Simplified and High Accessibility Approach for the Rapid Assessment of Deforestation in Developing Countries: A Case of Timor-Leste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. SHAD Approach
2.3.1. Dryad U-Net Process: Land Cover Classification and Deforestation Assessment
2.3.2. Assessment
2.3.3. Assessment of FDD: Model Development and Land Cover Classification
2.3.4. Assessment of FDD: Estimation of the Deforestation Areas
3. Results
3.1. SHAD Approach Assessment
3.1.1. Evaluation of Model Performance and Land Cover Classification
3.1.2. FDD Assessment
3.2. Land Cover Classification and Forest Change in Timor-Leste
3.3. Deforestation Detection in Timor-Leste
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Thompson, I.D.; Okabe, K.; Tylianakis, J.M.; Kumar, P.; Brockerhoff, E.G.; Schellhorn, N.A.; Parrotta, J.A.; Nasi, R. Forest biodiversity and the delivery of ecosystem goods and services: Translating science into policy. BioScience 2011, 61, 972–981. [Google Scholar] [CrossRef]
- Munasinghe, M.; Wells, M. Protection of natural habitats and sustainable development of local communities. Conserv. West Cent. Afr. Rainfor. 1992, 161–168. [Google Scholar]
- Myers, N. Threatened biotas: “hot spots” in tropical forests. Environmentalist 1998, 8, 187–208. [Google Scholar] [CrossRef]
- Ginsberg, J. Global conservation priorities. Conserv. Biol. 1999, 13, 5. [Google Scholar] [CrossRef]
- Sheil, D.; Wunder, S. The value of tropical forest to local communities: Complications, caveats, and cautions. Conserv. Ecol. 2002, 6, 9. [Google Scholar] [CrossRef]
- Balick, M.J.; Elisabetsky, E.; Laird, S.A. (Eds.) Medicinal Resources of the Tropical Forest: Biodiversity and Its Importance to Human Health; Columbia University Press: New York, NY, USA, 1996. [Google Scholar]
- Allen, J.C.; Barnes, D.F. The causes of deforestation in developing countries. Ann. Assoc. Am. Geogr. 1985, 75, 163–184. [Google Scholar] [CrossRef]
- Köhlin, G.; Parks, P.J. Spatial variability and disincentives to harvest: Deforestation and fuelwood collection in South Asia. Land Econ. 2001, 77, 206–218. [Google Scholar] [CrossRef]
- Walker, R. Theorizing land-cover and land-use change: The case of tropical deforestation. Int. Reg. Sci. Rev. 2004, 27, 247–270. [Google Scholar] [CrossRef]
- Faria, D.; Morante-Filho, J.C.; Baumgarten, J.; Bovendorp, R.S.; Cazetta, E.; Gaiotto, F.A.; Mariano-Neto, E.; Mielke, M.S.; Pessoa, M.S.; Rocha-Santos, L.; et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 2023, 283, 110126. [Google Scholar] [CrossRef]
- Veldkamp, E.; Schmidt, M.; Powers, J.S.; Corre, M.D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 2020, 1, 590–605. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Bott, T.L.; Jackson, J.K.; Kaplan, L.A.; Newbold, J.D.; Standley, L.J.; Hession, W.C.; Horwitz, R.J. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. USA 2004, 101, 14132–14137. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC. Outcome of the work of the ad hoc working group on long-term cooperative action under the convention. In United Nations Framework Convention on Climate Change; UNFCCC: Bonn, Germany, 2010. [Google Scholar]
- Benndorf, R.; Federici, S.; Forner, C.; Pena, N.; Rametsteiner, E.; Sanz, M.J.; Somogyi, Z. Including land use, land-use change, and forestry in future climate change, agreements: Thinking outside the box. Environ. Sci. Policy 2007, 10, 283–294. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; Adami, M.; Aguiar, D.A.; Moreira, M.A.; Mello, M.P.; Fabiani, L.; Amaral, D.F.; Pires, B.M. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 2011, 3, 185–202. [Google Scholar] [CrossRef]
