Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine
Abstract
:1. Introduction
- Construct a training dataset for the semantic segmentation models that will classify FCC using an existing multispectral-based FCC dataset.
- Develop and validate a real-time forest alert system using deep learning classifiers for semantic segmentation of FCC.
- Evaluate the spatial and temporal mapping of forest alerts.
2. Materials and Methods
2.1. Alert System Framework Overview
2.2. Study Area
2.3. Sentinel-1 Satellite Imagery
2.4. Multispectral Forest Loss Dataset
2.5. Synthetic Forest Alert Dataset
2.6. Neural Network Architecture
2.6.1. MobileNetV3-Large Encoder Network
2.6.2. Network Training
2.7. Alert System Deployment
2.8. Alert System Validation
3. Results
3.1. Classifier Training and Deployment
3.2. Alert System Performance
3.3. Comparison with GLAD Alerts
4. Discussion
4.1. Alert System Framework Evaluation
4.2. Suggestions for Future Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
CEO | Collect Earth Online |
ELC | Economic Land Concession |
ESA | European Space Agency |
ETM+ | Enhanced Thematic Mapper+ |
FCC | Forest Cover Change |
FORMA | Forest Monitoring for Action |
GEE | Google Earth Engine |
GLAD | Global Land Analysis and Discovery |
GRD | Ground Range Distance |
NICFI | Norway’s International Climate and Forests Initiative |
OLI | Operational Land Imager |
SAR | Synthetic Aperture Radar |
SLC | Social Land Concession |
VH | Vertical Horizontal |
VV | Vertical Vertical |
References
- Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.; et al. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [Google Scholar] [CrossRef]
- Hansen, M.C.; Krylov, A.; Tyukavina, A.; Potapov, P.V.; Turubanova, S.; Zutta, B.; Ifo, S.; Margono, B.; Stolle, F.; Moore, R. Humid tropical forest disturbance alerts using Landsat data. Environ. Res. Lett. 2016, 11, 034008. [Google Scholar] [CrossRef]
- Poortinga, A.; Aekakkararungroj, A.; Kityuttachai, K.; Nguyen, Q.; Bhandari, B.; Soe Thwal, N.; Priestley, H.; Kim, J.; Tenneson, K.; Chishtie, F.; et al. Predictive analytics for identifying land cover change hotspots in the mekong region. Remote Sens. 2020, 12, 1472. [Google Scholar] [CrossRef]
- Moffette, F.; Alix-Garcia, J.; Shea, K.; Pickens, A.H. The impact of near-real-time deforestation alerts across the tropics. Nat. Clim. Chang. 2021, 11, 172–178. [Google Scholar] [CrossRef]
- Musinsky, J.; Tabor, K.; Cano, C.A.; Ledezma, J.C.; Mendoza, E.; Rasolohery, A.; Sajudin, E.R. Conservation impacts of a near real-time forest monitoring and alert system for the tropics. Remote Sens. Ecol. Conserv. 2018, 4, 189–196. [Google Scholar] [CrossRef]
- Finer, M.; Novoa, S.; Weisse, M.J.; Petersen, R.; Mascaro, J.; Souto, T.; Stearns, F.; Martinez, R.G. Combating deforestation: From satellite to intervention. Science 2018, 360, 1303–1305. [Google Scholar] [CrossRef]
- Tabor, K.M.; Holland, M.B. Opportunities for improving conservation early warning and alert systems. Remote Sens. Ecol. Conserv. 2021, 7, 7–17. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Siqueira, L. Digitalization between environmental activism and counter-activism: The case of satellite data on deforestation in the Brazilian Amazon. Earth Syst. Gov. 2022, 12, 100135. [Google Scholar] [CrossRef]
- Wheeler, D.; Hammer, D.; Kraft, R.; Steele, A. Satellite-Based Forest Clearing Detection in the Brazilian Amazon: FORMA, DETER, and PRODES; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Hammer, D.; Kraft, R.; Wheeler, D. Alerts of forest disturbance from MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 1–9. [Google Scholar] [CrossRef]
- Wheeler, D.; Guzder-Williams, B.; Petersen, R.; Thau, D. Rapid MODIS-based detection of tree cover loss. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 78–87. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.; Turubanova, S. Use of coarse-resolution imagery to identify hot spots of forest loss at the global scale. In Global Forest Monitoring from Earth Observation; CRC Press: Boca Raton, FL, USA, 2012; pp. 93–109. [Google Scholar]
