DAFNet: A Novel Change-Detection Model for High-Resolution Remote-Sensing Imagery Based on Feature Difference and Attention Mechanism
Abstract
:1. Introduction
2. Related Work
2.1. Traditional Change-Detection Methods
2.2. Change-Detection Method Based on Deep Learning
3. Methodology
3.1. Network Architecture
3.2. Differential Feature-Extraction Module
3.3. Attention Refinement Module
3.4. Cross-Scale Feature-Fusion Module
4. Experiment
4.1. Dataset
4.1.1. Google Earth Remote-Sensing Imagery Change-Detection Dataset (GECDD)
4.1.2. LEVIR-CD Dataset
4.1.3. CDD Dataset
4.2. Experiment Details
4.3. Ablation Experiment on GECDD
4.4. Comparative Experiments with Different Methods on GECDD
4.5. Generalization Experiments on LEVIR-CD Dataset
4.5.1. Generalization Experiments on LEVIR-CD Dataset
4.5.2. Generalization Experiments on CDD Dataset
5. Discussion
5.1. Advantages of the Proposed Method
5.2. Limitations and Future Research Directions
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, K.; Zhang, E.; Xia, M.; Weng, L.; Lin, H. Mcanet: A multi-branch network for cloud/snow segmentation in high-resolution remote sensing images. Remote Sens. 2023, 15, 1055. [Google Scholar] [CrossRef]
- Dai, X.; Xia, M.; Weng, L.; Hu, K.; Lin, H.; Qian, M. Multi-Scale Location Attention Network for Building and Water Segmentation of Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5609519. [Google Scholar] [CrossRef]
- Yin, H.; Weng, L.; Li, Y.; Xia, M.; Hu, K.; Lin, H.; Qian, M. Attention-guided siamese networks for change detection in high resolution remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103206. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Ji, H.; Xia, M.; Zhang, D.; Lin, H. Multi-Supervised Feature Fusion Attention Network for Clouds and Shadows Detection. ISPRS Int. J. Geo-Inf. 2023, 12, 247. [Google Scholar] [CrossRef]
- Chen, B.; Xia, M.; Qian, M.; Huang, J. MANet: A multi-level aggregation network for semantic segmentation of high-resolution remote sensing images. Int. J. Remote Sens. 2022, 43, 5874–5894. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Xia, M.; Zhang, Y. Strip pooling channel spatial attention network for the segmentation of cloud and cloud shadow. Comput. Geosci. 2021, 157, 104940. [Google Scholar] [CrossRef]
- Lu, C.; Xia, M.; Lin, H. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation. Neural Comput. Appl. 2022, 34, 6149–6162. [Google Scholar] [CrossRef]
- Miao, S.; Xia, M.; Qian, M.; Zhang, Y.; Liu, J.; Lin, H. Cloud/shadow segmentation based on multi-level feature enhanced network for remote sensing imagery. Int. J. Remote Sens. 2022, 43, 5940–5960. [Google Scholar] [CrossRef]
- Lu, C.; Xia, M.; Qian, M.; Chen, B. Dual-branch network for cloud and cloud shadow segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5410012. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.; Nandi, A.K. Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 982–986. [Google Scholar] [CrossRef]
- Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote Sens. 2022, 16, 016513. [Google Scholar] [CrossRef]
