Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall
Abstract
:1. Introduction
2. Data and RTM
2.1. Data Description
2.2. RTM
3. Direct Assimilation Module Construction and Verification in WRFDA
3.1. Performance of RTTOV-gb
3.2. Comparison with Line-by-Line Model Computed Radiance and Real Observations
3.3. The Direct Assimilation Module Build
3.4. Single-Observation Experiment
4. Direct Assimilation Experiment
4.1. The Heavy Rainfall Case
4.2. Model Configurations and Experimental Design
5. Results
5.1. The Impact on the Temperature and Humidity Analysis Fields
5.2. Impact on 6 h Accumulated Precipitation in Beijing Area
6. Discussion
7. Conclusions
- (1)
- The RTTOV-gb effectively simulates the BT performance assimilation of GMWR data and can be used as an observation operator for direct assimilation. By comparing simulations of Station 54399′s BTs from June to October 2019 using both the RTTOV-gb and MonoRTM with observed values, the analysis results show that scatter plots for both models’ simulated BTs versus the observed values are concentrated along the diagonal line. The absolute error between the simulated and observed BTs is within 3.0 K. Additionally, the root mean square error for each channel’s simulated BTs using the RTTOV-gb is consistent with the MonoRTM and relatively small, indicating that the performance of the RTTOV-gb is comparable to the MonoRTM in simulating GMWR BTs.
- (2)
- The constructed direct assimilation module for GMWRs can successfully perform the direct assimilation of GMWR radiance data. Through a single-point test, the accuracy of the direct assimilation module and the validity of its algorithm were confirmed. The single-point test also reveals that direct assimilation primarily impacts temperature and humidity fields in the middle and lower layers below 500 hPa in the model, which is consistent with each channel’s weighting function characterization for GMWRs. As such, this direct assimilation module can be utilized for further direct assimilation testing.
- (3)
- When assimilating GMWR radiance data, the direct assimilation method proves to be more effective than the indirect assimilation method. This results in an improvement in the initial temperature and humidity fields of the model, which in turn enhances its ability to forecast extreme precipitation events. A comparison between the impact of direct and indirect assimilation on analysis fields shows that direct assimilation reduces errors in temperature and humidity fields, while indirect assimilation can increase them due to large errors introduced by the data retrieval method. Furthermore, based on the TS scores for 6 h accumulated precipitation, direct assimilation can effectively improve forecasts of precipitation events with larger magnitudes of rainfall with particularly significant improvements seen for accumulated rainfall of over 60 mm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, E. 2018: Statement of Guidance for Global Numerical Weather Prediction (NWP); World Meteorological Organization: Geneva, Switzerland. Available online: https://docplayer.net/194586713-Statement-of-guidance-for-global-numerical-weather-prediction-nwp.html (accessed on 16 December 2019).
- Cimini, D.; Hewison, T.J.; Martin, L.; Güldner, J.; Gaffard, C.; Marzano, F.S. Temperature and humidity profile retrievals from groundbased microwave radiometers during TUC. Meteorol. Z. 2006, 15, 45–56. [Google Scholar] [CrossRef]
- Bao, Y.S.; Cai, X.; Qian, C.; Min, J.Z.; Lu, Q.F.; Zuo, Q. 0–10 KM Temperature and Humidity Profiles Retrieval from Ground-based Microwave Radiometer. J. Trop. Meteorol. 2018, 24, 243–252. [Google Scholar] [CrossRef]
- Wei, J.; Shi, Y.; Ren, Y.; Li, Q.; Qiao, Z.; Cao, J.; Ayantobo, O.O.; Yin, J.; Wang, G. Application of Ground-Based Microwave Radiometer in Retrieving Meteorological Characteristics of Tibet Plateau. Remote Sens. 2021, 13, 2527. [Google Scholar] [CrossRef]
- Caumont, O.; Cimini, D.; Löhnert, U.; Alados-Arboledas, L.; Bleisch, R.; Buffa, F.; Ferrario, M.E.; Haefele, A.; Huet, T.; Madonna, F.; et al. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model. Q. J. R. Meteorol. Soc. 2016, 142, 2692–2704. [Google Scholar] [CrossRef]
