Learning for Chlorophyll-a Concentration Retrieval: A Case Study for the Pearl River Estuary. Remote Sens. 2021, 13, 3717. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Lin, M.; Ding, J.; Zou, B.; Song, Q. Global Ocean Chlorophyll-a Concentrations Derived From COCTS Onboard the HY-1C Satellite and Their Preliminary Evaluation. IEEE Trans. Geosci. Electron. 2021, 59, 9914–9926. [Google Scholar] [CrossRef]
- Song, Q.; Chen, S.; Xue, C.; Lin, M.; Du, K.; Li, S.; Ma, C.; Tang, J.; Liu, J.; Zhang, T.; et al. Vicarious calibration of COCTS-HY1C at visible and near-infrared bands for ocean color application. Opt. Express. 2019, 27, A1615–A1626. [Google Scholar] [CrossRef] [PubMed]
- Sathyendranath, S.; Jackson, T.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.; Cipollini, P.; Danne, O.; Dingle, J.; et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_CCI): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 2021. Available online: http://climate.esa.int/en/projects/ocean-colour/key-documents/ (accessed on 15 March 2023).
- Gordon, H.; Morel, A. Remote assessment of ocean color for interpretation of satellite visible imagery: A review. Phys. Earth Planet. Int. 1983, 37, 292. [Google Scholar]
- O’Reilly, J.; Maritorena, S.; Mitchell, B.G.; Siegel, D.; Carder, K.; Garver, S.A.; Kahru, M.; Mcclain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. C. 1998, 103, 937–953. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. C Oceans 2012, 117, C01011. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Brotas, V.; Palma, C.; Borges, C.; Brito, A.C. Assessing Phytoplankton Bloom Phenology in Upwelling-Influenced Regions Using Ocean Color Remote Sensing. Remote Sens. 2021, 13, 675. [Google Scholar] [CrossRef]
- Keerthi, M.G.; Prend, C.J.; Aumont, O.; Lévy, M. Annual variations in phytoplankton biomass driven by small-scale physical processes. Nat. Geosci. 2022, 15, 1027–1033. [Google Scholar] [CrossRef]
- Pitarch, J.; Bellacicco, M.; Marullo, S.; Van Der Woerd, H.J. Global maps of Forel-Ule index, hue angle and Secchi disk depth derived from twenty-one years of monthly ESA-OC-CCI data. Earth Syst. Sci. Data 2021, 13, 481–490. [Google Scholar] [CrossRef]
- O’Reilly, J. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS Postlaunch Calibration Valid. Anal. 2000, 11, 9–23. [Google Scholar]
- Zibordi, G.; Berthon, J.-F.; Mélin, F.; D’Alimonte, D.; Kaitala, S. Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland. Remote Sens. Environ. 2009, 113, 2574–2591. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea. Ocean Sci. 2015, 11, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 10 December 2015. [Google Scholar]
- Brownlee, J. Bagging and Random Forest Ensemble Algorithms for Machine Learning. 2016, pp. 4–22. Available online: https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/ (accessed on 26 June 2023).
- Yang, J.-B.; Shen, K.-Q.; Ong, C.-J.; Li, X.-P. Feature Selection for MLP Neural Network: The Use of Random Permutation of Probabilistic Outputs. IEEE Trans. Neural Netw. 2009, 20, 1911–1922. [Google Scholar] [CrossRef]
- Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. JMLR 2019, 20, 1–81. [Google Scholar]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Zhang, H. Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sens. Environ. 2011, 115, 725–737. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Shen, Q.; Zhang, B.; Tian, L.; Ye, H.; Wang, S.; Lu, Z. A soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu Lake. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 138–149. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll Algorithms for Ocean Color Sensors—Oc4, Oc5 & Oc6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef]
- Hooker, S.; Firestone, E.; Mcclain, C.; Kwiatkowska, E.; Barnes, R.; Eplee, R.; Elaine, R.; Patt, F.; Robinson, W.; Wang, M.; et al. SeaWiFS Postlaunch Calibration and Validation Analyses Part 1. 2000; pp. 4–12. Available online: https://www.researchgate.net/publication/24293669_SeaWiFS_Postlaunch_Calibration_and_Validation_Analyses (accessed on 25 August 2022).
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Lu, X.; Chen, Z.; Zhang, H.; Lu, W.; Wu, W. Estimating Coastal Chlorophyll-A Concentration from Time-Series OLCI Data Based on Machine Learning. Remote Sens. 2021, 13, 576. [Google Scholar] [CrossRef]
Model ID | ResNet1_4 | ResNet1_5 | ResNet1_6 | ResNet1_7 | ResNet1_8 |
---|---|---|---|---|---|
R(log) | 0.95 | 0.95 | 0.97 | 0.95 | 0.95 |
RMSE (mg/m3) | 0.14 | 0.19 | 0.13 | 0.14 | 0.13 |
UPD (%) | 21.14 | 19.16 | 17.31 | 19.61 | 20.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Ye, X.; Xu, Q.; Yin, X.; Xu, S. Sea Surface Chlorophyll-a Concentration Retrieval from HY-1C Satellite Data Based on Residual Network. Remote Sens. 2023, 15, 3696. https://doi.org/10.3390/rs15143696
Yang G, Ye X, Xu Q, Yin X, Xu S. Sea Surface Chlorophyll-a Concentration Retrieval from HY-1C Satellite Data Based on Residual Network. Remote Sensing. 2023; 15(14):3696. https://doi.org/10.3390/rs15143696
Chicago/Turabian StyleYang, Guiying, Xiaomin Ye, Qing Xu, Xiaobin Yin, and Siyang Xu. 2023. "Sea Surface Chlorophyll-a Concentration Retrieval from HY-1C Satellite Data Based on Residual Network" Remote Sensing 15, no. 14: 3696. https://doi.org/10.3390/rs15143696
APA StyleYang, G., Ye, X., Xu, Q., Yin, X., & Xu, S. (2023). Sea Surface Chlorophyll-a Concentration Retrieval from HY-1C Satellite Data Based on Residual Network. Remote Sensing, 15(14), 3696. https://doi.org/10.3390/rs15143696