DSRSS-Net: Improved-Resolution Snow Cover Mapping from FY-4A Satellite Images Using the Dual-Branch Super-Resolution Semantic Segmentation Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Implementation Details
2.2. Methodology
2.2.1. Edge Enhancement Block
2.2.2. Improved Coordinated Attention Module
2.2.3. Multi-Task Loss Function
3. Experiments
3.1. Experimental Environment Setting
3.2. Evaluation Metrics
4. Results
4.1. Comparison of the Segmentation Models
4.2. Ablation Studies
4.3. Comparison of Snow Cover Mapping on the Qinghai–Tibet Plateau
4.4. Verification against a Ground Weather Station
4.5. Mask Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; You, Q.L.; Wu, F.Y. Characteristics of climate and extreme climate change in Sanjiangyuan region of Qinghai-Tibet Plateau during the past 60 years. J. Atmos. Sci. 2020, 43, 1042–1055. [Google Scholar]
- Hu, Y.; Zhang, Y.; Yan, L.; Li, X.-M.; Dou, C.; Jia, G.; Si, Y.; Zhang, L. Evaluation of the Radiometric Calibration of FY4A-AGRI Thermal Infrared Data Using Lake Qinghai. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8040–8050. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Tal, A., Gustavo, C., Eds.; Springer: Cham, Switzerland, 2015; Part 3; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F. Rethinking atrous convolution for semantic image segmentation. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Lee, S.H.; Han, K.J.; Lee, K. Classification of landscape affected by deforestation using high-resolution remote sensing data and deep-learning techniques. Remote Sens. 2020, 12, 3372. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.P. Next generation mapping: Combining deep learning, cloud computing, and big remote sensing data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K. Learning a deep convolutional network for image super-resolution. In European Conference on Computer Vision; Tal, A., Gustavo, C., Eds.; Springer: Cham, Switzerland, 2014; pp. 184–199. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In European Conference on Computer Vision; Tal, A., Gustavo, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 391–407. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1874–1883. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 136–144. [Google Scholar]
- Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. Enhancenet: Single image super-resolution through automated texture synthesis. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4491–4500. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zhang, K.; Sumbul, G.; Demir, B. An approach to super-resolution of sentinel-2 images based on generative adversarial networks. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 69–72. [Google Scholar]
- Chen, B.; Li, J.; Jin, Y. Deep learning for feature-level data fusion: Higher resolution reconstruction of historical landsat archive. Remote Sens. 2021, 13, 167. [Google Scholar] [CrossRef]
- Dai, D.; Wang, Y.; Chen, Y. Is image super-resolution helpful for other vision tasks? In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar]
- Guo, Z.; Wu, G.; Song, X. Super-resolution integrated building semantic segmentation for multi-source remote sensing imagery. IEEE Access 2019, 7, 99381–99397. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Z.; Wu, X.; Pan, B.; Xu, X.; Hao, H. Simultaneous super-resolution and segmentation for remote sensing images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3121–3124. [Google Scholar]
- Wang, L.; Li, D.; Zhu, Y.; Tian, L.; Shan, Y. Dual super-resolution learning for semantic segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3774–3783. [Google Scholar]
- Xu, P.L.; Tang, H.; Ge, J.Y.; Feng, L. ESPC_NASUnet: An End-to-End Super-Resolution Semantic Segmentation Network for Mapping Buildings from Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5421–5435. [Google Scholar] [CrossRef]
- Abadal, S.; Salgueiro, L.; Marcello, J. A dual network for super-resolution and semantic segmentation of sentinel-2 imagery. Remote Sens. 2021, 13, 4547. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Fu, J.; Wang, W.N.; Lu, H.Q. Super-resolution semantic segmentation with relation calibrating network. Pattern Recognit. 2022, 12, 108501. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Cai, P.Y.; Tao, R.C. Remote sensing image cloud detection based on improved U-Net network. J. Surv. Mapp. Bull. 2020, 3, 17–20. [Google Scholar]
- Lu, Z.H.; Kan, X.; Li, Y. Super-resolution reconstruction of Fengyun-4 satellite images based on matching extraction and cross-scale feature fusion network. J. Adv. Lasers Optoelectron. 2023, 60, 128–138. [Google Scholar]