- Kissinger, G.M.; Herold, M.; De Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers; Lexeme Consulting: Vancouver, BC, Canada, 2012. [Google Scholar]
- Kumar, R.; Kumar, A.; Saikia, P. Deforestation and forests degradation impacts on the environment. In Environmental Degradation: Challenges and Strategies for Mitigation; Springer International Publishing: Cham, Switzerland, 2022; pp. 19–46. [Google Scholar]
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing forest degradation. Trends Ecol. Evol. 2015, 30, 622–632. [Google Scholar] [CrossRef]
- Vadrevu, K.; Ohara, T.; Justice, C. Land cover, land use changes and air pollution in Asia: A synthesis. Environ. Res. Lett. 2017, 12, 120201. [Google Scholar] [CrossRef]
- Bouma, G.A.; Kobryn, H.T. Change in vegetation cover in East Timor, 1989–1999. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2004; Volume 28, pp. 1–12. [Google Scholar]
- World Bank. Timor-Leste: Country Environmental Analysis; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Mertz, O.; Müller, D.; Sikor, T.; Hett, C.; Heinimann, A.; Castella, J.C.; Lestrelin, G.; Ryan, C.M.; Reay, D.S.; Schmidt-Vogt, D.; et al. The forgotten D: Challenges of addressing forest degradation in complex mosaic landscapes under REDD+. Geogr. Tidsskr.-Dan. J. Geogr. 2012, 112, 63–76. [Google Scholar] [CrossRef]
- Baker, D.J.; Richards, G.; Grainger, A.; Gonzalez, P.; Brown, S.; DeFries, R.; Held, A.; Kellndorfer, J.; Ndunda, P.; Ojima, D.; et al. Achieving forest carbon information with higher certainty: A five-part plan. Environ. Sci. Policy 2010, 13, 249–260. [Google Scholar] [CrossRef]
- Kuck, T.N.; Sano, E.E.; Bispo, P.D.C.; Shiguemori, E.H.; Silva Filho, P.F.F.; Matricardi, E.A.T. A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images. Remote Sens. 2021, 13, 3341. [Google Scholar] [CrossRef]
- Maretto, R.V.; Fonseca, L.M.; Jacobs, N.; Körting, T.S.; Bendini, H.N.; Parente, L.L. Spatio-temporal deep learning approach to map deforestation in amazon rainforest. IEEE Geosci. Remote Sens. Lett. 2020, 18, 771–775. [Google Scholar] [CrossRef]
- Lee, S.H.; Han, K.J.; Lee, K.; Lee, K.J.; Oh, K.Y.; Lee, M.J. Classification of landscape affected by deforestation using high-resolution remote sensing data and deep-learning techniques. Remote Sens. 2020, 12, 3372. [Google Scholar] [CrossRef]
- Ortega, M.X.; Bermudez, J.D.; Happ, P.N.; Gomes, A.; Feitosa, R.Q. Evaluation of deep learning techniques for deforestation detection in the amazon forest. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 121–128. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Solórzano, J.V.; Mas, J.F.; Gao, Y.; Gallardo-Cruz, J.A. Land use land cover classification with U-net: Advantages of combining sentinel-1 and sentinel-2 imagery. Remote Sens. 2021, 13, 3600. [Google Scholar] [CrossRef]
- Ulmas, P.; Liiv, I. Segmentation of satellite imagery using u-net models for land cover classification. arXiv 2020, arXiv:2003.02899. [Google Scholar]
- Zhang, W.; Tang, P.; Zhao, L. Fast and accurate land-cover classification on medium-resolution remote-sensing images using segmentation models. Int. J. Remote Sens. 2021, 42, 3277–3301. [Google Scholar] [CrossRef]
- Giang, T.L.; Dang, K.B.; Le, Q.T.; Nguyen, V.G.; Tong, S.S.; Pham, V.M. U-Net convolutional networks for mining land cover classification based on high-resolution UAV imagery. IEEE Access 2020, 8, 186257–186273. [Google Scholar] [CrossRef]
- John, D.; Zhang, C. An attention-based U-Net for detecting deforestation within satellite sensor imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102685. [Google Scholar] [CrossRef]
