Ecological Security Assessment of “Grain-for-Green” Program Typical Areas in Northern China Based on Multi-Source Remote Sensing Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Pre-Processing
3. Methods
3.1. Remote Sensing Ecological Security Assessment Indicator System
3.1.1. P-S-R Ecological Security Index Selection
- Ecological system pressure (P) index selection
- 2.
- Ecological System Status (S) Index Selection
- 3.
- Ecological System Response (R) Index Selection
3.1.2. Establishment of Ecological Security Index System Based on P-S-R
3.1.3. Determination of Indicator Weights
3.1.4. Standardization and Calculation of Ecological Security Indicators
3.2. Ecological Security Assessment System and Early Warning System Establishment
4. Results
4.1. Ecological Safety Assessment in the IMYRB
4.2. Dynamic Analysis of Ecological Security Early Warning
5. Discussion
5.1. Ecological Security Assessment System Rationality and Data Reliability
5.2. Possible Mechanism of ES Improvement and Policy Implications
5.2.1. The Implementation of the GFG Can Be Effective in Enhancing Ecological Security
5.2.2. Scientific Vegetation Restoration Is an Effective Way to Improve Ecological Security
5.2.3. The “Red Line” of Arable Land Should Be Kept in “Grain-for-Green”
5.2.4. Upgrading Grazing Management Skills Is Essential for Grassland Ecological Security
5.3. Limitations and Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smil, V. China’s Environmental Crisis: An Enquiry into the Limits of National Development; Routledge: London, UK, 2016. [Google Scholar]
- Li, S.; Yang, S.; Liu, X.; Liu, Y.; Shi, M. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.; Hu, L.; Chakraborty, T.; Wang, Z.; Fu, P.; Wang, D.; Liao, W.; Huang, F.; Fu, H. Divergent urbanization-induced impacts on global surface urban heat island trends since 1980s. Remote Sens. Environ. 2023, 295, 113650. [Google Scholar] [CrossRef]
- Kucharczyk, M.; Hugenholtz, C.H. Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sens. Environ. 2021, 264, 112577. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, Y.; Zheng, Z.; Dong, W.; Zhao, D.; Wu, B.; Zhao, Q. Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China. Remote Sens. Environ. 2018, 213, 104–114. [Google Scholar] [CrossRef]
- Ma, C.; Qian, Y.; Li, K.; Dou, X.; Shen, H.; Tang, H.; Qiu, S.; Zhang, L.; Jia, Y.; Ou-Yang, G. Temperature and Emissivity Retrieval from Hyperspectral Thermal Infrared Data Using Dictionary-Based Sparse Representation for Emissivity. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Liu, D.; Chang, Q. Ecological security research progress in China. Acta Ecol. Sin. 2015, 35, 111–121. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Li, Y. Grain-for-Green program is a great concrete action towards the ecological civilization in China: Summary of a decade program implementation. For. Constr. 2009, 27, 3–13. [Google Scholar]
- Bennett, M.T. China’s sloping land conversion program: Institutional innovation or business as usual? Ecol. Econ. 2008, 65, 699–711. [Google Scholar] [CrossRef]
- Lei, D.; Shangguan, Z.P.; Rui, L. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 2012, 27, 120–127. [Google Scholar]
- Zhang, X.Y.; Liu, K.; Li, X.K.; Wang, S.D.; Wang, J.N. Vulnerability assessment and its driving forces in terms of NDVI and GPP over the Loess Plateau, China. Phys. Chem. Earth 2022, 125, 103106. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, B.H.; Meng, Y.; Liu, K.; Wang, S.D.; Wang, D.C.; Zhang, H.Y.; Huang, Y.L.; Liu, X.T.; Li, D.H.; et al. Relationship between carbon pool changes and environmental changes in arid and semi-arid steppe—A two decades study in Inner Mongolia, China. Sci. Total Environ. 2023, 893, 164930. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Li, X.K.; Liu, K.; Wang, S.D.; Zhang, H.Y.; Gao, X.J.; Zhang, X.Y. Three Decades of Gross Primary Production (GPP) in China: Variations, Trends, Attributions, and Prediction Inferred from Multiple Datasets and Time Series Modeling. Remote Sens. 2022, 14, 2564. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.K.; Wang, S.D.; Zhou, G.S. Past and future adverse response of terrestrial water storages to increased vegetation growth in drylands. NPJ Clim. Atmos. 2023, 6, 113. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.K.; Wang, S.D.; Zhang, X.Y. Unrevealing past and future vegetation restoration on the Loess Plateau and its impact on terrestrial water storage. J. Hydrol. 2023, 617, 129021. [Google Scholar] [CrossRef]
- Li, D.H.; Liu, K.; Wang, S.D.; Wu, T.X.; Li, H.; Bo, Y.; Zhang, H.Y.; Huang, Y.L.; Li, X.K. Four decades of hydrological response to vegetation dynamics and anthropogenic factors in the Three-North Region of China and Mongolia. Sci. Total Environ. 2023, 857, 159546. [Google Scholar] [CrossRef] [PubMed]
- Delang, C.O.; Yuan, Z. China’s Grain-for-Green Program; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain-for-Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Delang, C.O. The second phase of the Grain-for-Green program: Adapting the largest reforestation program in the world to the new conditions in rural China. Environ. Manag. 2019, 64, 303–312. [Google Scholar] [CrossRef]
- Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-driven China’s Grain to Green Program: Implications for ecosystem services. Ecosyst. Serv. 2017, 27, 38–47. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Sun, Y.; An, Y.; Dong, S.; Liu, G. Ecological security evaluation based on entropy matter-element model: A case study of Kunming city, southwest China. Ecol. Indic. 2019, 102, 469–478. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J. Ecological security early-warning in central Yunnan Province, China, based on the gray model. Ecol. Indic. 2020, 111, 106000. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Evolution process and obstacle factors of ecological security in western China, a case study of Qinghai province. Ecol. Indic. 2020, 117, 106659. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G.; Lu, S. Assessment of land ecosystem health with Monte Carlo simulation: A case study in Qiqihaer, China. J. Cleaner Prod. 2020, 250, 119522. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Wang, S. Assessment of ecological carrying capacity and ecological security in China’s typical eco-engineering areas. Sustainability 2020, 12, 3923. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Yu, K.; Zou, Y. Analysis of the Characteristics of Ecological Security Zoning and Its Dynamic Change Pattern: A Case Study of the Weibei Area. Sustainability 2020, 12, 7222. [Google Scholar] [CrossRef]
- Du, P.; Xia, J.; Du, Q.; Luo, Y.; Tan, K. Evaluation of the spatio-temporal pattern of urban ecological security using remote sensing and GIS. Int. J. Remote Sens. 2013, 34, 848–863. [Google Scholar] [CrossRef]
- Lu, T.; Li, C.; Zhou, W.; Liu, Y. Fuzzy Assessment of Ecological Security on the Qinghai–Tibet Plateau Based on Pressure–State–Response Framework. Remote Sens. 2023, 15, 1293. [Google Scholar] [CrossRef]
- Wen, J.; Hou, K.; Li, H.; Zhang, Y.; He, D.; Mei, R. Study on the spatial-temporal differences and evolution of ecological security in the typical area of the Loess Plateau. Environ. Sci. Pollut. Res. 2021, 28, 23521–23533. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Xie, Y.; Li, K.; Xu, Y. Integrating future land use scenarios to evaluate the spatio-temporal dynamics of landscape ecological security. Sustainability 2016, 8, 1242. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, W.; Qiu, X.; Chang, H.; Yang, H.; Yang, W. Impact evaluation of a payments for ecosystem services program on vegetation quantity and quality restoration in Inner Mongolia. J. Environ. Manag. 