- Diniz, C.G.; de Almeida Souza, A.A.; Santos, D.C.; Dias, M.C.; da Luz, N.C.; de Moraes, D.R.V.; Maia, J.S.; Gomes, A.R.; da Silva Narvaes, I.; Valeriano, D.M.; et al. DETER-B: The new Amazon near real-time deforestation detection system. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3619–3628. [Google Scholar] [CrossRef]
- Vargas, C.; Montalban, J.; Leon, A.A. Early warning tropical forest loss alerts in Peru using Landsat. Environ. Res. Commun. 2019, 1, 121002. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sens. Environ. 2021, 252, 112167. [Google Scholar] [CrossRef]
- Sannier, C.; McRoberts, R.E.; Fichet, L.V.; Makaga, E.M.K. Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens. Environ. 2014, 151, 138–148. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Loveland, T.R.; Townshend, J.R.; DeFries, R.S.; Pittman, K.W.; Arunarwati, B.; Stolle, F.; Steininger, M.K.; et al. Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc. Natl. Acad. Sci. USA 2008, 105, 9439–9444. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Ballère, M.; Koleck, T.; Le Toan, T. Use of the SAR shadowing effect for deforestation detection with Sentinel-1 time series. Remote Sens. 2018, 10, 1250. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.; Nathawat, M. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Omar, H.; Misman, M.A.; Kassim, A.R. Synergetic of PALSAR-2 and Sentinel-1A SAR polarimetry for retrieving aboveground biomass in dipterocarp forest of Malaysia. Appl. Sci. 2017, 7, 675. [Google Scholar] [CrossRef]
- Kellndorfer, J.; Flores-Anderson, A.; Herndon, K.; Thapa, R. Using SAR data for mapping deforestation and forest degradation. In The SAR Handbook. Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; ServirGlobal: Hunstville, AL, USA, 2019; pp. 65–79. [Google Scholar]
- Watanabe, M.; Koyama, C.; Hayashi, M.; Kaneko, Y.; Shimada, M. Development of early-stage deforestation detection algorithm (advanced) with PALSAR-2/ScanSAR for JICA-JAXA program (JJ-FAST). In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2446–2449. [Google Scholar]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Ballère, M.; Bouvet, A.; Mermoz, S.; Le Toan, T.; Koleck, T.; Bedeau, C.; André, M.; Forestier, E.; Frison, P.L.; Lardeux, C. SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. Remote Sens. Environ. 2021, 252, 112159. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ban, Y.; Nascetti, A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series. Remote Sens. Environ. 2021, 261, 112467. [Google Scholar] [CrossRef]
- Minasny, B.; Shah, R.M.; Che Soh, N.; Arif, C.; Indra Setiawan, B. Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform. Remote Sens. 2019, 11, 1666. [Google Scholar]
- Sawant, S.; Mohite, J.; Sakkan, M.; Pappula, S. Near real time crop loss estimation using remote sensing observations. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar]
- Bazzi, H.; Baghdadi, N.; Fayad, I.; Zribi, M.; Belhouchette, H.; Demarez, V. Near real-time irrigation detection at plot scale using sentinel-1 data. Remote Sens. 2020, 12, 1456. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Mayer, T.; Poortinga, A.; Bhandari, B.; Nicolau, A.P.; Markert, K.; Thwal, N.S.; Markert, A.; Haag, A.; Kilbride, J.; Chishtie, F.; et al. Deep learning approach for Sentinel-1 surface water mapping leveraging Google Earth Engine. ISPRS Open J. Photogramm. Remote Sens. 2021, 2, 100005. [Google Scholar] [CrossRef]
