Detection of Winter Heat Wave Impact on Surface Runoff in a Periglacial Environment (Ny-Ålesund, Svalbard)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground-Based Observations
2.1.1. Meteorological Data
2.1.2. Spectral Reflectance
2.1.3. Snow-Cover Extent
2.1.4. Snow-Water Equivalent
2.2. Satellite Data
2.3. Softwares
3. Results
3.1. The Meteorological Framework of the Snow Season
3.2. The Spatial Distribution of Surface Land-Cover Types Using Satellite Observations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Area of interest |
BA | Broadband albedo |
BHR | Bi-hemispherical reflectance |
CCT | Amundsen-Nobile Climate Change Tower |
ECV | Essential Climate Variable |
FSCA | Fractional Snow-Covered Area |
GCOS | Global Climate Observing System |
HW | Heat waves |
IADC | Italian Arctic Data Center |
LC | Land cover |
P | Precipitation |
ROI | Region of interest |
RoS | Rain-on-snow |
SCE | Snow-cover extent |
SR | Spectral reflectance |
SWE | Snow-water equivalent |
T | Air temperature |
WS | Wind speed |
References
- AMAP. AMAP Arctic Climate Change Update 2021: Key Trends and Impacts; Arctic Monitoring and Assessment Programme (AMAP): Tromsø, Norway, 2021; pp. 1–148. Available online: https://www.amap.no/documents/download/6890/inline (accessed on 20 June 2023).
- Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.-J.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.; Romanovsky, V.E.; et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- Overland, J.E. Rare events in the Arctic. Clim. Chang. 2021, 168, 27. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Rennert, K.J.; Roe, G.; Putkonen, J.; Bitz, C.M. Soil Thermal and Ecological Impacts of Rain on Snow Events in the Circumpolar Arctic. J. Clim. 2009, 22, 2302–2315. [Google Scholar] [CrossRef]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 5147. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.; McDowell, G.; Pearce, T. The adaptation challenge in the Arctic. Nat. Clim. Chang. 2015, 5, 1046–1053. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Bokhorst, S.; Callaghan, T.V.; Phoenix, G.K. Persistent reduction of segment growth and photosynthesis in a widespread and important sub-Arctic moss species after cessation of three years of experimental winter warming. Funct. Ecol. 2017, 31, 127–134. [Google Scholar] [CrossRef]
- Peeters, B.; Pedersen, Å.Ø.; Loe, L.E.; Isaksen, K.; Veiberg, V.; Stien, A.; Kohler, J.; Gallet, J.C.; Aanes, R.; Hansen, B.B. Spatiotemporal patterns of rain-on-snow and basal ice in high Arctic Svalbard: Detection of a climate-cryosphere regime shift. Environ. Res. Lett. 2019, 14, 015002. [Google Scholar] [CrossRef]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.Ø.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Bokhorst, S.; Bjerke, J.W.; Phoenix, G.K.; Jaakola, L.; Mæhre, H.K.; Tømmervik, H. Sub-arctic mosses and lichens show idiosyncratic responses to combinations of winter heatwaves, freezing and nitrogen deposition. Physiol. Plant. 2023, 175, e13882. [Google Scholar] [CrossRef]
- Messori, G.; Woods, C.; Caballero, R. On the Drivers of Wintertime Temperature Extremes in the High Arctic. J. Clim. 2018, 31, 1597–1618. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12–500. [Google Scholar] [CrossRef]
- Dobricic, S.; Russo, S.; Pozzoli, L.; Wilson, J.; Vignati, E. Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 2020, 15, 024022. [Google Scholar] [CrossRef]
- Serreze, M.C.; Gustafson, J.; Barrett, A.P.; Druckenmiller, M.L.; Fox, S.; Voveris, J.; Stroeve, J.; Sheffield, B.; Forbes, B.C.; Rasmus, S. Arctic rain on snow events: Bridging observations to understand environmental and livelihood impacts. Environ. Res. Lett. 2021, 16, 105009. [Google Scholar] [CrossRef]
- Sobota, I.; Weckwerth, P.; Grajewski, T. Rain-On-Snow (ROS) events and their relations to snowpack and ice layer changes on small glaciers in Svalbard, the high Arctic. J. Hydrol. 2020, 590, 125279. [Google Scholar] [CrossRef]
- Box, J.E.; Wehrlé, A.; van As, D.; Fausto, R.S.; Kjeldsen, K.K.; Dachauer, A.; Ahlstrøm, A.P.; Picard, G. Greenland ice sheet rainfall, heat and albedo feedback impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett. 2022, 49, e2021GL097356. [Google Scholar] [CrossRef]
- Westermann, S.; Boike, J.; Langer, M.; Schuler, T.V.; Etzelmüller, B. Modeling the impact of wintertime rain events on the thermal regime of permafrost. Cryosphere 2011, 5, 945–959. [Google Scholar] [CrossRef]
- Nakamura, T.; Sato, T. A possible linkage of Eurasian heat wave and East Asian heavy rainfall in Relation to the Rapid Arctic warming. Environ. Res. 2022, 209, 112881. [Google Scholar] [CrossRef]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- GCOS. GCOS 2022 Implementation Plan; WMO: Geneva, Switzerland, 2022; Available online: https://library.wmo.int/doc_num.php?explnum_id=11317 (accessed on 20 June 2023).
