Satellite Velocity Correction Method of Ocean Current Retrieval for a Spaceborne Doppler Scatterometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Echoed Signal Simulation Model
2.2. The Pulse–Pair Method
2.3. Process of Measuring Ocean Surface Motion
3. The Velocity Correction Method
3.1. Analysis of the Doppler Spectrum
3.2. Offset between Doppler Centroid and Geometric Center within Footprint
3.3. Offset Considering Antenna Pattern
4. Discussion
4.1. The Derivative of Determinations
4.1.1. The Derivative of the Correction Velocity to the Incidence Angle
4.1.2. The Derivative of the Correction Velocity to the Azimuth Angle
4.1.3. The Derivative of the Correction Velocity to the Platform Velocity
4.2. Contribution of the Satellite Attitude
4.2.1. Yaw
4.2.2. Pitch
4.2.3. Roll
4.3. Contribution of the Platform Velocity
4.4. Total Effects of Satellite Attitude and Height Determinations on the Correction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Flierl, G.R.; Wunsch, C. A Description of Local and Nonlocal Eddy–Mean Flow Interaction in a Global Eddy-Permitting State Estimate. J. Phys. Oceanogr. 2014, 44, 2336–2352. [Google Scholar] [CrossRef]
- Ferrari, R.; Wunsch, C. Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef]
- Wang, S.D.; Shen, Y.M.; Zheng, Y.H. Two-dimensional numerical simulation for transport and fate of oil spills in seas. Ocean. Eng. 2005, 32, 1556–1571. [Google Scholar] [CrossRef]
- Lévy, M.; Franks, P.J.S.; Smith, K.S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 2018, 9, 4758. [Google Scholar] [CrossRef] [PubMed]
- Lumpkin, R.; Johnson, G.C. Global ocean surface velocities from drifters: Mean, variance, El Niño–Southern Oscillation response, and seasonal cycle. J. Geophys. Res. Ocean. 2013, 118, 2992–3006. [Google Scholar] [CrossRef]
- Gould, J.; Sloyan, B.; Visbeck, M. Chapter 3—In Situ Ocean Observations: A Brief History, Present Status, and Future Directions. In International Geophysics; Siedler, G., Griffies, S.M., Gould, J., Church, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 103, pp. 59–81. [Google Scholar]
- Wunsch, C.; Gaposchkin, E.M. On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev. Geophys. 1980, 18, 725–745. [Google Scholar] [CrossRef]
- Lagerloef, G.S.E.; Mitchum, G.T.; Lukas, R.B.; Niiler, P.P. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res. Ocean. 1999, 104, 23313–23326. [Google Scholar] [CrossRef]
- Ducet, N.; Le Traon, P.Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Ocean. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Reul, N.; Collard, F. Predicted Doppler shifts induced by ocean surface wave displacements using asymptotic electromagnetic wave scattering theories. Waves Random Complex Media 2008, 18, 185–196. [Google Scholar] [CrossRef]
- Hansen, M.W.; Collard, F.; Dagestad, K.F.; Johannessen, J.A.; Fabry, P.; Chapron, B. Retrieval of Sea Surface Range Velocities From Envisat ASAR Doppler Centroid Measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3582–3592. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A. Interferometric radar measurement of ocean surface currents. Nature 1987, 328, 707–709. [Google Scholar] [CrossRef]
- Romeiser, R.; Johannessen, J.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Runge, H.; Suchandt, S. Direct Surface Current Field Imaging from Space by Along-Track InSAR and Conventional SAR. In Oceanography from Space: Revisited; Barale, V., Gower, J.F.R., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 73–91. [Google Scholar]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res. Ocean. 2005, 110, C07008. [Google Scholar] [CrossRef]
- Martin, A.C.H.; Gommenginger, C.; Marquez, J.; Doody, S.; Navarro, V.; Buck, C. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign. J. Geophys. Res. Ocean. 2016, 121, 1640–1653. [Google Scholar] [CrossRef]
- Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.; Mouche, A. DopSCAT: A mission concept for simultaneous measurements of marine winds and surface currents. J. Geophys. Res. Ocean. 2015, 120, 7857–7879. [Google Scholar] [CrossRef]
- Rodriguez, E. On the Optimal Design of Doppler Scatterometers. Remote Sens. 2018, 10, 1765. [Google Scholar] [CrossRef]
- Rodríguez, E.; Wineteer, A.; Perkovic-Martin, D.; Gál, T.; Stiles, B.W.; Niamsuwan, N.; Rodriguez Monje, R. Estimating Ocean Vector Winds and Currents Using a Ka-Band Pencil-Beam Doppler Scatterometer. Remote Sens. 2018, 10, 576. [Google Scholar] [CrossRef]
- Rodríguez, E.; Wineteer, A.; Perkovic-Martin, D.; Gál, T.; Anderson, S.; Zuckerman, S.; Stear, J.; Yang, X. Ka-Band Doppler Scatterometry over a Loop Current Eddy. Remote Sens. 2020, 12, 2388. [Google Scholar] [CrossRef]
- Yurovsky, Y.Y.; Kudryavtsev, V.N.; Grodsky, S.A.; Chapron, B. Sea Surface Ka-Band Doppler Measurements: Analysis and Model Development. Remote Sens. 2019, 11, 839. [Google Scholar] [CrossRef]
- Abeysekera, S.S. Performance of pulse-pair method of Doppler estimation. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 520–531. [Google Scholar] [CrossRef]
- Du, Y.; Dong, X.; Jiang, X.; Zhang, Y.; Zhu, D.; Sun, Q.; Wang, Z.; Niu, X.; Chen, W.; Zhu, C.; et al. Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Prog. Oceanogr. 2021, 193, 102531. [Google Scholar] [CrossRef]
- Weissman, D.E.; Johnson, J.W. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer. J. Geophys. Res. 1986, 91, 2450–2460. [Google Scholar] [CrossRef]
- Ardhuin, F.; Aksenov, Y.; Benetazzo, A.; Bertino, L.; Brandt, P.; Caubet, E.; Chapron, B.; Collard, F.; Cravatte, S.; Delouis, J.M.; et al. Measuring currents, ice drift, and waves from space: The Sea surface KInematics Multiscale monitoring (SKIM) concept. Ocean Sci. 2018, 14, 337–354. [Google Scholar] [CrossRef]
- Strugarek, D.; Sośnica, K.; Arnold, D.; Jäggi, A.; Zajdel, R.; Bury, G. Satellite laser ranging to GNSS-based Swarm orbits with handling of systematic errors. GPS Solut. 2022, 26, 104. [Google Scholar] [CrossRef]
- Willis, P.; Lemoine, F.G.; Moreaux, G.; Soudarin, L.; Ferrage, P.; Ries, J.; Otten, M.; Saunier, J.; Noll, C.; Biancale, R.; et al. The International DORIS Service (IDS): Recent Developments in Preparation for ITRF2013. In IAG 150 Years, Proceedings of the 2013 IAG Scientific Assembly, Postdam, Germany, 1–6 September 2013; Springer: Cham, Switzerland, 2016; pp. 631–640. [Google Scholar]
- Massmann, F.H.; Flechtner, F.; Raimondo, J.C.; Reigber, C. Impact of PRARE on ERS-2 POD. Adv. Space Res. 1997, 19, 1645–1648. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.; Guo, N.; Zhou, S. Effect of PCV and attitude on the precise orbit determination of Jason-3 satellite. J. Appl. Geod. 2022, 16, 143–150. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, Z.; Zheng, W.J.; Zhao, R.; Xu, Z. High-precision Positioning Method for BD3 System Based on Adaptive Optimization. J. Phys. Conf. Ser. 2023, 2418, 012078. [Google Scholar] [CrossRef]
- Bolandi, H.; Haghparast, M.; Saberi, F.F.; Vaghei, B.G.; Smailzadeh, S.M. Satellite Attitude Determination and Contol. Meas. Control. 2012, 45, 151–157. [Google Scholar] [CrossRef]
- Bao, Q.; Lin, M.; Zhang, Y.; Dong, X.; Lang, S.; Gong, P. Ocean Surface Current Inversion Method for a Doppler Scatterometer. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6505–6516. [Google Scholar] [CrossRef]
- Miao, Y.; Dong, X.; Zhu, D. Analyzing Effects of Satellite Attitude and Speed Errors on Ocean Current Retrieval for a Doppler Scatterometer. Prog. Electromagn. Res. M 2021, 106, 139–152. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, X.; Zhu, D. Analysis of Doppler spectrum of a spaceborne Doppler scatterometer using an echoed signal simulation model. Int. J. Remote Sens. 2023, 44, 4883–4910. [Google Scholar] [CrossRef]