- Bonafilia, D.; Tellman, B.; Anderson, T.; Issenberg, E. Sen1Floods11: A georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 210–211. [Google Scholar]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, W.; Yuan, Z.; Chen, J. Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network. Remote Sens. 2020, 12, 2493. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D. Aboveground biomass estimates of tropical mangrove forest using Sentinel-1 SAR coherence data-The superiority of deep learning over a semi-empirical model. Comput. Geosci. 2021, 150, 104737. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images. Remote Sens. Lett. 2018, 9, 780–788. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Xu, H. A Deep Learning Model to Extract Ship Size From Sentinel-1 SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5203414. [Google Scholar] [CrossRef]
- Kang, M.; Leng, X.; Lin, Z.; Ji, K. A modified faster R-CNN based on CFAR algorithm for SAR ship detection. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; pp. 1–4. [Google Scholar]
- Belenguer-Plomer, M.A.; Tanase, M.A.; Chuvieco, E.; Bovolo, F. CNN-based burned area mapping using radar and optical data. Remote Sens. Environ. 2021, 260, 112468. [Google Scholar] [CrossRef]
- Christin, S.; Hervet, É.; Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [Google Scholar] [CrossRef]
- Rolnick, D.; Veit, A.; Belongie, S.; Shavit, N. Deep learning is robust to massive label noise. arXiv 2017, arXiv:1705.10694. [Google Scholar]
- Tai, X.; Wang, G.; Grecos, C.; Ren, P. Coastal image classification under noisy labels. J. Coast. Res. 2020, 102, 151–156. [Google Scholar] [CrossRef]
- Rahaman, M.; Hillas, M.M.; Tuba, J.; Ruma, J.F.; Ahmed, N.; Rahman, R.M. Effects of Label Noise on Performance of Remote Sensing and Deep Learning-Based Water Body Segmentation Models. Cybern. Syst. 2022, 53, 581–606. [Google Scholar] [CrossRef]
- Davis, K.F.; Yu, K.; Rulli, M.C.; Pichdara, L.; D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 2015, 8, 772–775. [Google Scholar] [CrossRef]
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Mertz, O.; Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 2019, 5, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative. Forest Crimes in Cambodia: Rings of Illegality in Prey Lang Wildlife Sanctuary; Global Initiative: New York, NY, USA, 2021. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. Proceedings 2019, 18, 11. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. Software. Available online: https://www.tensorflow.org (accessed on 1 August 2021).
- Parekh, J.R.; Poortinga, A.; Bhandari, B.; Mayer, T.; Saah, D.; Chishtie, F. Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sens. 2021, 13, 3166. [Google Scholar] [CrossRef]
- Poortinga, A.; Thwal, N.S.; Khanal, N.; Mayer, T.; Bhandari, B.; Markert, K.; Nicolau, A.P.; Dilger, J.; Tenneson, K.; Clinton, N.; et al. Mapping sugarcane in Thailand using transfer learning, a lightweight convolutional neural network, NICFI high resolution satellite imagery and Google Earth Engine. ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Saah, D.; Johnson, G.; Ashmall, B.; Tondapu, G.; Tenneson, K.; Patterson, M.; Poortinga, A.; Markert, K.; Quyen, N.H.; San Aung, K.; et al. Collect Earth: An online tool for systematic reference data collection in land cover and use applications. Environ. Model. Softw. 2019, 118, 166–171. [Google Scholar] [CrossRef]
- Hayes, B.; Khou, E.; Neang, T.; Furey, N.; Chhin, S.; Holden, J.; Hun, S.; Phen, S.; La, P.; Simpson, V. Biodiversity Assessment of Prey Lang: Kratie, Kampong Thom, Stung Treng and Preah Vihear Provinces; Conservation International, Winrock International, USAID: Phnom Penh, Cambodia, 2015. [Google Scholar]
- Theilade, I.; Schmidt, L.; Chhang, P.; McDonald, J.A. Evergreen swamp forest in Cambodia: Floristic composition, ecological characteristics, and conservation status. Nord. J. Bot. 2011, 29, 71–80. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Agency, E.S. Sentinel-1 SAR User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar (accessed on 1 August 2021).