2022, 303, 114113. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Lv, Z.; Yao, L.; Zhang, N.; Zhang, Q. Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia. Land 2023, 12, 1114. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; He, Q.; Liu, Y. Urban ecological security simulation and prediction using an improved cellular automata (CA) approach—A case study for the city of Wuhan in China. Int. J. Environ. Res. Public Health 2017, 14, 643. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Qiu, M.; Liu, Z. Spatiotemporal changes and obstacle factors of Forest ecological security in China: A provincial-level analysis. Forests 2021, 12, 1526. [Google Scholar] [CrossRef]
- Ye, Z.; Miao, P.; Li, N.; Wang, Y.; Meng, F.; Zhang, R.; Yin, S. Dynamic Relationship between Agricultural Water Use and the Agricultural Economy in the Inner Mongolia Section of the Yellow River Basin. Sustainability 2023, 15, 12979. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, B.; Zhong, D.; Wang, Y. Calculation method for sediment load in flood and non-flood seasons in the Inner Mongolia reach of the Yellow River. Geogr. Sci. 2016, 26, 707–721. [Google Scholar] [CrossRef]
- Yang, H.; Shi, C. Sediment grain-size characteristics and its sources of ten wind-water coupled erosion tributaries (the Ten Kongduis) in the Upper Yellow River. Water 2019, 11, 115. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Pringle, M.; Denham, R.; Devadas, R. Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 276–285. [Google Scholar] [CrossRef]
- Gebremichael, M.; Barros, A.P. Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens. Environ. 2006, 100, 150–166. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global terrestrial gross and net primary productivity from the earth observing system. In Methods in Ecosystem Science; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3). Algorithm Theor. Basis Doc. Collect. 2013, 5, 600. [Google Scholar]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landscape Urban Plann. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Engineering 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Wang, W.; Liu, R.T.; Gan, F.P.; Zhou, P.; Zhang, X.W.; Ding, L. Monitoring and evaluating restoration vegetation status in mine region using remote sensing data: Case study in Inner Mongolia, China. Remote Sens. 2021, 13, 1350. [Google Scholar] [CrossRef]
- Chen, G.Q.; Wang, M.J.; Liu, Z.J.; Chi, W.F. The biogeophysical effects of revegetation around mining areas: A case study of Dongsheng mining areas in Inner Mongolia. Sustainability 2017, 9, 628. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Henry, M.; Chiozza, F.; Yigini, Y. Harmonized World Soil Database Version 2.0; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Li, G.; Jiang, C.; Zhang, Y.; Jiang, G. Whether land greening in different geomorphic units are beneficial to water yield in the Yellow River Basin? Ecol. Indic. 2021, 120, 106926. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, P.; Guo, H.; Yang, G. Wetlands ecological security assessment in lower reaches of Taoerhe river connected with Nenjiang river using modified P-S-R model. Hydrol Res. 2023, 6, 156–165. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Li, T.T.; Zhang, Q.; Wang, G.; Singh, V.P.; Zhao, J.Q.; Sun, S.; Wang, D.Z.; Liu, T.X.; Duan, L.M. Ecological degradation in the Inner Mongolia reach of the Yellow River Basin, China: Spatiotemporal patterns and driving factors. Ecol. Indic. 2023, 154, 110498. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y. Spatial Expansion and Correlation of Urban Agglomeration in the Yellow River Basin Based on Multi-Source Nighttime Light Data. Sustainability 2022, 14, 9359. [Google Scholar] [CrossRef]
