An Accurate and Efficient Supervoxel Re-Segmentation Approach for Large-Scale Point Clouds Using Plane Constraints
Abstract
:1. Introduction
- We analysed two cases of under-segmentation in the current supervoxel generation results: (1) failure to segment non-coplanar supervoxel boundaries and (2) the multi-planar coupling problem caused by resolution and target size mismatch.
- We developed a novel algorithm that improves the accuracy of boundary segmentation between non-coplanar supervoxels. By introducing distance constraints during the merging stage and utilising RANSAC for re-segmentation, our algorithm effectively addresses the multi-planar coupling problem in local point cloud regions.
- We present a novel idea in supervoxel segmentation tasks: re-segment under-segmented supervoxels to improve the final segmentation result.
2. Methods
2.1. BPSS
2.2. Under-Segmentation Issues
2.3. Proposed Algorithm
2.3.1. Boundary Point Redefinition
Algorithm 1: The stage of boundary exchange. |
Input: Initialize a queue, , for points, i.e., while do Remove the front point from for all do if exchange to if then Add to the back of end if end if end for end while |
2.3.2. RANSAC-Based Re-Segmentation
- The first assumption is that, at a given appropriate resolution, the under-segmented supervoxels only account for a minority of the total supervoxel set.
- The second assumption is that the number of under-segmented points in an under-segmented supervoxel is in the minority.
Algorithm 2: The stage of re-segmentation. |
Start from the voxel set while is not processed compute and for if Ransac to relabel end if end while |
3. Results
3.1. Experimental Setup
3.2. Datasets
3.3. Evaluation Metrics
3.4. Algorithms and Parameters
3.5. Experimental Results
4. Discussion
4.1. Discussion of Proposed Method
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, Y.; Xie, X.; Xu, L. Lab-built terrestrial laser scanner self-calibration using mounting angle error correction. Opt. Express 2018, 26, 14444–14460. [Google Scholar] [CrossRef]
- Yuan, Y.; Ge, Z.; Guo, X.; Zhang, Y.; Suo, T.; Yu, Q. Research on non-concentric spatial scanning measurement system. Optik 2022, 267, 169706. [Google Scholar] [CrossRef]
- Lin, Y.B.; Wang, C.; Cheng, J.; Chen, B.L.; Jia, F.K.; Chen, Z.G.; Li, J. Line segment extraction for large scale unorganized point clouds. ISPRS J. Photogramm. Remote Sens. 2015, 102, 172–183. [Google Scholar] [CrossRef]
- Li, Y.; Yong, B.; Wu, H.; An, R.; Xu, H. An improved top-hat filter with sloped brim for extracting ground points from airborne lidar point clouds. Remote Sens. 2014, 6, 12885–12908. [Google Scholar] [CrossRef] [Green Version]
- Fahle, L.; Petruska, A.J.; Walton, G.; Brune, J.F.; Holley, E.A. Development and Testing of Octree-Based Intra-Voxel Statistical Inference to Enable Real-Time Geotechnical Monitoring of Large-Scale Underground Spaces with Mobile Laser Scanning Data. Remote Sens. 2023, 15, 1764. [Google Scholar] [CrossRef]
- Liang, X.L.; Kankare, V.; Hyyppa, J.; Wang, Y.S.; Kukko, A.; Haggren, H.; Yu, X.W.; Kaartinen, H.; Jaakkola, A.; Guan, F.Y.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Yuan, Y.T.; Ge, Z.D.; Lai, B.K.; Guo, X.; Zhang, Y.Q.; Liu, X.L.; Suo, T.; Yu, Q.F. Three dimensional deformation measurement method based on image guided point cloud registration. Opt. Lasers Eng. 2023, 161, 107399. [Google Scholar] [CrossRef]
- Riveiro, B.; DeJong, M.J.; Conde, B. Automated processing of large point clouds for structural health monitoring of masonry arch bridges. Autom. Constr. 2016, 72, 258–268. [Google Scholar] [CrossRef]
- Xia, S.B.; Chen, D.; Wang, R.S.; Li, J.; Zhang, X.C. Geometric Primitives in LiDAR Point Clouds: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 685–707. [Google Scholar] [CrossRef]