- Lee, J.S.; Wen, J.H.; Ainsworth, T.L.; Chen, K.S.; Chen, A.J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar] [CrossRef]
- Vollrath, A.; Mullissa, A.; Reiche, J. Angular-based radiometric slope correction for Sentinel-1 on google earth engine. Remote Sens. 2020, 12, 1867. [Google Scholar] [CrossRef]
- Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.; Saah, D.; Tenneson, K.; Poortinga, A.; Aekakkararungroj, A.; et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017 Landsat time-series. Remote Sens. Environ. 2019, 232, 111278. [Google Scholar] [CrossRef]
- Carroll, M.; Townshend, J.; Hansen, M.; DiMiceli, C.; Sohlberg, R.; Wurster, K. MODIS vegetative cover conversion and vegetation continuous fields. In Land Remote Sensing and Global Environmental Change; Springer: New York, NY, USA, 2010; pp. 725–745. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 1984. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and checkerboard artifacts. Distill 2016, 1, e3. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yu, X.; Wu, X.; Luo, C.; Ren, P. Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework. GISci. Remote Sens. 2017, 54, 741–758. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Ilyushchenko, V. Google Earth Engine Developers. Available online: https://groups.google.com/g/google-earth-engine-developers (accessed on 1 August 2023).
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N.; et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020, 11, 4540. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Dumitru, C.O.; Pan, Z.; Lei, B.; Datcu, M. Classification of large-scale high-resolution SAR images with deep transfer learning. IEEE Geosci. Remote Sens. Lett. 2020, 18, 107–111. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
Metric | Formulation |
---|---|
Accuracy | |
Recall | |
Precision | |
F1-score |
Accuracy | F1 | CE Loss | Precision | Recall | |
---|---|---|---|---|---|
Ascending Orbit | 0.92 | 0.91 | 0.051 | 0.89 | 0.92 |
Descending Orbit | 0.90 | 0.90 | 0.056 | 0.88 | 0.92 |
Year | Alert System | Season | Sample Size | Accuracy Metrics | |||||
---|---|---|---|---|---|---|---|---|---|
Loss | No Loss | All | Accuracy | Precision | Recall | F1-Score | |||
Ascending | 62.23 | 0.52 | 0.77 | 0.62 | |||||
Descending | Dry | 167 | 111 | 278 | 70.14 | 0.6 | 0.78 | 0.68 | |
Combined | 67.63 | 0.58 | 0.72 | 0.64 | |||||
Ascending | 51.66 | 0.53 | 0.77 | 0.62 | |||||
2018 | Descending | Wet | 100 | 111 | 211 | 63.98 | 0.63 | 0.78 | 0.7 |
Combined | 51.18 | 0.53 | 0.72 | 0.61 | |||||
Ascending | 52.12 | 0.35 | 0.77 | 0.48 | |||||
Descending | All | 267 | 111 | 378 | 64.29 | 0.44 | 0.78 | 0.56 | |
Combined | 57.14 | 0.38 | 0.72 | 0.5 | |||||
Ascending | 64.39 | 0.56 | 0.7 | 0.62 | |||||
Descending | Dry | 163 | 115 | 278 | 63.31 | 0.54 | 0.8 | 0.64 | |
Combined | 71.22 | 0.61 | 0.82 | 0.7 | |||||
Ascending | 45.96 | 0.47 | 0.7 | 0.56 | |||||
2019 | Descending | Wet | 120 | 115 | 235 | 63.83 | 0.6 | 0.8 | 0.68 |
Combined | 56.17 | 0.53 | 0.82 | 0.65 | |||||
Ascending | 52.01 | 0.34 | 0.7 | 0.46 | |||||
