Crop Water Productivity from Cloud-Based Landsat Helps Assess California’s Water Savings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Cropland Data
2.4. Landsat Satellite Sensor Data
2.4.1. Growing Season and NDVI
2.4.2. Land Surface Temperature Data from Thermal Bands
2.5. Methods for Workflow
2.5.1. Step 1: Reference Evapotranspiration (ETo)
2.5.2. Step 2: Evaporative Fraction (ETf)
- ETf = Evaporative Fraction, 0–1 (unitless);
- Tc = Land Surface Temperature of cold pixel (°C);
- Th = Land Surface Temperature of hot pixel (°C);
- Tx = Land Surface Temperature of any pixel (°C).
2.5.3. Step 3: Actual Evapotranspiration (ETa) and Crop Water Use (CWU)
2.6. Methods for Calculating Crop Productivity (kg/m2)
2.7. Methods for Calculating Crop Water Productivity (CWP)
2.8. Methods for Estimating Crop Water Savings or Yield Increase by Increasing CWP
3. Results
3.1. Crop Type Areas
3.2. Actual Evapotranspiration (ETa) Results
3.2.1. Comparison of Actual Evapotranspiration (ETa)
3.2.2. ETa from This Study in Comparison to OpenET
3.3. Crop Water Productivity Results
3.4. Crop Water Savings and Yield Increase Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahil, T.; Albiac, J.; Fischer, G.; Strokal, M.; Tramberend, S.; Greve, P.; Tang, T.; Burek, P.; Burtscher, R.; Wada, Y. A nexus modeling framework for assessing water scarcity solutions. Curr. Opin. Environ. Sustain. 2019, 40, 72–80. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Trends and Challenges; Annual Report, 296; FAO: Rome, Italy, 2017. [Google Scholar]
- Mekonnen, M.; Hoekstra, A. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; Van Vliet, M.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- FAO. Water for Sustainable Food and Agriculture. In A Report Produced for the G20 Presidency of Germany Food and Agriculture Organization of the United Nations Rome; FAO: Rome, Italy, 2017. [Google Scholar]
- UN. World Population Prospects. United Nations, Department of Economic and Social Affairs, Population Division; Highlights; ST/ESA/SER.A/423; UN: New York, NY, USA, 2019. [Google Scholar]
- Pison, G. World population: 8 billion today, how many tomorrow? Popul. Soc. 2022, 604, 1–4. [Google Scholar]
- Wong, A.; Jin, Y.; Medellín-Azuara, J.; Paw U, K.; Kent, E.; Clay, J.; Gao, F.; Fisher, J.; Rivera, G.; Lee, C.; et al. Multiscale assessment of agricultural consumptive water use in California’s Central Valley. Water Resour. Res. 2021, 57, e2020WR028876. [Google Scholar] [CrossRef]
- Schauer, M.; Senay, G. Characterizing crop water use dynamics in the Central Valley of California using Landsat-derived evapotranspiration. Remote Sens. 2019, 11, 1782. [Google Scholar] [CrossRef]
- Senay, G.; Schauer, M.; Friedrichs, M.; Velpuri, N.; Singh, R. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 2017, 202, 98–112. [Google Scholar] [CrossRef]
- He, R.; Jin, Y.; Kandelous, M.; Zaccaria, D.; Sanden, B.; Snyder, R.; Jiang, J.; Hopmans, J. Evapotranspiration estimate over an almond orchard using Landsat satellite observations. Remote Sens. 2017, 9, 436. [Google Scholar] [CrossRef]
- Semmens, K.; Anderson, M.; Kustas, W.; Gao, F.; Alfieri, J.; McKee, L.; Prueger, J.; Hain, C.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Teixeira, A.; Victoria, D.; Andrade, R.; Leivas, J.; Bolfe, E.; Cruz, C. Coupling MODIS images and agrometeorological data for agricultural water productivity analyses in the Mato Grosso state, Brazil. Remote Sens. Agric. Ecosyst. Hydrol. XVI 2014, 9239, 278–291. [Google Scholar]
- Teixeira, A.; Scherer-Warren, M.; Hernandez, F.; Andrade, R.; Leivas, J. Large-scale water productivity assessments with MODIS images in a changing semi-arid environment: A Brazilian case study. Remote Sens. 2013, 5, 5783–5804. [Google Scholar] [CrossRef]
- Cai, X.; Sharma, B. Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin. Agric. Water Manag. 2010, 97, 309–316. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Muñoz, J.; Aznar-Sánchez, J.; Belmonte-Ureña, L.; Román-Sánchez, I. Sustainable water use in agriculture: A review of worldwide research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- Thenkabail, P. Global croplands and their importance for water and food security in the twenty-first century: Towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sens. 2010, 2, 2305–2312. [Google Scholar] [CrossRef]
- Wilson, T.; Sleeter, B.; Cameron, D. Future land-use related water demand in California. Environ. Res. Lett. 2016, 11, 054018. [Google Scholar] [CrossRef]
- CFDA. California Agricultural Production Statistics 2021 Crop Year. In: California Agricultural Production. 2021. Available online: https://www.cdfa.ca.gov/statistics/ (accessed on 13 January 2023).