- Ferraro, R.; Beauchamp, J.; Cecil, D.; Heymsfield, G. A prototype haildetection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res. 2015, 163, 24–35. [Google Scholar] [CrossRef]
- Rysman, J.F.; Claud, C.; Dafis, S. Global monitoring of deep convection using passive microwave observations. Atmos. Res. 2021, 247, 105244. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Z.; Ma, Y.; Qin, J.; Zhu, L.; Chen, R.; Lu, J. Observing the Microwave Radiation of the Sun during a Solar Eclipse with a Ground-Based Multichannel Microwave Radiometer. Remote Sens. 2022, 14, 2665. [Google Scholar] [CrossRef]
- Cossu, F.; Hocke, K.; Mätzler, C. A 10-Year Cloud Fraction Climatology of Liquid Water Clouds over Bern Observed by a Ground-Based Microwave Radiometer. Remote Sens. 2015, 7, 7768–7784. [Google Scholar] [CrossRef]
- Temimi, M.; Fonseca, R.M.; Nelli, N.R.; Valappil, V.K.; Weston, M.J.; Thota, M.S.; Wenbe, Y.; Yousef, L. On the analysis of ground-based microwave radiometer data during fog conditions. Atmos. Res. 2020, 231, 104652. [Google Scholar] [CrossRef]
- Ming, H.; Wang, M.; Gao, L.; Qian, Y.; Gao, M.; Chehri, A. Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data. Remote Sens. 2023, 15, 641. [Google Scholar] [CrossRef]
- Martinet, P.; Cimini, D.; Burnet, F.; Ménétrier, B.; Michel, Y.; Unger, V. Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: A 1D-Var study. Atmos. Meas. Tech. 2020, 13, 6593–6611. [Google Scholar] [CrossRef]
- Chen, K.; Wu, G. Comparison of the Potential Impact to the Prediction of Typhoons of Various Microwave Sounders Onboard a Geostationary Satellite. Remote Sens. 2022, 14, 1533. [Google Scholar] [CrossRef]
- Xu, D.; Shu, A.; Li, H.; Shen, F.; Li, Q.; Su, H. Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil. Remote Sens. 2021, 13, 2873. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Liu, R.; Shen, F. Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021). Remote Sens. 2022, 14, 4718. [Google Scholar] [CrossRef]
- Lee, E.; Todling, R.; Karpowicz, B.M.; Jin, J.; Sewnath, A.; Park, S.K. Assessment of Geo-Kompsat-2A Atmospheric Motion Vector Data and Its Assimilation Impact in the GEOS Atmospheric Data Assimilation System. Remote Sens. 2022, 14, 5287. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Li, H.; Wu, H.; Shen, F.; Shu, A.; Wang, Y.; Zhuang, X. Evaluation of the Simulation of Typhoon Lekima (2019) Based on Different Physical Parameterization Schemes and FY-3D Satellite’s MWHS-2 Data Assimilation. Remote Sens. 2021, 13, 4556. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Chen, Y.; Min, J. The Potential Impact of Assimilating Synthetic Microwave Radiances Onboard a Future Geostationary Satellite on the Prediction of Typhoon Lekima Using the WRF Model. Remote Sens. 2021, 13, 886. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, X.; Wang, Z.; Yang, Y.; Pan, X.; Ji, C.; Guo, R. Comparison of Brightness Temperature of Multi-type Ground-based Microwave Radiometers. J. Appl. Meteorol. 2018, 29, 724–736. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Mao, J.; Li, B.; Guo, C.; Zhang, S. Impact of assimilating ground-based microwave radiometer data on the precipitation bifurcation forecast: A case study in Beijing. Atmosphere 2021, 12, 551. [Google Scholar] [CrossRef]
- De Angelis, F.; Cimini, D.; Hocking, J.; Martinet, P.; Kneifel, S. RTTOV-gb adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations. Geosci. Model Dev. 2016, 9, 2721–2739. [Google Scholar] [CrossRef]
- Cimini, D.; Hocking, J.; De Angelis, F.; Cersosimo, A.; Di Paola, F.; Gallucci, D.; Gentile, S.; Geraldi, E.; Larosa, S.; Nilo, S.; et al. RTTOV-gb v1. 0–updates on sensors, absorption models, uncertainty, and availability. Geosci. Model Dev. 2019, 12, 1833–1845. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, X.; Perrie, W.; Zhou, F. Air–Sea Interface Parameters and Heat Flux from Neural Network and Advanced Microwave Scanning Radiometer Observations. Remote Sens. 2022, 14, 2364. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, D.; Yan, H. An improved retrieval method of atmospheric parameter profiles based on the BP neural network. Atmos. Res. 2018, 213, 389–397. [Google Scholar] [CrossRef]