- Gascoin, S.; Barrou Dumont, Z.; Deschamps-Berger, C.; Marti, F.; Salgues, G.; López-Moreno, J.I.; Revuelto, J.; Michon, T.; Schattan, P.; Hagolle, O. Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index. Remote Sens. 2020, 12, 2904. [Google Scholar] [CrossRef]
- Stillinger, T.; Rittger, K.; Raleigh, M.S.; Michell, A.; Davis, R.E.; Bair, E.H. Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. Cryosphere 2023, 17, 567–590. [Google Scholar] [CrossRef]
- Richiardi, C.; Blonda, P.; Rana, F.M.; Santoro, M.; Tarantino, C.; Vicario, S.; Adamo, M. A Revised Snow Cover Algorithm to Improve Discrimination between Snow and Clouds: A Case Study in Gran Paradiso National Park. Remote Sens. 2021, 13, 1957. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Valenzuela, A.; Reinke, K.; Jones, S. A new metric for the assessment of spatial resolution in satellite imagers. Int. J. Appl. Earth Obs. 2022, 114, 103051. [Google Scholar] [CrossRef]
- Parajka, J.; Haas, P.; Kirnbauer, R.; Jansa, J.; Blöschl, G. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process. 2012, 26, 3327–3337. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Stendardi, L.; Tømmervik, H.; Nilsen, L.; Arntzen, I.; Cooper, E.J. Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard. Remote Sens. 2021, 13, 3031. [Google Scholar] [CrossRef]
- Hallikainen, M.; Lemmetyinen, J.; Jiang, L. Snow Properties from Passive Microwave. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 4, pp. 224–236. [Google Scholar] [CrossRef]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef]
- Vickers, H.; Malnes, E.; Eckerstorfer, M. A Synthetic Aperture Radar Based Method for Long Term Monitoring of Seasonal Snowmelt and Wintertime Rain-On-Snow Events in Svalbard. Front. Earth Sci. 2022, 10, 868945. [Google Scholar] [CrossRef]
- Egli, L.; Jonas, T.; Meister, R. Comparison of different automatic methods for estimating snow water equivalent. Cold Reg. Sci. Technol. 2009, 57, 107–115. [Google Scholar] [CrossRef]
- Domine, F.; Salvatori, R.; Legagneux, L.; Salzano, R.; Fily, M.; Casacchia, R. Correlation between the specific surface area and the shortwave infrared (SWIR) reflectance of snow. Cold Reg. Sci. Technol. 2006, 46, 60–68. [Google Scholar] [CrossRef]
- Picard, G.; Dumont, M.; Lamare, M.; Tuzet, F.; Larue, F.; Pirazzini, R.; Arnaud, L. Spectral albedo measurements over snow-covered slopes: Theory and slope effect corrections. Cryosphere 2020, 14, 1497–1517. [Google Scholar] [CrossRef]
- Manninen, T.; Anttila, K.; Jääskeläinen, E.; Riihelä, A.; Peltoniemi, J.; Räisänen, P.; Lahtinen, P.; Siljamo, N.; Thölix, L.; Meinander, O.; et al. Effect of small-scale snow surface roughness on snow albedo and reflectance. Cryosphere 2021, 15, 793–820. [Google Scholar] [CrossRef]
- Kinar, N.J.; Pomeroy, J.W. Measurement of the physical properties of the snowpack. Rev. Geophys. 2015, 53, 481–544. [Google Scholar] [CrossRef]
- Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; Von Lerber, A.; Tanis, C.M.; Schneebeli, M.; et al. European In-Situ Snow Measurements: Practices and Purposes. Sensors 2018, 18, 2016. [Google Scholar] [CrossRef] [PubMed]
- Gabarró, C.; Hughes, N.; Wilkinson, J.; Bertino, L.; Bracher, A.; Diehl, T.; Dierking, W.; Gonzalez-Gambau, V.; Lavergne, T.; Madurell, T.; et al. Improving satellite-based monitoring of the polar regions: Identification of research and capacity gaps. Front. Remote Sens. 2023, 4, 952091. [Google Scholar] [CrossRef]
- Fierz, C.; Armstrong, R.L.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.M.; Nishimura, K.; Satyawali, P.K.; Sokratov, S.A. The International Classification for Seasonal Snow on the Ground. In IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1; UNESCO-IHP: Paris, France, 2009; pp. 1–81. [Google Scholar]