- Gu, Z.; Cheng, J.; Fu, H. Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Parajka, J.; Komma, J.; Blöschl, G. Mapping snow cover from daily Collection 6 MODIS products over Austria. J. Hydrol. 2020, 590, 125548. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zeng, H.; Zhang, L. Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 4034–4043. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 13713–13722. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2881–2890. [Google Scholar]
- Zhou, Z.; Rahman, S.M.M.; Tajbakhsh, N. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Tal, A., Gustavo, C., Eds.; Springer: Cham, Switzerland, 2018; Volume 4, pp. 3–11. [Google Scholar]
- Yang, M.; Yu, K.; Zhang, C. Denseaspp for semantic segmentation in street scenes. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3684–3692. [Google Scholar]
Band | Type | Spectral Bandwidth | Spatial Resolution |
---|---|---|---|
1 | Visible and near-infrared | 0.45~0.49 µm | 1 km |
2 | 0.55~0.75 µm | 0.5~1 km | |
3 | 0.75~0.90 µm | 1 km | |
4 | Shortwave infrared | 1.36~1.39 µm | 2 km |
5 | 1.58~1.64 µm | 2 km | |
6 | 2.1~2.35 µm | 2~4 km | |
7 | Medium-wave infrared | 3.5~4.0 µm (high) | 2 km |
8 | 3.5~4.0 µm (low) | 4 km | |
9 | Water vapor | 5.8~6.7 µm | 4 km |
10 | 6.9~7.3 µm | 4 km | |
11 | Long-wave infrared | 8.0~9.0 µm | 4 km |
12 | 10.3~11.3 µm | 4 km | |
13 | 11.5~12.5 µm | 4 km | |
14 | 13.2~13.8 µm | 4 km |
Method | Input | IOU | MIoU/% | OA/% | Precision/% | Recall/% | F1/% | ||
---|---|---|---|---|---|---|---|---|---|
Snow | Cloud | Other | |||||||
Unet | LR | 69.5 | 60.55 | 88.3 | 72.78 | 89.55 | 85.92 | 81.49 | 83.65 |
HR + MR + LR | 71.55 | 62.53 | 89.36 | 74.48 | 90.45 | 86.27 | 81.77 | 83.96 | |
PSPnet | LR | 66.71 | 61.96 | 87.3 | 71.99 | 89.12 | 85.41 | 80.94 | 83.11 |
HR + MR + LR | 69.88 | 62.35 | 87.57 | 73.27 | 89.42 | 85.78 | 81.06 | 83.35 | |
CENet | LR | 66.52 | 60.94 | 87.7 | 72.39 | 89.79 | 85.53 | 81.36 | 83.39 |
HR + MR + LR | 70.76 | 63.18 | 89.04 | 74.33 | 90.16 | 85.64 | 81.47 | 83.50 | |
DeeplabV3+ | LR | 70.35 | 58.78 | 87.7 | 72.29 | 89.43 | 85.47 | 81.08 | 83.22 |
HR + MR + LR | 71.17 | 61.73 | 88.55 | 73.81 | 89.74 | 85.58 | 81.39 | 83.43 | |
DenseAspp | LR | 70.35 | 59.86 | 88.46 | 72.89 | 89.57 | 86.03 | 81.52 | 83.71 |
LR + MR + HR | 71.16 | 64.45 | 88.84 | 74.82 | 90.24 | 86.43 | 81.68 | 83.99 | |
Unet++ | LR | 71.11 | 63.2 | 88.89 | 74.39 | 90.11 | 86.52 | 81.89 | 84.14 |
HR + MR + LR | 72.78 | 63.92 | 89.08 | 75.26 | 90.41 | 86.64 | 81.92 | 84.21 | |
DSRSS-Net (ours) | HR + MR + LR | 73.51 | 66.2 | 88.62 | 76.11 | 90.65 | 86.75 | 82.04 | 84.33 |
Number | SISR | EEB Block | Improved CA Module | IOU | MIoU/% | OA/% | Precision/% | Recall/% | F1/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Snow | Cloud | Other | |||||||||
1 | - | - | - | 71.17 | 61.73 | 88.55 | 73.81 | 89.74 | 85.58 | 81.39 | 83.43 |
2 | √ | - | - | 70.86 | 63.66 | 88.42 | 74.32 | 90.04 | 86.04 | 81.57 | 83.75 |
3 | √ | √ | - | 71.51 | 64.69 | 89.05 | 75.08 | 90.43 | 86.27 | 81.66 | 83.91 |
4 | √ | - | √ | 73.05 | 64.84 | 88.82 | 75.57 | 90.40 | 86.41 | 81.59 | 83.93 |
5 | - | √ | √ | 72.66 | 64.22 | 88.71 | 75.20 | 90.36 | 86.32 | 81.53 | 83.85 |
6 | √ | √ | √ | 73.51 | 66.2 | 88.62 | 76.11 | 90.65 | 86.75 | 82.04 | 84.33 |
Contrast | Snow Average Accuracy/% | Snow Average False Positive Rate/% | Average Total Accuracy Rate/% |
---|---|---|---|
MOD10A1 product | 50.69 | 18.32 | 79.36 |
Proposedmodel | 55.14 | 13.70 | 84.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, X.; Lu, Z.; Zhang, Y.; Zhu, L.; Sian, K.T.C.L.K.; Wang, J.; Liu, X.; Zhou, Z.; Cao, H. DSRSS-Net: Improved-Resolution Snow Cover Mapping from FY-4A Satellite Images Using the Dual-Branch Super-Resolution Semantic Segmentation Network. Remote Sens. 2023, 15, 4431. https://doi.org/10.3390/rs15184431
Kan X, Lu Z, Zhang Y, Zhu L, Sian KTCLK, Wang J, Liu X, Zhou Z, Cao H. DSRSS-Net: Improved-Resolution Snow Cover Mapping from FY-4A Satellite Images Using the Dual-Branch Super-Resolution Semantic Segmentation Network. Remote Sensing. 2023; 15(18):4431. https://doi.org/10.3390/rs15184431
Chicago/Turabian StyleKan, Xi, Zhengsong Lu, Yonghong Zhang, Linglong Zhu, Kenny Thiam Choy Lim Kam Sian, Jiangeng Wang, Xu Liu, Zhou Zhou, and Haixiao Cao. 2023. "DSRSS-Net: Improved-Resolution Snow Cover Mapping from FY-4A Satellite Images Using the Dual-Branch Super-Resolution Semantic Segmentation Network" Remote Sensing 15, no. 18: 4431. https://doi.org/10.3390/rs15184431
APA StyleKan, X., Lu, Z., Zhang, Y., Zhu, L., Sian, K. T. C. L. K., Wang, J., Liu, X., Zhou, Z., & Cao, H. (2023). DSRSS-Net: Improved-Resolution Snow Cover Mapping from FY-4A Satellite Images Using the Dual-Branch Super-Resolution Semantic Segmentation Network. Remote Sensing, 15(18), 4431. https://doi.org/10.3390/rs15184431