- CIMIS. CIMIS Station Reports. 2022. Available online: https://wwwcimis.water.ca.gov/ (accessed on 28 June 2022).
- Chen, H.; Luo, Y.; Potter, C.; Moran, P.; Grieneisen, M.; Zhang, M. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Res. 2017, 121, 374–385. [Google Scholar] [CrossRef]
- Xue, J.; Huo, Z.; Kisekka, I. Assessing impacts of climate variability and changing cropping patterns on regional evapotranspiration, yield and water productivity in California’s San Joaquin watershed. Agric. Water Manag. 2021, 250, 106852. [Google Scholar] [CrossRef]
- Wilson, T.; Matchett, E.; Byrd, K.; Conlisk, E.; Reiter, M.; Wallace, C.; Flint, L.; Flint, A.; Joyce, B.; Moritsch, M. Climate and land change impacts on future managed wetland habitat: A case study from California’s Central Valley. Landsc. Ecol. 2022, 37, 861–881. [Google Scholar] [CrossRef]
- Cohen-Vogel, D.; Osgood, D.; Parker, D.; Zilberman, D. The California Irrigation Management Information System (CIMIS): Intended and unanticipated impacts of public investment. Choices 1998, 13, 1–4. [Google Scholar]
- Allen, R.; Pruitt, W.; Wright, J.; Howell, T.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Snyder, R.; Pedras, C.; Montazar, A.; Henry, J.; Ackley, D. Advances in ET-based landscape irrigation management. Agric. Water Manag. 2015, 147, 187–197. [Google Scholar] [CrossRef]
- USDA National Agricultural Statistics Service Cropland Data Layer. Published Crop-Specific Data Layer. 2022. Available online: https://data.nal.usda.gov/dataset/cropscape-cropland-data-layer (accessed on 8 July 2022).
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Lark, T.; Schelly, I.; Gibbs, H. Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [Google Scholar] [CrossRef]
- Lark, T.; Mueller, R.; Johnson, D.; Gibbs, H. Measuring land-use and land-cover change using the US Department of Agriculture’s Cropland Data Layer: Cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 224–235. [Google Scholar]
- Byerlee, D.; De Janvry, A.; Sadoulet, E.; Townsend, R.; Klytchnikova, I. World Development Report 2008: Agriculture for Development; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- United States Geological Survey. Landsat 8. 2022. Available online: https://www.usgs.gov/landsat-missions/landsat-8 (accessed on 8 July 2022).
- Ullrich, P.; Xu, Z.; Rhoades, A.; Dettinger, M.; Mount, J.; Jones, A.; Vahmani, P. California’s drought of the future: A midcentury recreation of the exceptional conditions of 2012–2017. Earth’s Future 2018, 6, 1568–1587. [Google Scholar] [CrossRef]
- Kern, J.D.; Su, Y.; Hill, J. A retrospective study of the 2012–2016 California drought and its impacts on the power sector. Environ. Res. Lett. 2020, 15, 094008. [Google Scholar] [CrossRef]
- Lund, J.; Medellin-Azuara, J.; Durand, J.; Stone, K. Lessons from California’s 2012–2016 drought. J. Water Resour. Plan. Manag. 2018, 144, 04018067. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Shrestha, R.; Di, L.; Eugene, G.; Kang, L.; Shao, Y.; Bai, Y. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA Cropland Data Layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Wang, C.; Li, W.; Chen, H.; Deng, C. Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation. Agric. Water Manag. 2020, 231, 105958. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Nichols, W.; Cuenca, R. Evaluation of the evaporative fraction for parameterization of the surface energy balance. Water Resour. Res. 1993, 29, 3681–3690. [Google Scholar] [CrossRef]
- Senay, G.; Budde, M.; Verdin, J.; Melesse, A. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Senay, G.B. Satellite psychrometric formulation of the Operational Simplified Surface Energy Balance (SSEBop) model for quantifying and mapping evapotranspiration. Appl. Eng. Agric. 2018, 34, 555–566. [Google Scholar] [CrossRef]
- Senay, G.B.; Friedrichs, M.; Morton, C.; Parrish, G.E.; Schauer, M.; Khand, K.; Kagone, S.; Boiko, O.; Huntington, J. Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model. Remote Sens. Environ. 2022, 275, 113011. [Google Scholar] [CrossRef]
- Senay, G.B.; Parrish, G.E.; Schauer, M.; Friedrichs, M.; Khand, K.; Boiko, O.; Kagone, S.; Dittmeier, R.; Arab, S.; Ji, L. Improving the Operational Simplified Surface Energy Balance Evapotranspiration Model Using the Forcing and Normalizing Operation. Remote Sens. 2023, 15, 260. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. OpenET: Filling a critical data gap in water management for the western United States. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- CFDA. California Agricultural Statistics Review 2016–2017; California Department of Food and Agriculture: Sacremento, CA, USA, 2017.