- Salvatori, R.; Salzano, R.; Valt, M.; Cerrato, R.; Ghergo, S. The Collection of Hyperspectral Measurements on Snow and Ice Covers in Polar Regions (SISpec 2.0). Remote Sens. 2022, 14, 2213. [Google Scholar] [CrossRef]
- Scoto, F.; Pappaccogli, G.; Mazzola, M.; Donateo, A.; Salzano, R.; Monzali, M.; de Blasi, F.; Larose, C.; Gallet, J.C.; Decesari, S.; et al. Automated observation of physical snowpack properties in Ny-Ålesund. Front. Earth Sci. 2023, 11, 1123981. [Google Scholar] [CrossRef]
- Salzano, R.; Lanconelli, C.; Esposito, G.; Giusto, M.; Montagnoli, M.; Salvatori, R. On the Seasonality of the Snow Optical Behaviour at Ny Ålesund (Svalbard Islands, Norway). Geosciences 2021, 11, 112. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; Picard, G.; Arnaud, L.; Dumont, M.; Tuzet, F.; Brockmann, C.; Box, J.E. On the reflectance spectroscopy of snow. Cryosphere 2018, 12, 2371–2382. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Di Mauro, B.; Garzonio, R.; Colombo, R. Retrieval of dust properties from spectral snow reflectance measurements. Front. Environ. Sci. 2021, 9, 644551. [Google Scholar] [CrossRef]
- Vickers, H.; Karlsen, S.R.; Malnes, E. A 20-Year MODIS-Based Snow Cover Dataset for Svalbard and Its Link to Phenological Timing and Sea Ice Variability. Remote Sens. 2020, 12, 1123. [Google Scholar] [CrossRef]
- Norwegian Polar Institute. Kartdata Svalbard 1:100 000 (S100 Kartdata)/Map Data [Data Set]; Norwegian Polar Institute: Tromsø, Norway, 2014. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Berti, C. Geomorphological features of the Kongsfjorden area: Ny-Ålesund, Blomstrandøya (NW Svalbard, Norway). Rend. Fis. Acc. Lincei 2016, 27, 217–228. [Google Scholar] [CrossRef]
- Mazzola, M.; Viola, A.P.; Lanconelli, C.; Vitale, V. Atmospheric observations at the Amundsen-Nobile Climate Change Tower in Ny-Ålesund, Svalbard. Rend. Fis. Acc. Lincei 2016, 27, 7–18. [Google Scholar] [CrossRef]
- Pedersen, C. Zeppelin Web Camera Time-Series; Norwegian Polar Institute: Tromsø, Norway, 2013. [Google Scholar] [CrossRef]
- Salzano, R.; Aalstad, K.; Boldrini, E.; Gallet, J.C.; Kępski, D.; Luks, B.; Nilsen, L.; Salvatori, R.; Westermann, S. Terrestrial Photography Applications on Snow Cover in Svalbard (PASSES). In SESS Report 2020—The State of Environmental Science in Svalbard—An Annual Report; Svalbard Integrated Arctic Earth Observing System: Longyearbyen, Norway, 2021. [Google Scholar] [CrossRef]
- Salzano, R.; Salvatori, R.; Valt, M.; Giuliani, G.; Chatenoux, B.; Ioppi, L. Automated Classification of Terrestrial Images: The Contribution to the Remote Sensing of Snow Cover. Geosciences 2019, 9, 97. [Google Scholar] [CrossRef]
- Choquette, Y.; Lavigne, P.; Nadeau, M.; Ducharme, P.; Martin, J.P.; Houdayer, A.; Rogoza, J. GMON, A New Sensor for Snow Water Equivalent via Gamma Monitoring. In Proceedings of the International Snow Science Workshop, Whistler, BC, Canada, 21–27 September 2008. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson: Glenville, IL, USA, 2015; pp. 1–590. [Google Scholar]
- Rees, W.G. Remote Sensing of Snow and Ice; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–285. [Google Scholar]
- Repp, K. The Hydrology of Bayelva, Spitsbergen. Hydrol. Res. 1988, 19, 259–268. [Google Scholar] [CrossRef]
- Nowak, A.; Hodson, A. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: A case study of Bayelva watershed, Svalbard. Polar Res. 2013, 32, 19691. [Google Scholar] [CrossRef]