Descending | All | 283 | 115 | 398 | 58.79 | 0.39 | 0.8 | 0.53 | |
Combined | 59.3 | 0.4 | 0.82 | 0.54 | |||||
Ascending | 46.88 | 0.32 | 0.38 | 0.35 | |||||
Descending | Dry | 81 | 47 | 128 | 46.88 | 0.39 | 0.77 | 0.51 | |
Combined | 57.03 | 0.45 | 0.72 | 0.55 | |||||
Ascending | 41.15 | 0.15 | 0.38 | 0.21 | |||||
2020 | Descending | Wet | 179 | 47 | 226 | 57.96 | 0.3 | 0.77 | 0.43 |
Combined | 47.35 | 0.24 | 0.72 | 0.36 | |||||
Ascending | 43.97 | 0.11 | 0.38 | 0.17 | |||||
Descending | All | 260 | 47 | 307 | 50.49 | 0.2 | 0.77 | 0.32 | |
Combined | 47.56 | 0.19 | 0.72 | 0.3 | |||||
Ascending | 49.77 | 0.29 | 0.67 | 0.4 | |||||
Overall | Descending | All | 810 | 273 | 1083 | 58.36 | 0.35 | 0.79 | 0.49 |
Combined | 55.22 | 0.33 | 0.76 | 0.46 |
Year | Alert System | Season | Sample Size | Accuracy Metrics | |||||
---|---|---|---|---|---|---|---|---|---|
Loss | No Loss | All | Accuracy | Precision | Recall | F1-Score | |||
2018 | Descending | Dry | 167 | 111 | 278 | 67.63 | 0.58 | 0.72 | 0.64 |
GLAD | 70.14 | 0.6 | 0.78 | 0.68 | |||||
Descending | Wet | 100 | 111 | 211 | 51.18 | 0.53 | 0.72 | 0.61 | |
GLAD | 63.98 | 0.63 | 0.78 | 0.7 | |||||
Descending | All | 267 | 111 | 378 | 57.14 | 0.38 | 0.72 | 0.5 | |
GLAD | 64.29 | 0.44 | 0.78 | 0.56 | |||||
2019 | Descending | Dry | 163 | 115 | 278 | 71.22 | 0.61 | 0.82 | 0.7 |
GLAD | 63.31 | 0.54 | 0.8 | 0.64 | |||||
Descending | Wet | 120 | 115 | 235 | 56.17 | 0.53 | 0.82 | 0.65 | |
GLAD | 63.83 | 0.6 | 0.8 | 0.68 | |||||
Descending | All | 283 | 115 | 398 | 59.3 | 0.4 | 0.82 | 0.54 | |
GLAD | 58.79 | 0.39 | 0.8 | 0.53 | |||||
Overall | Descending | Dry | 330 | 226 | 556 | 69.42 | 0.6 | 0.77 | 0.67 |
GLAD | 66.73 | 0.56 | 0.79 | 0.66 | |||||
Descending | Wet | 220 | 226 | 446 | 53.81 | 0.53 | 0.77 | 0.63 | |
GLAD | 63.9 | 0.61 | 0.79 | 0.69 | |||||
Descending | All | 550 | 226 | 776 | 58.25 | 0.39 | 0.77 | 0.52 | |
GLAD | 61.47 | 0.42 | 0.79 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilbride, J.B.; Poortinga, A.; Bhandari, B.; Thwal, N.S.; Quyen, N.H.; Silverman, J.; Tenneson, K.; Bell, D.; Gregory, M.; Kennedy, R.; et al. Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine. Remote Sens. 2023, 15, 5223. https://doi.org/10.3390/rs15215223
Kilbride JB, Poortinga A, Bhandari B, Thwal NS, Quyen NH, Silverman J, Tenneson K, Bell D, Gregory M, Kennedy R, et al. Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine. Remote Sensing. 2023; 15(21):5223. https://doi.org/10.3390/rs15215223
Chicago/Turabian StyleKilbride, John Burns, Ate Poortinga, Biplov Bhandari, Nyein Soe Thwal, Nguyen Hanh Quyen, Jeff Silverman, Karis Tenneson, David Bell, Matthew Gregory, Robert Kennedy, and et al. 2023. "Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine" Remote Sensing 15, no. 21: 5223. https://doi.org/10.3390/rs15215223
APA StyleKilbride, J. B., Poortinga, A., Bhandari, B., Thwal, N. S., Quyen, N. H., Silverman, J., Tenneson, K., Bell, D., Gregory, M., Kennedy, R., & Saah, D. (2023). Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine. Remote Sensing, 15(21), 5223. https://doi.org/10.3390/rs15215223