- Sang, S.; Wu, T.; Wang, S.; Yang, Y.; Liu, Y.; Li, M.; Zhao, Y. Ecological Safety Assessment and Analysis of Regional Spatiotemporal Differences Based on Earth Observation Satellite Data in Support of SDGs: The Case of the Huaihe River Basin. Remote Sens. 2021, 13, 3942. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Cao, Y.; Shi, J.; Qu, Y.; Li, L.; Zhao, T.; Niu, Z.; Yang, R.; Gong, P. Assessing the ecological vulnerability of protected areas by using Big Earth Data. Int. J. Digit Earth. 2021, 14, 1624–1637. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.-Y.; Yang, T. Variability of water resource in the Yellow River basin of past 50 years, China. Water Resour. Manag. 2009, 23, 1157–1170. [Google Scholar] [CrossRef]
- Wohlfart, C.; Mack, B.; Liu, G.; Kuenzer, C. Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series: Exemplary analysis in mining, agriculture, forest, and urban areas. Appl. Geogr. 2017, 85, 73–88. [Google Scholar] [CrossRef]
- Chen, Y.P.; Fu, B.J.; Zhao, Y.; Wang, K.B.; Zhao, M.M.; Ma, J.F.; Wu, J.H.; Xu, C.; Liu, W.G.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land use and land cover change in the Yellow River Basin from 1980 to 2015 and its impact on the ecosystem services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Feng, S.Y.; Liu, X.; Zhao, W.W.; Yao, Y.; Zhou, A.; Liu, X.X.; Pereira, P. Key areas of ecological restoration in Inner Mongolia based on ecosystem vulnerability and ecosystem service. Remote Sens. 2022, 14, 2729. [Google Scholar] [CrossRef]
- Hu, W.M.; Li, G.; Gao, Z.H.; Jia, G.Y.; Wang, Z.C.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Wang, X.; Wang, Y. Understanding the impacts of ‘Grain-for-Green’land management practice on land greening dynamics over the Loess Plateau of China. LUP 2020, 99, 105084. [Google Scholar]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Z.; Feng, X.; Ma, J.H.; Jia, Z.X.; Wang, X.X.; Zhou, J.T.; Zhang, X.R.; Yao, W.J.; Tu, Y. Identification of priority protected areas in Yellow River Basin and detection of key factors for its optimal management based on multi-scenario trade-off of ecosystem services. Ecol. Eng. 2023, 194, 107037. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wu, T.; Yang, Y. The evolution of landscape ecological security in Beijing under the influence of different policies in recent decades. Sci. Total Environ. 2019, 646, 49–57. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Zou, X.Y.; Cheng, H.; Jia, H.K.; Wu, Y.Q.; Wang, G.Y.; Zhang, C.L.; Gao, S.Y. Assessing the ecological security of the Tibetan plateau: Methodology and a case study for Lhaze County. J. Environ. Manag. 2006, 80, 120–131. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Interfaces 1994, 24, 19–43. [Google Scholar] [CrossRef]
- Yu, L.; Wu, X.; Zheng, X.; Zheng, T.; Xin, J.; Walther, M. An index system constructed for ecological stress assessment of the coastal zone: A case study of Shandong, China. J. Environ. Manag. 2019, 232, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, H.; Han, D.; Zhang, G.; Wei, Y.; Huang, J.; An, L.; Liu, X.; Ren, Y. Declines in global ecological security under climate change. Ecol. Indic. 2020, 117, 106651. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Zhang, M.; Bao, Y.; Xu, J.; Han, A.; Liu, X.; Zhang, J.; Tong, Z. Ecological security evaluation and ecological regulation approach of East-Liao River basin based on ecological function area. Ecol. Indic. 2021, 132, 108255. [Google Scholar] [CrossRef]
- Liu, D.; Yin, Z. Spatial-temporal pattern evolution and mechanism model of tourism ecological security in China. Ecol. Indic. 2022, 139, 108933. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Liu, X.; Chang, Y.; Wang, H.; Yang, J.; Yang, X.; Wei, Y. The multi-dimensional perspective of ecological security evaluation and drive mechanism for Baishuijiang National Nature Reserve, China. Ecol. Indic. 2021, 132, 108295. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, C.; Xiong, Y. Ecological security assessment of China based on the Pressure-State-Response framework. Ecol. Indic. 2023, 154, 110647. [Google Scholar] [CrossRef]