- Foley, D.; Thenkabail, P.; Aneece, I.; Teluguntla, P.; Oliphant, A. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. Int. J. Digit. Earth 2019, 13, 939–975. [Google Scholar] [CrossRef]
- Ali, M.; Talukder, M. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Kijne, J.; Tuong, T.; Bennett, J.; Bouman, B.; Oweis, T. Ensuring food security via improvement in crop water productivity. Chall. Program Water Food Backgr. Pap. 2003, 1, 20–26. [Google Scholar]
- Bouman, B. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric. Syst. 2007, 93, 43–60. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.Y.; Pasquale, S.; Kijne, J.W.; Hanjra, M.A.; Bindraban, P.S.; Bouman, B.A.; Mahoo, H.F.; Silva, P.; Upadhyaya, A. Pathways for increasing agricultural water productivity. In A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2007. [Google Scholar]
- Brauman, K.A.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environ. Res. Lett. 2013, 8, 024030. [Google Scholar] [CrossRef]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Faramarzi, M.; Yang, H.; Schulin, R.; Abbaspour, K.C. Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agric. Water Manag. 2010, 97, 1861–1875. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Xue, J.; Huo, Z.; Wang, S.; Wang, C.; White, I.; Kisekka, I.; Sheng, Z.; Huang, G.; Xu, X. A novel regional irrigation water productivity model coupling irrigation-and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China. Hydrol. Earth Syst. Sci. 2020, 24, 2399–2418. [Google Scholar] [CrossRef]
- Bellvert, J.; Adeline, K.; Baram, S.; Pierce, L.; Sanden, B.; Smart, D. Monitoring crop evapotranspiration and crop coefficients over an almond and pistachio orchard throughout remote sensing. Remote Sens. 2018, 10, 2001. [Google Scholar] [CrossRef]
- Stevens, R.; Ewenz, C.; Grigson, G.; Conner, S. Water use by an irrigated almond orchard. Irrig. Sci. 2012, 30, 189–200. [Google Scholar] [CrossRef]
- French, A.; Hunsaker, D.; Thorp, K. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Zhang, Y. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric. For. Meteorol. 2002, 111, 109–120. [Google Scholar] [CrossRef]
- Goldhamer, D.; Kjelgren, R.; Williams, L.; Beede, R. Water use requirements of pistachio trees and response to water stress. In Proceedings of the National Conference on Advances in Evapotranspiration, American Society of Agricultural Engineers, Chicago, IL, USA, 16–17 December 1985. [Google Scholar]
- Marino, G.; Zaccaria, D.; Snyder, R.; Lagos, O.; Lampinen, B.; Ferguson, L.; Grattan, S.; Little, C.; Shapiro, K.; Maskey, M.; et al. Actual evapotranspiration and tree performance of mature micro-irrigated pistachio orchards grown on saline-sodic soils in the San Joaquin Valley of California. Agriculture 2019, 9, 76. [Google Scholar] [CrossRef]
- Teixeira, A.; Bastiaanssen, W.; Bassoi, L. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil. Agric. Water Manag. 2007, 94, 31–42. [Google Scholar] [CrossRef]
- Phogat, V.; Skewes, M.; McCarthy, M.; Cox, J.; Šimůnek, J.; Petrie, P. Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip. Agric. Water Manag. 2017, 180, 22–34. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.). Agric. Water Manag. 2011, 98, 775–783. [Google Scholar] [CrossRef]
- Nagaz, K.; Toumi, I.; Masmoudi, M.; Mechilia, N. Soil salinity and barley production under full and deficit irrigation with saline water in Arid conditions of Southern Tunisia. Res. J. Agron 2008, 2, 90–95. [Google Scholar]
- Pohankova, E.; Hlavinka, P.; Orsag, M.; Takac, J.; Kersebaum, K.; Gobin, A.; Trnka, M. Estimating the water use efficiency of spring barley using crop models. J. Agric. Sci. 2018, 156, 628–644. [Google Scholar] [CrossRef]
- Alberto, M.; Wassmann, R.; Hirano, T.; Miyata, A.; Hatano, R.; Kumar, A.; Padre, A.; Amante, M. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manag. 2011, 98, 1417–1430. [Google Scholar] [CrossRef]
- Tyagi, N.; Sharma, D.; Luthra, S. Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agric. Water Manag. 2000, 45, 41–54. [Google Scholar] [CrossRef]
- Linquist, B.; Snyder, R.; Anderson, F.; Espino, L.; Inglese, G.; Marras, S.; Moratiel, R.; Mutters, R.; Nicolosi, P.; Rejmanek, H.; et al. Water balances and evapotranspiration in water-and dry-seeded rice systems. Irrig. Sci. 2015, 33, 375–385. [Google Scholar] [CrossRef]
- Hossen, M.; Mano, M.; Miyata, A.; Baten, M.; Hiyama, T. Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrol. Process. 2012, 26, 1311–1320. [Google Scholar] [CrossRef]