- Xu, Y.S.; Tong, X.H.; Stilla, U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Autom. Constr. 2021, 126, 103675. [Google Scholar] [CrossRef]
- Besl, P.J.; Jain, R.C. Segmentation through Variable-Order Surface Fitting. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 167–192. [Google Scholar] [CrossRef] [Green Version]
- Nurunnabi, A.; Belton, D.; West, G. Robust segmentation in laser scanning 3D point cloud data. In Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, Australia, 3–5 December 2012; pp. 1–8. [Google Scholar]
- Su, Z.H.; Gao, Z.J.; Zhou, G.Y.; Li, S.H.; Song, L.H.; Lu, X.K.; Kang, N. Building Plane Segmentation Based on Point Clouds. Remote Sens. 2022, 14, 95. [Google Scholar] [CrossRef]
- Sampath, A.; Shan, J. Segmentation and Reconstruction of Polyhedral Building Roofs From Aerial Lidar Point Clouds. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1554–1567. [Google Scholar] [CrossRef]
- Wang, C.X.; Xiong, X.Q.; Yang, H.Q.; Liu, X.J.; Liu, L.; Sun, S.A. Application of Improved DBSCAN Clustering Method in Point Cloud Data Segmentation. In Proceedings of the 2nd International Conference on Big Data and Artificial Intelligence and Software Engineering (ICBASE), Zhuhai, China, 24–26 September 2021; pp. 140–144. [Google Scholar]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Borrmann, D.; Elseberg, J.; Lingemann, K.; Nuchter, A. The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design. 3D Res. 2011, 2, 3. [Google Scholar] [CrossRef]
- Limberger, F.A.; Oliveira, M.M. Real-time detection of planar regions in unorganized point clouds. Pattern Recognit. 2015, 48, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 2007, 26, 214–226. [Google Scholar] [CrossRef]
- Li, L.; Yang, F.; Zhu, H.H.; Li, D.L.; Li, Y.; Tang, L. An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation Cells. Remote Sens. 2017, 9, 433. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.N.; Li, Y.C.; Li, X.C.; Meng, Z.Q.; Luo, H.W. Efficient plane extraction using normal estimation and RANSAC from 3D point cloud. Comput. Stand. Interfaces 2022, 82, 103608. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, L.Q.; Mathiopoulos, P.T.; Huang, X.F. A Methodology for Automated Segmentation and Reconstruction of Urban 3-D Buildings from ALS Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4199–4217. [Google Scholar] [CrossRef]
- Lin, Y.B.; Wang, C.; Zhai, D.W.; Li, W.; Li, J. Toward better boundary preserved supervoxel segmentation for 3D point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 39–47. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.X.; Tian, J.J.; Zhu, X.X. Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote Sens. Mag. 2020, 8, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Papon, J.; Abramov, A.; Schoeler, M.; Worgotter, F. Voxel cloud connectivity segmentation-supervoxels for point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2027–2034. [Google Scholar]
- Song, S.; Lee, H.; Jo, S. Boundary-enhanced supervoxel segmentation for sparse outdoor LiDAR data. Electron. Lett. 2014, 50, 1917–1918. [Google Scholar] [CrossRef] [Green Version]
- Puligandla, V.A.; Lončarić, S. A Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds. IEEE Access 2022, 10, 98525–98534. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3D point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Tiator, M.; Geiger, C.; Grimm, P. Point cloud segmentation with deep reinforcement learning. In ECAI 2020; IOS Press: Santiago de Compostela, Spain, 2020; pp. 2768–2775. [Google Scholar]
- Wan, Z.; Hu, J.; Zhang, H.; Wang, Y. IAN: Instance-Augmented Net for 3D Instance Segmentation. IEEE Robot. Autom. Lett. 2023, 8, 4354–4361. [Google Scholar] [CrossRef]
- Hui, L.; Yuan, J.; Cheng, M.; Xie, J.; Zhang, X.; Yang, J. Superpoint network for point cloud oversegmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 5510–5519. [Google Scholar]