- May, M.; Brody, H. Nature index 2015 global. Nature 2015, 522, S1. [Google Scholar] [CrossRef]
- Mangul, S.; Martin, L.S.; Langmead, B.; Sanchez-Galan, J.E.; Toma, I.; Hormozdiari, F.; Pevzner, P.; Eskin, E. How bioinformatics and open data can boost basic science in countries and universities with limited resources. Nat. Biotechnol. 2019, 37, 324–326. [Google Scholar] [CrossRef]
- Tahir, T.; Luni, T.; Majeed, M.T.; Zafar, A. The impact of financial development and globalization on environmental quality: Evidence from South Asian economies. Environ. Sci. Pollut. Res. 2021, 28, 8088–8101. [Google Scholar] [CrossRef] [PubMed]
- Sabu, M.M.; Pasha, S.V.; Reddy, C.S.; Singh, R.; Jaishanker, R. The effectiveness of Tiger Conservation Landscapes in decreasing deforestation in South Asia: A remote sensing-based study. Spat. Inf. Res. 2022, 30, 63–75. [Google Scholar] [CrossRef]
- Barit, J.B.; Choi, K.; Ko, D.W. Modeling the risk of illegal forest activity and its distribution in the southeastern region of the Sierra Madre Mountain Range, Philippines. iForest-Biogeosci. For. 2022, 15, 63. [Google Scholar] [CrossRef]
- Brearley, F.Q.; Adinugroho, W.C.; Cámara-Leret, R.; Krisnawati, H.; Ledo, A.; Qie, L.; Smith, T.E.; Aini, F.; Garnier, F.; Lestari, N.S.; et al. Opportunities and challenges for an Indonesian forest monitoring network. Ann. For. Sci. 2019, 76, 54. [Google Scholar] [CrossRef]
- Manuri, S.; Brack, C.; Silva, N.; Noor’an, F. Synthesising Existing Forest Inventory Datasets for Estimating Historical Aboveground Biomass Stocks, Growth and Mortality in Logged-over Tropical Dipterocarp Forests of Kalimantan, Indonesia. 2022; preprint. [Google Scholar]
- Feyen, J.; Wip, G.; Crabbe, S.; Wortel, V.; Sari, S.P.; Van Coillie, F. Mangrove Species Mapping and Above-Ground Biomass Estimation in Suriname Based on Fused Sentinel-1 and Sentinel-2 Imagery and National Forest Inventory Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6072–6075. [Google Scholar]
- Yu, W.; Wardrop, N.A.; Bain, R.E.; Alegana, V.; Graham, L.J.; Wright, J.A. Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya. PLoS ONE 2019, 14, e0216923. [Google Scholar] [CrossRef]
- Verplanke, J.; Georgiadou, Y. Wicked water points: The quest for an error free national water point database. ISPRS Int. J. Geoinf. 2017, 6, 244. [Google Scholar] [CrossRef]
- Bucciarelli, E.; Odoardi, I.; Muratore, F. What role for education and training in technology adoption under an advanced socio-economic perspective? Procedia Soc. Behav. Sci. 2010, 9, 573–578. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015: Country Report Timor-Leste; FAO: Rome, Italy, 2015. [Google Scholar]
- UNDP. Strengthening Targeted National Capacities to Improve Decision-Making and Mainstreaming Global Environmental Obligations into National Development Priorities; UNDP: New York, NY, USA, 2018. [Google Scholar]
- Gandhi, G.M.; Parthiban, B.S.; Thummalu, N.; Christy, A. Ndvi: Vegetation change detection using remote sensing and gis—A case study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [Google Scholar] [CrossRef]
- Deep, S.; Saklani, A. Urban sprawl modeling using cellular automata. Egypt. J. Remote Sens. Space Sci. 2014, 17, 179–187. [Google Scholar] [CrossRef]
- Jeevalakshmi, D.; Reddy, S.N.; Manikiam, B. Land cover classification based on NDVI using LANDSAT 8 time series: A case study Tirupati region. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2016; pp. 1332–1335. [Google Scholar]
- Yu, Z.; Di, L.; Tang, J.; Zhang, C.; Lin, L.; Yu, E.G.; Rahman, S.; Gaigalas, J.; Sun, Z. Land use and land cover classification for Bangladesh 2005 on google earth engine. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar]