- Kang, S.; Gu, B.; Du, T.; Zhang, J. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 2003, 59, 239–254. [Google Scholar] [CrossRef]
- Trout, T.; DeJonge, K. Crop water use and crop coefficients of maize in the great plains. J. Irrig. Drain. Eng. 2018, 144, 04018009. [Google Scholar] [CrossRef]
- Fulton, A.; Little, C.; Snyder, R.; Lampinen, B.; Buchner, R. Evaluation of crop coefficients and evapotranspiration in English walnut. In Proceedings of the 2017 ASABE Annual International Meeting, American Society of Agricultural and Biological Engineers, Spokane, WA, USA, 16–19 July 2017; p. 1. [Google Scholar]
- Irrigation Management in Walnut Using Evapotranspiration, Soil and Plant Based Data; Report to the California Walnut Board; Walnut Research Report; California Walnut Board: Folsom, CA, USA, 2004; pp. 113–136.
- Anderson, M.; Norman, J.; Mecikalski, J.; Otkin, J.; Kustas, W. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Anderson, M.; Gao, F.; Knipper, K.; Hain, C.; Dulaney, W.; Baldocchi, D.; Eichelmann, E.; Hemes, K.; Yang, Y.; Medellin-Azuara, J.; et al. Field-scale assessment of land and water use change over the California Delta using remote sensing. Remote Sens. 2018, 10, 889. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Laipelt, L.; Kayser, R.H.B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Melton, F.S.; Johnson, L.F.; Lund, C.P.; Pierce, L.L.; Michaelis, A.R.; Hiatt, S.H.; Guzman, A.; Adhikari, D.D.; Purdy, A.J.; Rosevelt, C.; et al. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1709–1721. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.; Allen, R. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 241, 106197. [Google Scholar] [CrossRef]
- Cook, R.D. Detection of influential observation in linear regression. Technometrics 1977, 19, 15–18. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Goldhamer, D.; Fereres, E. Establishing an almond water production function for California using long-term yield response to variable irrigation. Irrig. Sci. 2017, 35, 169–179. [Google Scholar] [CrossRef]
- Egea, G.; Nortes, P.; González-Real, M.; Baille, A.; Domingo, R. Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agric. Water Manag. 2010, 97, 171–181. [Google Scholar] [CrossRef]
- Tejero, I.; Moriana, A.; Pleguezuelo, C.; Zuazo, V.; Egea, G. Sustainable deficit-irrigation management in almonds (Prunus dulcis L.): Different strategies to assess the crop water status. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; Scientia Horticulturae: Sevilla, Spain, 2018; pp. 271–298. [Google Scholar]
- Zwart, S.; Bastiaanssen, W. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Biradar, C.; Thenkabail, P.; Platonov, A.; Xiao, X.; Geerken, R.; Noojipady, P.; Turral, H.; Vithanage, J. Water productivity mapping methods using remote sensing. Appl. Remote. Sens. 2008, 2, 023544. [Google Scholar]
- Cai, X.; Thenkabail, P.S.; Biradar, C.M.; Platonov, A.; Gumma, M.; Dheeravath, V.; Cohen, Y.; Goldshleger, N.; Ben-Dor, E.; Alchanatis, V.; et al. Water productivity mapping using remote sensing data of various resolutions to support more crop per drop. J. Appl. Remote Sens. 2009, 3, 033557. [Google Scholar]
- Platonov, A.; Thenkabail, P.S.; Biradar, C.M.; Cai, X.; Gumma, M.; Dheeravath, V.; Cohen, Y.; Alchanatis, V.; Goldshlager, N.; Ben-Dor, E.; et al. Water productivity mapping (WPM) using Landsat ETM+ data for the irrigated croplands of the Syrdarya River basin in Central Asia. Sensors 2008, 8, 8156–8180. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; van Dam, J.C.; Feddes, R.A. Water productivity analysis of irrigated crops in Sirsa district, India. Agric. Water Manag. 2006, 82, 253–278. [Google Scholar] [CrossRef]
- Kumari, M.; Singh, O.; Meena, D.C. Crop water requirement, water productivity and comparative advantage of crop production in different regions of Uttar Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2043–2052. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Steduto, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ. 2017, 575, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, S.; Wylie, P. Finding More Yield and Profit from Your Farming System; Australian Government, Grains Research and Development Corporation: Hornsby, NSW, Australia, 2015; Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2015/02/finding-more-yield-and-profit-from-your-farming-system (accessed on 13 January 2021).