- Huang, Q.; Peng, B.; Wei, G.; Wan, A. Dynamic assessment and early warning of ecological security: A case study of the Yangtze river urban agglomeration. Nat. Hazards 2021, 107, 2441–2461. [Google Scholar] [CrossRef]
- Meng, Z.; Li, C.; Deng, Y. Ecological security early-warning and its ecological regulatory countermeasures in the Tuojiang River Basin. J. Ecol. Rural Environ. 2009, 25, 1–8. [Google Scholar]
- Xiao, D.; Chen, W. On the basic concepts and contents of ecological security. J. Appl. Ecol. 2002, 13, 354–358. [Google Scholar]
- Yu, Y.; Hua, T.; Chen, L.; Zhang, Z.Q.; Pereira, P. Divergent Changes in Vegetation Greenness, Productivity, and Rainfall Use Efficiency Are Characteristic of Ecological Restoration Towards High-Quality Development in the Yellow River Basin, China. Engineering 2023, 30. [Google Scholar] [CrossRef]
- Jing, W.L.; Yao, L.; Zhao, X.D.; Zhang, P.Y.; Liu, Y.X.X.; Xia, X.L.; Song, J.; Yang, J.; Li, Y.; Zhou, C.H. Understanding terrestrial water storage declining trends in the Yellow River Basin. Geophys. Res. Atmos. 2019, 124, 12963–12984. [Google Scholar] [CrossRef]
- Li, C.J.; Fu, B.J.; Wang, S.; Stringer, L.C.; Zhou, W.X.; Ren, Z.B.; Hu, M.Q.; Zhang, Y.J.; Eodriguez-Caballero, E.; Weber, B.; et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat. Sustain. 2023, 6, 1363–1372. [Google Scholar] [CrossRef]
No. | Dataset | Product Type | Data Type | Resolution | The Date of Collection | Data Source |
---|---|---|---|---|---|---|
1 | MOD13Q1 | NDVI | 250 m/16 d | 2000–2020 | https://ladsweb.modaps.eosdis.nasa.gov/search/ | |
2 | MODIS | MOD17A2H | GPP | 500 m/8 d | 2000, 2020 | |
3 | MOD16A2 | Evaporation | 500 m/8 d | 2000, 2010, 2020 | ||
4 | CLCD | - | Land cover | 30 m/year | 2000–2020 | https://doi.org/10.5194/essd-13-3907-2021 |
5 | GlobeLand30 | - | Land cover | 30 m/year | 2000, 2010, 2020 | |
6 | SRTM | SRTMGL1_003 | Digital elevation data | 30 m | 2019 | https://doi.org/10.1029/2005RG000183. |
7 | TerraClimate | - | Precipitation | 4 km/month | 2000, 2010, 2020 | https://www.climatologylab.org/terraclimate.html |
8 | Nighttime Data | DMSP/OLS | Nighttime Data | 1 km resampled | 2000, 2010, 2020 | https://www.ngdc.noaa.gov/eog/download.html |
9 | NPP/VIIRS | |||||
10 | HWSD | - | Harmonized World Soil Database | - | 2000, 2010, 2020 | https://www.fao.org/ |
11 | Miner and protected area data | Vectorization data | - | - | 2000–2020 | https://doi.org/10.1016/j.jhydrol.2020.125759 https://doi.org/10.3390/su8090889 |
Goal | Dimension (Weight) | Indicator (Weight) | Equation | Description (±) | |
---|---|---|---|---|---|
Ecological security Index | Pressure (P) (0.249) | Precipitation Index (PI) (0.228) | is the annual precipitation of Year j in assessment unit i, and are the areas of the image and assessment unit i, respectively, and is the maximum annual precipitation in assessment unit i. (+) | ||
Terrain index (TI) (0.174) | is the slope of year j in assessment unit i, and is the maximum TI in unit i. , and are the coefficient of variation, standard deviation and mean of the slope, respectively. (-) | ||||
Disturbance Index (DI) (0.598) | Mining Area Index (MAI) (0.284) | is the MI of Year j in unit i, and is the maximum MI in unit i (-) | |||
Grazing intensity Index (GII) (0.258) | is the GII of Year j in unit i, and is the maximum MI in unit i (-) | ||||
Population Density Index (PII) (0.458) | UI is the urbanization index which refers to the urban areas. is the UI of Year j in unit i, and is the maximum MI in unit i. is the light data index. and are the minimum and maximum values of light luminance in the study area, respectively (-) | ||||