- Sommer, S.; Hill, J.; Mégier, J. The potential of remote sensing for monitoring rural land use changes and their effects on soil conditions. Agric. Ecosyst. Environ. 1998, 67, 197–209. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Lin, H.; Qian, M.; Zhang, Y. FENet: Feature enhancement network for land cover classification. Int. J. Remote Sens. 2023, 44, 1702–1725. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Chen, J.; Xia, M.; Wang, D.; Lin, H. Double Branch Parallel Network for Segmentation of Buildings and Waters in Remote Sensing Images. Remote Sens. 2023, 15, 1536. [Google Scholar] [CrossRef]
- Chen, B.; Xia, M.; Huang, J. MFANet: A Multi-Level Feature Aggregation Network for Semantic Segmentation of Land Cover. Remote Sens. 2021, 13, 731. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches—ScienceDirect. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Weng, L.; Lin, H. Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image. Sustainability 2023, 15, 3034. [Google Scholar] [CrossRef]
- Hu, K.; Li, M.; Xia, M.; Lin, H. Multi-scale feature aggregation network for water area segmentation. Remote Sens. 2022, 14, 206. [Google Scholar] [CrossRef]
- Hu, K.; Wang, T.; Shen, C.; Weng, C.; Zhou, F.; Xia, M.; Weng, L. Overview of Underwater 3D Reconstruction Technology Based on Optical Images. J. Mar. Sci. Eng. 2023, 11, 949. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection With Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5607514. [Google Scholar] [CrossRef]
- Wang, D.; Weng, L.; Xia, M.; Lin, H. MBCNet: Multi-Branch Collaborative Change-Detection Network Based on Siamese Structure. Remote Sens. 2023, 15, 2237. [Google Scholar] [CrossRef]
- Ma, C.; Weng, L.; Xia, M.; Lin, H.; Qian, M.; Zhang, Y. Dual-branch network for change detection of remote sensing image. Eng. Appl. Artif. Intell. 2023, 123, 106324. [Google Scholar] [CrossRef]
- Huang, R.; Wang, R.; Guo, Q.; Zhang, Y.; Fan, W. IDET: Iterative Difference-Enhanced Transformers for High-Quality Change Detection. arXiv 2022, arXiv:2207.09240. [Google Scholar]
- Wang, M.; Tan, K.; Jia, X.; Wang, X.; Chen, Y. A Deep Siamese Network with Hybrid Convolutional Feature Extraction Module for Change Detection Based on Multi-sensor Remote Sensing Images. Remote Sens. 2020, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Xia, M.; Weng, L.; Lin, H.; Qian, M.; Chen, B. Axial cross attention meets CNN: Bibranch fusion network for change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 32–43. [Google Scholar] [CrossRef]
- Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8007805. [Google Scholar] [CrossRef]
- Weismiller, R.A.; Kristof, S.J.; Scholz, D.K.; Anuta, P.E.; Momin, S.A. Change detection in coastal zone environments. Photogramm. Eng. Remote Sens. 1978, 43, 1533–1539. [Google Scholar]
- Liu, J.; Gong, M.; Qin, K.; Zhang, P. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Celik, T. Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Qiang, C.; Yunhao, C. Multi-Feature Object-Based Change Detection Using Self-Adaptive Weight Change Vector Analysis. Remote Sens. 2016, 8, 549. [Google Scholar]
- Chu, S.; Li, P.; Xia, M. MFGAN: Multi feature guided aggregation network for remote sensing image. Neural Comput. Appl. 2022, 34, 10157–10173. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, D.; Xia, M.; Qian, M.; Chen, B. LCDNet: Light-weighted cloud detection network for high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4809–4823. [Google Scholar] [CrossRef]