- Zou, R.; He, W.; Wang, P.; Mao, J.; Chen, H.; Li, J.; Nan, W.; Chang, Y. Assessment of Radiative Transfer Models Based on Observed Brightness Temperature from Ground-Based Microwave Radiometer. Chin. J. Atmos. Sci. 2021, 45, 605–616. (In Chinese) [Google Scholar] [CrossRef]
- He, W.; Cheng, Y.; Zou, R.; Wang, P.; Chen, H.; Li, J.; Xia, X. Radiative Transfer Model Simulations for Ground-Based Microwave Radiometers in North China. Remote Sens. 2021, 13, 5161. [Google Scholar] [CrossRef]
- Buehler, S.A.; Courcoux, N.; John, V.O. Radiative transfer calculations for a passive microwave satellite sensor: Comparing a fast model and a line-by-line model. J. Geophys. Res. Atmos. 2006, 111, 6552. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci. 1998, 33, 919–928. [Google Scholar] [CrossRef]
- Cimini, D.; Rosenkranz, P.W.; Tretyakov, M.Y.; Koshelev, M.A.; Romano, F. Uncertainty of atmospheric microwave absorption model: Impact on ground-based radiometer simulations and retrievals. Atmos. Chem. Phys. 2018, 18, 15231–15259. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Min, J.; Zhang, B.; Li, C. Assimilation of radar observations with En3DVAR at cloud-resolving scale for the prediction of Typhoon Saomai. Acta Oceanol. Sin. 2018, 40, 48–61. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Shen, F.; Min, J.; Xu, D. Assimilation of radar radial velocity data with the WRF Hybrid ETKF–3DVAR system for the prediction of Hurricane Ike (2008). Atmos. Res. 2016, 169, 127–138. [Google Scholar] [CrossRef]
- Shu, T.; Han, H.; Guo, L.; Lin, L.; Zhao, Z.; Li, J. Using of Temperature Weighting Functions for Retrieving Atmospheric Temperature Profiles of the Relevant Theoretical Research. J. Microw. 2012, 28, 451–454. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Yan, W.; Lu, W.; Ma, S.; Zhao, X.; Gu, C. Channel Selection, Data Simulation, and Parameter Inversion of Ground-Based Hyperspectral Microwave Radiometer. Math. Probl. Eng. 2019, 2019, 4846378. [Google Scholar] [CrossRef]
- Arora, K.; Ray, K.; Ram, S.; Mehajan, R. The Role of Instability Indices in Forecasting Thunderstorm and Non-Thunderstorm Days across Six Cities in India. Climate 2023, 11, 14. [Google Scholar] [CrossRef]
- Xu, D.; Yang, G.; Wu, Z.; Shen, F.; Li, H.; Zhai, D. Evaluate Radar Data Assimilation in Two Momentum Control Variables and the Effect on the Forecast of Southwest China Vortex Precipitation. Remote Sens. 2022, 14, 3460. [Google Scholar] [CrossRef]
- Song, L.; Shen, F.; Shao, C.; Shu, A.; Zhu, L. Impacts of 3DEnVar-Based FY-3D MWHS-2 Radiance Assimilation on Numerical Simulations of Landfalling Typhoon Ampil (2018). Remote Sens. 2022, 14, 6037. [Google Scholar] [CrossRef]
Water Vapor Channels | Oxygen Channels | ||
---|---|---|---|
Channel Number | Centre Frequency | Channel Number | Centre Frequency |
1 | 22.40 GHz | 8 | 51.26 GHz |
2 | 23.04 GHz | 9 | 52.28 GHz |
3 | 23.84 GHz | 10 | 53.86 GHz |
4 | 25.44 GHz | 11 | 54.94 GHz |
5 | 26.24 GHz | 12 | 56.66 GHz |
6 | 27.84 GHz | 13 | 57.30 GHz |
7 | 31.40 GHz | 14 | 58.80 GHz |
Sensor | RTTOV-gb ID | Channel |
---|---|---|
HATPRO | 1 | 1–14 |
MP3000A | 2 | 1–22 |
TEMPERA | 3 | 1–12 |
LWP_K2W | 4 | 1–6 |
Experiment | Assimilated Data | Assimilation Interval |
---|---|---|
CTRL | No | |
MWR_DA | Temperature and humidity profiles from 7 GMWRs | 2 h |
DIR_DA | Radiance of 7 GMWRs | 2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Shi, B.; Zhao, X.; Yang, T.; Min, J. Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall. Remote Sens. 2023, 15, 4314. https://doi.org/10.3390/rs15174314
Cao Y, Shi B, Zhao X, Yang T, Min J. Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall. Remote Sensing. 2023; 15(17):4314. https://doi.org/10.3390/rs15174314
Chicago/Turabian StyleCao, Yujie, Bingying Shi, Xinyu Zhao, Ting Yang, and Jinzhong Min. 2023. "Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall" Remote Sensing 15, no. 17: 4314. https://doi.org/10.3390/rs15174314
APA StyleCao, Y., Shi, B., Zhao, X., Yang, T., & Min, J. (2023). Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall. Remote Sensing, 15(17), 4314. https://doi.org/10.3390/rs15174314