- Cossani, C.; Slafer, G.; Savin, R. Nitrogen and water use efficiencies of wheat and barley under a Mediterranean environment in Catalonia. Field Crop. Res. 2012, 128, 109–118. [Google Scholar] [CrossRef]
- Sadras, V.; Angus, J. Benchmarking water-use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 2006, 57, 847–856. [Google Scholar] [CrossRef]
- Katerji, N.; Van Hoorn, J.; Fares, C.; Hamdy, A.; Mastrorilli, M.; Oweis, T. Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance. Agric. Water Manag. 2005, 75, 85–91. [Google Scholar] [CrossRef]
- Teixeira, A.; Bassoi, L. Crop water productivity in semi-arid regions: From field to large scales. Ann. Arid. Zone 2009, 48, 1–13. [Google Scholar]
- Er-Raki, S.; Ezzahar, J.; Merlin, O.; Amazirh, A.; Hssaine, B.; Kharrou, M.; Khabba, S.; Chehbouni, A. Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agric. Water Manag. 2021, 244, 106546. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M.; Rana, G. Water use efficiency of crops cultivated in the Mediterranean region: Review and analysis. Eur. J. Agron. 2008, 28, 493–507. [Google Scholar] [CrossRef]
- Cantero-Martınez, C.; Angas, P.; Lampurlanés, J. Growth, yield and water productivity of barley (Hordeum vulgare L.) affected by tillage and N fertilization in Mediterranean semiarid, rainfed conditions of Spain. Field Crop. Res. 2003, 84, 341–357. [Google Scholar] [CrossRef]
- Siddique, K.; Tennant, D.; Perry, M.; Belford, R. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment. Aust. J. Agric. Res. 1990, 41, 431–447. [Google Scholar] [CrossRef]
- Nouna, B.; Katerji, N.; Mastrorilli, M. Using the CERES-Maize model in a semi-arid Mediterranean environment. Eval. Model Perform. Eur. J. Agron. 2000, 13, 309–322. [Google Scholar]
- Zhang, Y.; Kendy, E.; Qiang, Y.; Changming, L.; Yanjun, S.; Hongyong, S. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric. Water Manag. 2004, 64, 107–122. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Hellegers, P. The role of economics in irrigation water management. Int. Comm. Irrig. Drain. 2006, 55, 157–163. [Google Scholar] [CrossRef]
- Molden, D. Accounting for Water Use and Productivity; IWMI: Colombo, Sri Lanka, 1997. [Google Scholar] [CrossRef]
- Hellegers, P.J.; Soppe, R.; Perry, C.; Bastiaanssen, W. Combining remote sensing and economic analysis to support decisions that affect water productivity. Irrig. Sci. 2009, 27, 243–251. [Google Scholar] [CrossRef]
- CFDA. California Agricultural Statistics Review 2017–2018. State of California; California Department of Food and Agriculture: Sacramento, CA, USA, 2018.
- Fulton, J.; Norton, M.; Shilling, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
- United States Department of Agriculture. USDA National Nutrient Database for Standard Reference; Nutrient Data Laboratory: Beltsville, MD, USA, 2016; Volume 28.