- De Bem, P.P.; de Carvalho Junior, O.A.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Change detection of deforestation in the Brazilian Amazon using landsat data and convolutional neural networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef]
- Michael, S.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Van Rijsbergen, C.J. Information Retrieval; Butterworths-Heinemann: Oxford, UK, 1979. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- UNFCCC. Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change; UNFCCC: Paris, France, 2015. [Google Scholar]
Dataset | Reference | |
---|---|---|
Model training | Label data | ESA 1 WorldCover 10m v100 (2020) |
Red band | Sentinel-2 B4 band (2020) | |
Green band | Sentinel-2 B3 band (2020) | |
Blue band | Sentinel-2 B2 band (2020) | |
NIR 2 band | Sentinel-2 B8 band (2020) | |
Land cover classification | Red band | Sentinel-2 B4 band (2016, 2021) |
Green band | Sentinel-2 B3 band (2016, 2021) | |
Blue band | Sentinel-2 B2 band (2016, 2021) | |
NIR band | Sentinel-2 B8 band (2016, 2021) |
Reclassified Land Cover Class | Original Land Cover Class |
---|---|
Forest | Forest |
Other vegetation | Shrubland, Grassland |
Non-forest | Cropland, Built-up, Barren |
Open-water | Open-water |
Land Cover | 2016 | 2020 | 2021 | |||
---|---|---|---|---|---|---|
p 1 | U 2 | p | U | p | U | |
Forest | 0.86 | 0.79 | 0.91 | 0.87 | 0.80 | 0.89 |
Other vegetation | 0.49 | 0.44 | 0.71 | 0.62 | 0.77 | 0.53 |
Non-forest | 0.21 | 0.45 | 0.39 | 0.71 | 0.42 | 0.67 |
Open water | 0.37 | 0.70 | 0.53 | 1.00 | 0.68 | 0.57 |
OA 3 | 0.69 | 0.79 | 0.74 |
Reference Data | |||
---|---|---|---|
Deforestation (Positive) | Sustained Forest (Negative) | ||
Classified condition | Deforestation (Positive) | 31 | 20 |
Sustained forest (Negative) | 5 | 194 |
Land Cover | 2016 | 2021 | Change Ratio |
---|---|---|---|
Forest | 68.8% | 59.2% | −9.6% |
Other vegetation | 26.8% | 37.4% | +10.6% |
Non-forest | 3.4% | 2.5% | −0.9% |
Open water | 1.0% | 0.9% | −0.1% |
Municipality | Forest Area (ha) (2016) | Forest Area (ha) (2021) | Annual Deforestation Rate (%) |
---|---|---|---|
Aileu | 43,241.3 | 28,107.0 | 4.1 |
Ainaro | 55,812.8 | 47,520.2 | 2.1 |
Baucau | 94,332.2 | 73,513.2 | 2.8 |
Bobonaro | 87,880.5 | 68,083.3 | 2.9 |
Covalima | 89,811.7 | 82,603.3 | 1.2 |
Dili | 17,950.0 | 14,112.1 | 2.1 |
Ermera | 57,888.1 | 39,947.0 | 4.7 |
Lautém | 144,587.2 | 135,015.8 | 1.1 |
Liquiçá | 43,246.3 | 35,346.4 | 2.9 |
Manatuto | 125,399.3 | 111,348.7 | 1.6 |
Manufahi | 113,745.2 | 104,712.6 | 1.4 |
Oecussi | 27,676.4 | 16,729.4 | 2.7 |
Viqueque | 156,190.0 | 146,565.3 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, W.; Lim, C.-H. Simplified and High Accessibility Approach for the Rapid Assessment of Deforestation in Developing Countries: A Case of Timor-Leste. Remote Sens. 2023, 15, 4636. https://doi.org/10.3390/rs15184636
Cho W, Lim C-H. Simplified and High Accessibility Approach for the Rapid Assessment of Deforestation in Developing Countries: A Case of Timor-Leste. Remote Sensing. 2023; 15(18):4636. https://doi.org/10.3390/rs15184636
Chicago/Turabian StyleCho, Wonhee, and Chul-Hee Lim. 2023. "Simplified and High Accessibility Approach for the Rapid Assessment of Deforestation in Developing Countries: A Case of Timor-Leste" Remote Sensing 15, no. 18: 4636. https://doi.org/10.3390/rs15184636
APA StyleCho, W., & Lim, C.-H. (2023). Simplified and High Accessibility Approach for the Rapid Assessment of Deforestation in Developing Countries: A Case of Timor-Leste. Remote Sensing, 15(18), 4636. https://doi.org/10.3390/rs15184636