- Landrieu, L.; Boussaha, M. Point cloud oversegmentation with graph-structured deep metric learning. In Proceedings of the EEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7440–7449. [Google Scholar]
- Ni, H.; Niu, X. SVLA: A compact supervoxel segmentation method based on local allocation. ISPRS J. Photogramm. Remote Sens. 2020, 163, 300–311. [Google Scholar] [CrossRef]
- Xiao, Y.Y.; Chen, Z.G.; Lin, Z.T.; Cao, J.; Zhang, Y.J.; Lin, Y.B.; Wang, C. Merge-Swap Optimization Framework for Supervoxel Generation from Three-Dimensional Point Clouds. Remote Sens. 2020, 12, 473. [Google Scholar] [CrossRef] [Green Version]
- Sha, Z.C.; Chen, Y.P.; Lin, Y.B.; Wang, C.; Marcato, J.; Li, J. A Supervoxel Approach to Road Boundary Enhancement from 3-D LiDAR Point Clouds. IEEE Geosci. Remote Sens. Lett. 2022, 19, 11. [Google Scholar] [CrossRef]
- Su, F.; Liu, Y.; Nie, K.; Liu, Y.; Bi, J.; Zhang, R.; Zheng, G. Boundary-aware supervoxel segmentation for indoor 3D point clouds. IEEE Access 2023, 11, 73478–73489. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, B.; Hu, P.; Scherer, S. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 137, 112–133. [Google Scholar] [CrossRef]
- Rusu, R.B.; Cousins, S. 3D is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar]
- Hoppe, H.; Derose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface Reconstruction from Unorganized Points. In Proceedings of the 19th Annual Conference of the Assoc-for-Computing-Machinery: Computer Graphics and Interactive Techniques (Siggraph 92), Chicago, IL, USA, 26–31 July 1992; pp. 71–78. [Google Scholar]
- Pukelsheim, F. The three sigma rule. Am. Stat. 1994, 48, 88–91. [Google Scholar]
- Hackel, T.; Savinov, N.; Wegner, J.D.; Schindler, K.; Pollefeys, M. SEMANTIC3D. NET: A new large-scale point cloud classification benchmark. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 6–9 June 2017; pp. 91–98. [Google Scholar]
- Vallet, B.; Brédif, M.; Serna, A.; Marcotegui, B.; Paparoditis, N. TerraMobilita/iQmulus urban point cloud analysis benchmark. Comput. Graph. 2015, 49, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Chen, B.; Zai, D.; Li, J. Facet segmentation-based line segment extraction for large-scale point clouds. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4839–4854. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, J.; Wang, Y.; Lu, Z.; Wang, Y. A novel rock-mass point cloud registration method based on feature line extraction and feature point matching. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
Data Set | Point Clouds | Point Number | Planes | Boundary Points |
---|---|---|---|---|
Semantic3D | stgallen1 | 620,133 | 142 | 25,930 |
bildstein1 | 2,269,937 | 367 | 246,856 | |
IQTM | cassette | 1,189,410 | 44 | 41,737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, B.; Yuan, Y.; Zhang, Y.; Hu, B.; Yu, Q. An Accurate and Efficient Supervoxel Re-Segmentation Approach for Large-Scale Point Clouds Using Plane Constraints. Remote Sens. 2023, 15, 3973. https://doi.org/10.3390/rs15163973
Lai B, Yuan Y, Zhang Y, Hu B, Yu Q. An Accurate and Efficient Supervoxel Re-Segmentation Approach for Large-Scale Point Clouds Using Plane Constraints. Remote Sensing. 2023; 15(16):3973. https://doi.org/10.3390/rs15163973
Chicago/Turabian StyleLai, Baokang, Yingtao Yuan, Yueqiang Zhang, Biao Hu, and Qifeng Yu. 2023. "An Accurate and Efficient Supervoxel Re-Segmentation Approach for Large-Scale Point Clouds Using Plane Constraints" Remote Sensing 15, no. 16: 3973. https://doi.org/10.3390/rs15163973
APA StyleLai, B., Yuan, Y., Zhang, Y., Hu, B., & Yu, Q. (2023). An Accurate and Efficient Supervoxel Re-Segmentation Approach for Large-Scale Point Clouds Using Plane Constraints. Remote Sensing, 15(16), 3973. https://doi.org/10.3390/rs15163973