Crop Type | Crop Area (m2) | Crop Yield (kg) | Crop Productivity (kg/m2) |
---|---|---|---|
Almonds | 158,556,066 | 40,520,371 | 0.26 |
Cotton | 108,200,973 | 20,132,373 | 0.19 |
Winter Wheat | 84,959,597 | 44,567,062 | 0.52 |
Pistachios | 37,588,230 | 15,799,336 | 0.42 |
Grapes | 29,242,400 | 32,948,449 | 1.13 |
Barley | 8,538,869 | 3,445,550 | 0.40 |
Rice | 5,247,748 | 5,201,005 | 0.99 |
Corn | 1,497,109 | 1,738,476 | 1.16 |
Walnuts | 509,877 | 249,177 | 0.49 |
Number | Crop | Percent of Study Area (%) | Area (m2) |
---|---|---|---|
1 | Almonds | 13.96 | 158,556,066 |
2 | Cotton | 9.53 | 108,200,973 |
3 | Winter Wheat | 7.48 | 84,959,597 |
4 | Pistachios | 3.31 | 37,588,230 |
5 | Grapes | 2.57 | 29,242,400 |
6 | Barley | 0.75 | 8,538,869 |
7 | Rice | 0.46 | 5,247,748 |
8 | Corn | 0.13 | 1,497,109 |
9 | Walnuts | 0.04 | 509,877 |
All select crop | 38.24 | 434,340,869 | |
All Other | 61.76 | 888,071,759 | |
Total | 100 | 1,135,931,091 |
Crop Type | Crop Area (m2) | ETa (mm/d) | Total CWU (m3) | CWU per Area (m3/m2) |
---|---|---|---|---|
Almonds | 158,556,066 | 3.32 | 191,968,501 | 1.21 |
Cotton | 108,200,973 | 3.50 | 78,273,341 | 0.72 |
Winter Wheat | 84,959,597 | 1.82 | 21,512,784 | 0.25 |
Pistachios | 37,588,230 | 1.45 | 19,945,161 | 0.53 |
Grapes | 29,242,400 | 2.68 | 26,249,854 | 0.90 |
Barley | 8,538,869 | 1.89 | 2,322,164 | 0.27 |
Rice | 5,247,748 | 4.39 | 4,767,264 | 0.91 |
Corn | 1,497,109 | 4.23 | 1,050,105 | 0.70 |
Walnuts | 509,877 | 1.76 | 328,008 | 0.64 |
Total | 434,340,869 | 346,417,181 |
Crop Type | This Study | From References | ||||
---|---|---|---|---|---|---|
ETa Calculated (mm/d) | ETa Average Reference (mm/d) | ETa References (mm/d) | Location | Year (s) | References | |
Almonds | 3.32 | 4.06 | 4.01 | California | 2018 | [59] |
3.30 | California | 2018 | [59] | |||
4.36 | California | 2016 | [60] | |||
4.57 | Australia | 2008–2009 | [61] | |||
Cotton | 3.50 | 4.84 | 4.76 | Arizona | 2009 | [62] |
4.91 | Arizona | 2011 | [62] | |||
Winter wheat | 1.82 | 2.00 | 1.60 | China | 1995–2000 | [63] |
2.40 | China | 1987–1997 | [63] | |||
Pistachios | 1.45 | 4.46 | 3.73 | California | 2016 | [60] |
4.43 | California | 1984 | [64] | |||
5.23 | California | 2016–2017 | [65] | |||
Grapes | 2.68 | 3.23 | 3.85 | Brazil | 2002-2003 | [66] |
1.32 | Australia | 2010-2012 | [67] | |||
4.15 | California | 2013–2014 | [12] | |||
3.60 | California | 2013–2014 | [12] | |||
Barley | 1.89 | 2.49 | 2.48 | Ethiopia | 2010 | [68] |
2.25 | Tunisia | 2001–2002 | [69] | |||
2.74 | Czech Republic | 2011–2014 | [70] | |||
Rice | 4.39 | 4.64 | 4.05 | Philippines | 2008–2009 | [71] |
5.30 | India | 1994 | [72] | |||
6.10 | California | 2007 | [73] | |||
3.10 | Bangladesh | 2007 | [74] | |||
Corn | 4.23 | 4.32 | 5.77 | California | 2018 | [59] |
4.49 | California | 2018 | [59] | |||
3.15 | China | 1987–1997 | [75] | |||
3.87 | Colorado | 2008–2013 | [76] | |||
Walnuts | 1.76 | 4.65 | 4.89 | California | 1998 | [77] |
4.65 | California | 2011–2016 | [77] | |||
4.41 | California | 2002 | [78] |
Crop Type | Crop Area | Yield | CWU | CWP | |
---|---|---|---|---|---|
(%) | (m2) | (kg) | (m3) | (kg/m3) | |
Almonds | 13.96 | 158,556,066 | 40,520,371 | 191,968,502 | 0.21 |