- Maturilli, M.; Herber, A.; König-Langlo, G. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst. Sci. Data 2013, 5, 155–163. [Google Scholar] [CrossRef]
- Wołoszyn, A.; Owczarek, Z.; Wieczorek, I.; Kasprzak, M.; Strzelecki, M.C. Glacial Outburst Floods Responsible for Major Environmental Shift in Arctic Coastal Catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sens. 2022, 14, 6325. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Arp, C.D.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef]
- Vickers, H.; Malnes, E.; Høgda, K.-A. Long-Term Water Surface Area Monitoring and Derived Water Level Using Synthetic Aperture Radar (SAR) at Altevatn, a Medium-Sized Arctic Lake. Remote Sens. 2019, 11, 2780. [Google Scholar] [CrossRef]
Variable | Symbol | Unit | Spatial Resolution | Temporal Resolution a | Data Availability b | Spatial Coverage c |
---|---|---|---|---|---|---|
Land Cover | LC | % | 10 m | ~5 days | ~30% | 17 km2 |
Air Temperature | T | °C | n.d. * | 600 s | 100% | 1–10 km2 |
Wind Speed | WS | ms−1 | n.d. | 120 s | 100% | 1–10 km2 |
Precipitation | P | mm | n.d. | 600 s | 100% | 1–10 km2 |
Snow Cover Extent | SCE | % | 5 m | 1 day | ~95% | 5 km2 |
Snow Water Equivalent | SWE | mm | n.d. | 6 h | 100% | 400 m2 |
Spectral Reflectance | SR | n.d. | 300 s | 100% | 100 m2 |
HW | Duration (Days) | Peak Day | Tmax (°C) | Threshold 1 (°C) | RoS | P (mm) |
---|---|---|---|---|---|---|
#1 | 6 | 3/7 | −1.92 | −3.30 | ||
#2 | 7 | 3/15 | 3.13 | −3.03 | 3/16 | 42.6 |
#3 | 20 | 6/1 | 7.21 | 0.95 | 5/21 | 22.3 |
#4 | 7 | 7/16 | 12.13 | 8.13 |
Date | Overall Accuracy [%] | Kappa Coefficient |
---|---|---|
3/1 | 100.00 | 1.00 |
3/18 | 99.95 | 1.00 |
3/26 | 99.24 | 0.99 |
3/30 | 98.29 | 0.97 |
4/8 | 98.65 | 0.98 |
4/11 | 99.79 | 1.00 |
5/11 | 100.00 | 1.00 |
5/29 | 94.23 | 0.92 |
6/2 | 94.76 | 0.98 |
6/25 | 95.99 | 0.94 |
Date | Freshwater | Snow | Snow-Free | Sediments |
---|---|---|---|---|
3/1 | 0.00 | 100.00 | 0.00 | 0.00 |
3/18 | 8.75 | 89.18 | 2.07 | 0.00 |
3/26 | 2.92 | 97.08 | 0.00 | 0.00 |
3/30 | 5.78 | 93.68 | 0.54 | 0.00 |
4/8 | 4.95 | 94.99 | 0.07 | 0.00 |
4/11 | 4.20 | 95.80 | 0.00 | 0.00 |
5/11 | 2.73 | 97.27 | 0.00 | 0.00 |
5/29 | 7.28 | 65.16 | 20.88 | 6.68 |
6/2 | 8.21 | 55.70 | 29.09 | 7.00 |
6/25 | 2.76 | 1.06 | 86.97 | 9.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salzano, R.; Cerrato, R.; Scoto, F.; Spolaor, A.; Valentini, E.; Salvadore, M.; Esposito, G.; Sapio, S.; Taramelli, A.; Salvatori, R. Detection of Winter Heat Wave Impact on Surface Runoff in a Periglacial Environment (Ny-Ålesund, Svalbard). Remote Sens. 2023, 15, 4435. https://doi.org/10.3390/rs15184435
Salzano R, Cerrato R, Scoto F, Spolaor A, Valentini E, Salvadore M, Esposito G, Sapio S, Taramelli A, Salvatori R. Detection of Winter Heat Wave Impact on Surface Runoff in a Periglacial Environment (Ny-Ålesund, Svalbard). Remote Sensing. 2023; 15(18):4435. https://doi.org/10.3390/rs15184435
Chicago/Turabian StyleSalzano, Roberto, Riccardo Cerrato, Federico Scoto, Andrea Spolaor, Emiliana Valentini, Marco Salvadore, Giulio Esposito, Serena Sapio, Andrea Taramelli, and Rosamaria Salvatori. 2023. "Detection of Winter Heat Wave Impact on Surface Runoff in a Periglacial Environment (Ny-Ålesund, Svalbard)" Remote Sensing 15, no. 18: 4435. https://doi.org/10.3390/rs15184435
APA StyleSalzano, R., Cerrato, R., Scoto, F., Spolaor, A., Valentini, E., Salvadore, M., Esposito, G., Sapio, S., Taramelli, A., & Salvatori, R. (2023). Detection of Winter Heat Wave Impact on Surface Runoff in a Periglacial Environment (Ny-Ålesund, Svalbard). Remote Sensing, 15(18), 4435. https://doi.org/10.3390/rs15184435