Statement (S) (0.594) | Ecosystem Resilience Index (ERI) (0.156) | is the elasticity coefficient for land cover type j in assessment unit i. is the maximum ERI in unit i (+) | |||
Ecosystem Vitality Index (EVI) (0.222) | is the elasticity coefficient of year j in assessment unit i. is the maximum NDVI in unit i (+) | ||||
Landscape Fragmentation Index (LFI) (0.173) | is the patch density for land cover type j in assessment unit i. is the maximum PD in unit i. N is the of patches in landscape i, and TA is the total area of landscape i. (-) | ||||
Ecosystem Services Index (ESI) (0.449) | Carbon storage and sequestration (0.2) | is the carbon for land cover type j in assessment unit i. is the maximum C in unit i., , and are the above-ground fraction carbon stock, below-ground fraction carbon stock, soil carbon stock and dead organic carbon stock, respectively. (+) | |||
Water Yield Model (0.2) | is the water retention for land cover type j in assessment unit i. is the maximum water retention in unit i. is the water yield (mm); is the actual annual average evapotranspiration of grid cell (mm); is the annual average precipitation of grid cell (mm). is the water retention (mm); is the amount of surface runoff (mm); and is the surface runoff coefficient, which expresses the ability of precipitation to be converted into runoff. (+) | ||||
Sediment Delivery Ratio (0.6) | is the sediment delivery ratio for land cover type j in assessment unit i. is the maximum sediment delivery ratio in unit i. , , and denote the amount of soil retention, potential erosion, actual erosion, and retention, respectively. (+) | ||||
Response (R) (0.157) | Protected Area Index (PAI) (0.5) | is the protected district area for land cover type j in assessment unit i. is the maximum protected district area in unit i. (+) | |||
Farmland Abandonment and Recultivation Index (FARI) (0.5) | and Are the areas of farmland abandonment and recultivation for land cover type j in assessment unit i. and are 0.65 and 0.35, respectively. (+) |
ESI Level | Low | Mid-Low | Medium | Mid-High | High |
---|---|---|---|---|---|
Ecology Security Index | ESI ≤ 0.35 | 0.35 < ESI < 0.45 | 0.45 < ESI < 0.55 | 0.55 < ESI < 0.65 | ESI ≥ 0.65 |
Statement | Unsafe | Less safe | Critical Safe | Relatively Safe | Safe |
Ecosystem Structure | Lack | Serious damage | Destruction | More structured | Integrity |
Ecosystem Function | Serious damage | High difficulty | Appearance of destruction | Robust | Sound |
ESL Level | ESI Statement | ∆ESI | Analysis | Level of ESW | |
---|---|---|---|---|---|
Ecological Security Warning (ESW) | ESI ≥ 0.55 | Safe | ∆ESI > 0 | Non-warning | I |
∆ESI < 0 | Non-warning, Degradation trend | II | |||
0.35 < ESI < 0.55 | Critical Safe | ∆ESI > 0 | Early warning, Improvement trend | III | |
0 < ∆ESI < 0.1 | Early warning, Slow degradation trend | IV | |||
∆ESI < 0 | Early warning, Rapid degradation trend | V | |||
ESI ≤ 0.35 | Unsafe | ∆ESI > 0 | Warning, Improvement trend | VI | |
∆ESI < 0 | Warning, Degradation trend | VII |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, H.; Wang, S.; Liu, K.; Li, L.; Li, D. Ecological Security Assessment of “Grain-for-Green” Program Typical Areas in Northern China Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 5732. https://doi.org/10.3390/rs15245732
Liu X, Li H, Wang S, Liu K, Li L, Li D. Ecological Security Assessment of “Grain-for-Green” Program Typical Areas in Northern China Based on Multi-Source Remote Sensing Data. Remote Sensing. 2023; 15(24):5732. https://doi.org/10.3390/rs15245732
Chicago/Turabian StyleLiu, Xingtao, Hang Li, Shudong Wang, Kai Liu, Long Li, and Dehui Li. 2023. "Ecological Security Assessment of “Grain-for-Green” Program Typical Areas in Northern China Based on Multi-Source Remote Sensing Data" Remote Sensing 15, no. 24: 5732. https://doi.org/10.3390/rs15245732