Cotton | 9.53 | 108,200,973 | 20,132,373 | 78,273,341 | 0.26 |
Winter Wheat | 7.48 | 84,959,597 | 44,567,062 | 21,512,784 | 2.07 |
Pistachios | 3.31 | 37,588,230 | 15,799,336 | 19,945,161 | 0.79 |
Grapes | 2.57 | 29,242,400 | 32,948,449 | 26,249,854 | 1.26 |
Barley | 0.75 | 8,538,869 | 3,445,550 | 2,322,164 | 1.48 |
Rice | 0.46 | 5,247,748 | 5,201,005 | 4,767,264 | 1.09 |
Corn | 0.13 | 1,497,109 | 1,738,476 | 1,050,105 | 1.66 |
Walnuts | 0.04 | 509,877 | 249,177 | 328,008 | 0.76 |
This Study | From References | ||||||
---|---|---|---|---|---|---|---|
Crop Type | Crop Area (%) | CWP | CWP Average | CWP | Location | Year (s) | References |
Almonds | 13.96 | 0.21 | 0.39 | 0.28 | California | 2005–2009 | [91] |
0.25 | Spain | 2004–2006 | [92] | ||||
0.21 | Spain | 2017 | [93] | ||||
0.69 | California | 2001–2009 | [23] | ||||
0.53 | California | 2010–2018 | [23] | ||||
Cotton | 9.53 | 0.26 | 0.36 | 0.24 | Global | 1977–2002 | [94] |
0.52 | California | 2001–2009 | [23] | ||||
0.62 | California | 2010–2018 | [23] | ||||
0.42 | Uzbekistan | 2007 | [95] | ||||
0.46 | Uzbekistan | 2007 | [96] | ||||
0.28 | Uzbekistan | 2006 | [97] | ||||
0.23 | India | 2002 | [98] | ||||
0.08 | India | 2014 | [99] | ||||
Winter Wheat | 7.48 | 2.07 | 1.36 | 1.15 | Global | 1977–2002 | [94] |
1.09 | Global | 1979–2016 | [49] | ||||
0.98 | Global | 1998–2008 | [100] | ||||
1.20 | Australia | 2007–2012 | [101] | ||||
1.60 | Spain | 2004–2007 | [102] | ||||
2.10 | Mediterranean | [103] | |||||
1.40 | Italy | [104] | |||||
Pistachios | 3.31 | 0.79 | 0.32 | 0.28 | California | 2001–2009 | [23] |
0.35 | California | 2010–2018 | [23] | ||||
Grapes | 2.57 | 1.26 | 3.32 | 1.77 | Brazil | 2002–2003 | [66] |
5.92 | Australia | 2010–2012 | [67] | ||||
4.48 | California | 2001–2009 | [23] | ||||
4.67 | California | 2010–2018 | [23] | ||||
2.37 | Brazil | 2005 | [105] | ||||
2.44 | Brazil | 2005 | [105] | ||||
2.46 | Mexico | 2005 | [106] | ||||
2.49 | Mexico | 2006 | [106] | ||||
Barley | 0.75 | 1.51 | 1.51 | 1.03 | Ethiopia | 2010 | [68] |
1.50 | Spain | 2004–2007 | [102] | ||||
1.70 | Mediterranean | [107] | |||||
1.70 | Mediterranean | [108] | |||||
1.60 | Australia | [109] | |||||
Rice | 0.46 | 1.09 | 0.99 | 1.10 | Global | 1977–2002 | [94] |
0.89 | Global | 1979–2016 | [49] | ||||
0.98 | Global | 1998–2008 | [100] | ||||
Corn | 0.13 | 1.86 | 1.86 | 1.90 | Global | 1977–2002 | [94] |
1.87 | Global | 1979–2016 | [49] | ||||
2.25 | Global | 1998–2008 | [100] | ||||
1.60 | Italy | 1996–1997 | [110] | ||||
1.70 | China | [111] | |||||
Walnuts | 0.04 | 0.76 | 0.47 | 0.48 | California | 2001–2009 | [23] |
0.45 | California | 2010–2018 | [23] |
Crop Type | CWP (kg/m3) | CWU (m3) | Water Savings (m3) | Yield (kg) | |
---|---|---|---|---|---|
CWP + 0% | Almonds | 0.21 | 1.92 × 108 | 0 | 4.05 × 107 |
Cotton | 0.26 | 7.83 × 107 | 0 | 2.01 × 107 | |
Winter Wheat | 2.07 | 2.15 × 107 | 0 | 4.46 × 107 | |
Pistachios | 0.79 | 1.99 × 107 | 0 | 1.58 × 107 | |
Grapes | 1.26 | 2.62 × 107 | 0 | 5.24 × 107 | |
Barley | 1.48 | 2.32 × 106 | 0 | 3.45 × 106 | |
Rice | 1.09 | 4.77 × 106 | 0 | 5.20 × 106 | |
Corn | 1.66 | 1.05 × 106 | 0 | 1.74 × 106 | |
Walnuts | 0.76 | 3.28 × 105 | 0 | 2.49 × 105 | |
CWP + 10% | Almonds | 0.23 | 1.75 × 108 | 1.75 × 107 | 4.46 × 107 |