- Chen, K.; Xia, M.; Lin, H.; Qian, M. Multi-scale Attention Feature Aggregation Network for Cloud and Cloud Shadow Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5612216. [Google Scholar] [CrossRef]
- Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 680–688. [Google Scholar] [CrossRef]
- Weng, L.; Pang, K.; Xia, M.; Lin, H.; Qian, M.; Zhu, C. Sgformer: A Local and Global Features Coupling Network for Semantic Segmentation of Land Cover. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6812–6824. [Google Scholar] [CrossRef]
- Deng, Z.; Zhou, S.; Zhao, J.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm Remote Sens. 2018, 145, 3–22. [Google Scholar] [CrossRef]
- Daudt, R.C.; Saux, B.L.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model. IEEE Geosci. Remote Sens. Lett. 2020, 18, 811–815. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1194–1206. [Google Scholar] [CrossRef]
- Lyu, H.; Hui, L. Learning a transferable change detection method by Recurrent Neural Network. In Proceedings of the IGARSS 2016—2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Hou, Z.; Li, W.; Li, L.; Tao, R.; Du, Q. Hyperspectral change detection based on multiple morphological profiles. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5507312. [Google Scholar] [CrossRef]
- Feng, S.; Fan, Y.; Tang, Y.; Cheng, H.; Zhao, C.; Zhu, Y.; Cheng, C. A Change Detection Method Based on Multi-Scale Adaptive Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images. Remote Sens. 2022, 14, 5368. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, D.; Sha, J.; Gao, L.; Liu, L.; Zhang, Y.; Rong, X. Spectral–spatial–temporal transformers for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5536814. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zhang, S.; Weng, L. STPGTN—A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data. CMES Comput. Model. Eng. Sci. 2023, 136, 2635–2654. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Vizilter, Y.V.; Vygolov, O.V.; Knyaz, V.A.; Rubis, A.Y. Change detection in remote sensing images using conditional adversarial networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Xia, M.; Zhang, Y.; Liu, J.; Xu, Y. TCDNet: Trilateral Change Detection Network for Google Earth Image. Remote Sens. 2020, 12, 2669. [Google Scholar] [CrossRef]
- Song, L.; Xia, M.; Jin, J.; Qian, M.; Zhang, Y. SUACDNet: Attentional change detection network based on siamese U-shaped structure. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102597. [Google Scholar] [CrossRef]
- Li, Z.; Tang, C.; Wang, L.; Zomaya, A.Y. Remote sensing change detection via temporal feature interaction and guided refinement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5628711. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A deep learning architecture for visual change detection. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
Method | PR (%) | RC (%) | IoU (%) | F1 (%) |
---|---|---|---|---|
Backbone + ARM + CSFM | 88.33 | 77.72 | 70.49 | 82.69 |
Backbone + DFEM + CSFM | 88.23 | 78.15 | 70.77 | 82.88 |
Backbone + DFEM + ARM | 88.65 | 77.97 | 70.89 | 82.97 |
Backbone + DFEM + ARM + CSFM | 88.89 | 79.04 | 71.94 | 83.68 |
Method | PR (%) | RC (%) | IoU (%) | F1 (%) | Time (s) |
---|---|---|---|---|---|
FC-EF [42] | 73.36 | 43.34 | 37.45 | 54.49 | 0.34 |
FC-Siam-Conc [42] | 78.08 | 47.46 | 41.88 | 59.03 | 0.34 |