- Fukao, S.; Hamazu, K. (Eds.) Radar Measurements and Scatterer Parameters. In Radar for Meteorological and Atmospheric Observations; Springer: Tokyo, Japan, 2014; pp. 33–73. [Google Scholar]
- Fukao, S.; Hamazu, K. (Eds.) Principle of Doppler Velocity Measurement. In Radar for Meteorological and Atmospheric Observations; Springer: Tokyo, Japan, 2014; pp. 75–104. [Google Scholar]
- Fukao, S.; Hamazu, K. (Eds.) Reception and Processing of Signals. In Radar for Meteorological and Atmospheric Observations; Springer: Tokyo, Japan, 2014; pp. 105–166. [Google Scholar]
- Li, X.; Wang, C.; Qin, Z.; He, J.; Liu, F.; Sun, Q. A Velocity Dealiasing Algorithm on Frequency Diversity Pulse-Pair for Future Geostationary Spaceborne Doppler Weather Radar. Atmosphere 2018, 9, 234. [Google Scholar] [CrossRef]
- Pazmany, A.L.; Galloway, J.C.; Mead, J.B.; Popstefanija, I.; McIntosh, R.E.; Bluestein, H.W. Polarization Diversity Pulse-Pair Technique for Millimeter-WaveDoppler Radar Measurements of Severe Storm Features. J. Atmos. Ocean. Technol. 1999, 16, 1900–1911. [Google Scholar] [CrossRef]
- Toporkov, J.V.; Brown, G.S. Numerical simulations of scattering from time-varying, randomly rough surfaces. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1616–1625. [Google Scholar] [CrossRef]
- Walker, D. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface. IEEE Proc. Radar Sonar Navig. 2000, 147, 114–120. [Google Scholar] [CrossRef]
- Bird, T.S. Reflector Antennas. In Handbook of Antenna Technologies; Chen, Z.N., Liu, D., Nakano, H., Qing, X., Zwick, T., Eds.; Springer: Singapore, 2016; pp. 853–922. [Google Scholar]
- Nishihama, M.; Wolfe, R.; Solomon, D. MODIS Level 1A Earth Location: Algorithm Theoretical Basis Document Version 3.0. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf (accessed on 9 October 2023).
- Sun, X.; Mao, X.; Chen, P. High-precision attitude determination using spaceborne gravity gradiometer and gyroscope. Acta Astronaut. 2022, 200, 213–225. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Q.; Geng, T.; Su, X.; Liu, J. Precise Orbit Determination for COMPASS IGSO Satellites During Yaw Maneuvers. In China Satellite Navigation Conference (CSNC) 2013 Proceedings; Springer: Berlin/Heidelberg, Germany, 2013; pp. 41–53. [Google Scholar]
Parameters | Value |
---|---|
Platform Height (km) | 520 |
Platform Velocity (m·s−1) | 7000 |
Signal Frequency (GHz) | 35.6 |
Beam Width (°) | 0.3 (Ka)/0.6 (Ku) |
Antenna Size (m) | 1.5 (Ka)/0.8 (Ku) |
Pulse Width (μs) | 50 |
Pulse Repetition Time (μs) | 100 |
Incidence Angle (°) | 46 |
Determinations | Sensitivity | Error Contribution |
---|---|---|
Yaw | ||
Pitch | ||
Roll | ||
Platform Height |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Dong, X.; Zhu, D. Satellite Velocity Correction Method of Ocean Current Retrieval for a Spaceborne Doppler Scatterometer. Remote Sens. 2023, 15, 5541. https://doi.org/10.3390/rs15235541
Zhang J, Dong X, Zhu D. Satellite Velocity Correction Method of Ocean Current Retrieval for a Spaceborne Doppler Scatterometer. Remote Sensing. 2023; 15(23):5541. https://doi.org/10.3390/rs15235541
Chicago/Turabian StyleZhang, Jingyu, Xiaolong Dong, and Di Zhu. 2023. "Satellite Velocity Correction Method of Ocean Current Retrieval for a Spaceborne Doppler Scatterometer" Remote Sensing 15, no. 23: 5541. https://doi.org/10.3390/rs15235541
APA StyleZhang, J., Dong, X., & Zhu, D. (2023). Satellite Velocity Correction Method of Ocean Current Retrieval for a Spaceborne Doppler Scatterometer. Remote Sensing, 15(23), 5541. https://doi.org/10.3390/rs15235541