Cotton | 0.28 | 7.12 × 107 | 7.12 × 106 | 2.21 × 107 | |
Winter Wheat | 2.28 | 1.96 × 107 | 1.96 × 106 | 4.90 × 107 | |
Pistachios | 0.87 | 1.81 × 107 | 1.81 × 106 | 1.74 × 107 | |
Grapes | 1.40 | 2.39 × 107 | 2.39 × 106 | 5.77 × 107 | |
Barley | 1.63 | 2.11 × 106 | 2.11 × 105 | 3.79 × 106 | |
Rice | 1.20 | 4.33 × 106 | 4.33 × 105 | 5.72 × 106 | |
Corn | 1.82 | 9.55 × 105 | 9.55 × 104 | 1.91 × 106 | |
Walnuts | 0.84 | 2.98 × 105 | 2.98 × 104 | 2.74 × 105 | |
CWP + 20% | Almonds | 0.25 | 1.60 × 108 | 3.20 × 107 | 4.86 × 107 |
Cotton | 0.31 | 6.52 × 107 | 1.30 × 107 | 2.42 × 107 | |
Winter Wheat | 2.49 | 1.79 × 107 | 3.59 × 106 | 5.35 × 107 | |
Pistachios | 0.95 | 1.66 × 107 | 3.32 × 106 | 1.90 × 107 | |
Grapes | 1.52 | 2.19 × 107 | 4.37 × 106 | 6.29 × 107 | |
Barley | 1.78 | 1.94 × 106 | 3.87 × 105 | 4.13 × 106 | |
Rice | 1.31 | 3.97 × 106 | 7.95 × 105 | 6.24 × 106 | |
Corn | 1.99 | 8.75 × 105 | 1.75 × 105 | 2.09 × 106 | |
Walnuts | 0.91 | 2.73 × 105 | 5.47 × 104 | 2.99 × 105 | |
CWP + 30% | Almonds | 0.27 | 1.48 × 108 | 4.43 × 107 | 5.27 × 107 |
Cotton | 0.33 | 6.02 × 107 | 1.81 × 107 | 2.62 × 107 | |
Winter Wheat | 2.69 | 1.65 × 107 | 4.96 × 106 | 5.79 × 107 | |
Pistachios | 1.03 | 1.53 × 107 | 4.60 × 106 | 2.05 × 107 | |
Grapes | 1.65 | 2.02 × 107 | 6.06 × 106 | 6.82 × 107 | |
Barley | 1.93 | 1.79 × 106 | 5.36 × 105 | 4.48 × 106 | |
Rice | 1.42 | 3.67 × 106 | 1.10 × 106 | 6.76 × 106 | |
Corn | 2.15 | 8.08 × 105 | 2.42 × 105 | 2.26 × 106 | |
Walnuts | 0.99 | 2.52 × 105 | 7.57 × 104 | 3.24 × 105 | |
CWP + 0% | All Crops | 3.46 × 108 | 0 | 1.65 × 108 | |
CWP + 10% | 3.15 × 108 | 3.15 × 107 | 1.81 × 108 | ||
CWP + 20% | 2.89 × 108 | 5.77 × 107 | 1.98 × 108 | ||
CWP + 30% | 2.66 × 108 | 7.99 × 107 | 2.14 × 108 |
Crop Type | CWP (kg/m3) | Value per kg (USD/kg) | Total Value (1000 USD) | ECWP (USD/m3) |
---|---|---|---|---|
Almonds | 0.21 | 5.27 | 183,148 | 1.11 |
Cotton | 0.26 | 3.09 | 53,303 | 0.79 |
Winter Wheat | 2.07 | 0.18 | 6813 | 0.37 |
Pistachios | 0.79 | 3.70 | 50,197 | 2.93 |
Grapes | 1.26 | 0.92 | 41,258 | 1.16 |
Barley | 1.48 | 0.20 | 584 | 0.29 |
Rice | 1.09 | 0.32 | 1406 | 0.34 |
Corn | 1.66 | 0.18 | 271 | 0.31 |
Walnuts | 0.76 | 2.04 | 436 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foley, D.; Thenkabail, P.; Oliphant, A.; Aneece, I.; Teluguntla, P. Crop Water Productivity from Cloud-Based Landsat Helps Assess California’s Water Savings. Remote Sens. 2023, 15, 4894. https://doi.org/10.3390/rs15194894
Foley D, Thenkabail P, Oliphant A, Aneece I, Teluguntla P. Crop Water Productivity from Cloud-Based Landsat Helps Assess California’s Water Savings. Remote Sensing. 2023; 15(19):4894. https://doi.org/10.3390/rs15194894
Chicago/Turabian StyleFoley, Daniel, Prasad Thenkabail, Adam Oliphant, Itiya Aneece, and Pardhasaradhi Teluguntla. 2023. "Crop Water Productivity from Cloud-Based Landsat Helps Assess California’s Water Savings" Remote Sensing 15, no. 19: 4894. https://doi.org/10.3390/rs15194894
APA StyleFoley, D., Thenkabail, P., Oliphant, A., Aneece, I., & Teluguntla, P. (2023). Crop Water Productivity from Cloud-Based Landsat Helps Assess California’s Water Savings. Remote Sensing, 15(19), 4894. https://doi.org/10.3390/rs15194894