FC-Siam-Diff [42] | 77.63 | 46.26 | 40.82 | 57.97 | 0.31 |
TCDNet [53] | 88.27 | 74.03 | 67.40 | 80.53 | 0.43 |
SNUNet [31] | 88.65 | 75.11 | 68.52 | 81.32 | 0.48 |
MFGAN [36] | 87.99 | 76.11 | 68.95 | 81.62 | 0.52 |
STANet [46] | 89.53 | 75.27 | 69.18 | 81.78 | 0.55 |
DASNet [44] | 89.74 | 75.46 | 69.47 | 81.98 | 1.04 |
SUACDNet [54] | 89.50 | 75.69 | 69.52 | 82.02 | 1.11 |
TFI-GR [55] | 89.71 | 75.83 | 69.76 | 82.19 | 0.54 |
Segformer [56] | 87.63 | 77.76 | 70.07 | 82.40 | 1.39 |
ChangeNet [57] | 88.57 | 77.11 | 70.14 | 82.45 | 0.64 |
Swin-Transformer [58] | 89.82 | 76.38 | 70.29 | 82.55 | 1.29 |
DAFNet (Ours) | 88.89 | 79.04 | 71.94 | 83.68 | 0.55 |
Method | PR (%) | RC (%) | IoU (%) | F1 (%) | Time (s) |
---|---|---|---|---|---|
FC-EF | 87.65 | 81.73 | 73.29 | 84.59 | 0.13 |
FC-Siam-Conc | 87.40 | 84.87 | 75.62 | 86.12 | 0.13 |
FC-Siam-Diff | 89.35 | 82.71 | 75.29 | 85.90 | 0.12 |
SNUNet | 87.80 | 85.73 | 76.60 | 86.75 | 0.18 |
TCDNet | 88.16 | 85.40 | 76.62 | 86.76 | 0.15 |
DASNet | 90.84 | 83.09 | 76.67 | 86.79 | 0.37 |
STANet | 89.26 | 85.10 | 77.20 | 87.13 | 0.22 |
MFGAN | 88.79 | 86.21 | 77.74 | 87.48 | 0.19 |
ChangeNet | 90.20 | 85.27 | 78.04 | 87.67 | 0.23 |
SUACDNet | 89.58 | 85.89 | 78.09 | 87.70 | 0.37 |
Segformer | 91.37 | 84.91 | 78.61 | 88.02 | 0.48 |
Swin-Transformer | 92.22 | 84.84 | 79.18 | 88.38 | 0.44 |
TFI-GR | 91.84 | 85.33 | 79.32 | 88.47 | 0.19 |
DAFNet (Ours) | 92.64 | 86.29 | 80.75 | 89.35 | 0.20 |
Method | PR (%) | RC (%) | IoU (%) | F1 (%) | Time (s) |
---|---|---|---|---|---|
FC-EF | 86.41 | 60.05 | 54.87 | 70.86 | 0.12 |
FC-Siam-Conc | 83.46 | 64.44 | 57.14 | 72.73 | 0.12 |
FC-Siam-Diff | 84.63 | 63.15 | 56.65 | 72.33 | 0.11 |
ChangeNet | 82.06 | 90.30 | 75.42 | 85.99 | 0.22 |
SNUNet | 84.85 | 89.82 | 77.40 | 87.26 | 0.16 |
TCDNet | 83.50 | 91.12 | 77.21 | 87.14 | 0.15 |
DASNet | 84.94 | 90.32 | 77.85 | 87.55 | 0.36 |
MFGAN | 83.54 | 92.99 | 78.59 | 88.01 | 0.19 |
STANet | 83.22 | 93.62 | 78.76 | 88.12 | 0.21 |
Swin-Transformer | 84.09 | 93.15 | 79.19 | 88.39 | 0.46 |
TFI-GR | 84.40 | 92.50 | 78.99 | 88.27 | 0.19 |
SUACDNet | 83.52 | 93.95 | 79.26 | 88.43 | 0.38 |
Segformer | 83.67 | 94.13 | 79.52 | 88.59 | 0.49 |
DAFNet (Ours) | 85.86 | 94.09 | 81.47 | 89.79 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Yin, H.; Weng, L.; Xia, M.; Lin, H. DAFNet: A Novel Change-Detection Model for High-Resolution Remote-Sensing Imagery Based on Feature Difference and Attention Mechanism. Remote Sens. 2023, 15, 3896. https://doi.org/10.3390/rs15153896
Ma C, Yin H, Weng L, Xia M, Lin H. DAFNet: A Novel Change-Detection Model for High-Resolution Remote-Sensing Imagery Based on Feature Difference and Attention Mechanism. Remote Sensing. 2023; 15(15):3896. https://doi.org/10.3390/rs15153896
Chicago/Turabian StyleMa, Chong, Hongyang Yin, Liguo Weng, Min Xia, and Haifeng Lin. 2023. "DAFNet: A Novel Change-Detection Model for High-Resolution Remote-Sensing Imagery Based on Feature Difference and Attention Mechanism" Remote Sensing 15, no. 15: 3896. https://doi.org/10.3390/rs15153896
APA StyleMa, C., Yin, H., Weng, L., Xia, M., & Lin, H. (2023). DAFNet: A Novel Change-Detection Model for High-Resolution Remote-Sensing Imagery Based on Feature Difference and Attention Mechanism. Remote Sensing, 15(15), 3896. https://doi.org/10.3390/rs15153896