A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location and Climate
2.1.2. Geology and Hydrogeology
2.2. Aqueduct Distribution and Groundwater Exploitation
2.3. Development and Calibration of the Model
2.3.1. Conceptual Model
2.3.2. Mathematical Model
2.3.3. Model Construction
2.3.4. Model Calibration
2.3.5. Model Prediction
3. Results
3.1. Calibration Results
3.2. Groundwater Balance Analyses
3.3. Annual Irrigation Water Demand and Supply in the Study Area
3.3.1. Annual Water Demand
3.3.2. Annual Water Supply
4. Discussion
4.1. Scenario 1: Primarily Using Groundwater for Spring and Winter Irrigation
4.2. Scenario 2: The Ratio of Groundwater to Surface Water Is 2:1 for Irrigation
4.3. Scenario 3: Predictive Model Based on the Hanjiang-to-Weihe River Valley Water Diversion Project
- (1)
- This scenario assumes that the water quality of the Wei River will recover after the Hanjiang-to-Weihe River Valley Water Diversion Project starts operation for 10 years (year 2040).
- (2)
- This scenario assumes that the water quality of Wei River will recover after the Hanjiang-to-Weihe River Valley Water Diversion Project starts operation in 20 years (year 2050).
5. Conclusions
- (1)
- The model results show that the groundwater in the study area is in a positive equilibrium and the total recharge and discharge of groundwater were 1.99 × 108 m3/a and 1.93 × 108 m3/a, respectively. It is noted that summer is short of water.
- (2)
- For scenario 1, when the groundwater is primarily used for irrigation, the water level in most areas decreases significantly after 50 years, reaching 25 m at the maximum, and the buried depth is basically above 20 m.
- (3)
- For scenario 2, when the ratio of groundwater to surface water is 2:1 for irrigation, the largest decrease in water level is approximately 10 m, and the buried depth of the water level is basically between 5 and 30 m, indicating that scenario 2 is reasonably feasible to solve the scarcity of water.
- (4)
- The results of scenario 3 indicate that the maximum decrease is approximately 5 m, and the buried depth of the groundwater level is basically above 3 m. It can be seen that the joint regulation of groundwater and surface water and the Hanjiang-to-Weihe River Valley Water Diversion Project have significant optimization benefits for groundwater level change and soil salinization in irrigation areas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, J.; Duan, W.; Chen, Y.; Dukhovny, V.A.; Sorokin, D.; Li, Y.; Wang, X. Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renew. Sustain. Energy Rev. 2022, 157, 112061. [Google Scholar] [CrossRef]
- Luo, P.P.; Zheng, Y.; Wang, Y.Y.; Zhang, S.P.; Yu, W.Q.; Zhu, X.; Huo, A.D.; Wang, Z.H.; He, B.; Nover, D. Comparative Assessment of Sponge City Constructing in Public Awareness, Xi’an, China. Sustainability 2022, 14, 11653. [Google Scholar] [CrossRef]
- Zhu, W.; Zha, X.; Luo, P.; Wang, S.; Cao, Z.; Lyu, J.; Zhou, M.; He, B.; Nover, D. A quantitative analysis of research trends in flood hazard assessment. Stoch. Environ. Res. Risk Assess. 2022, 37, 413–428. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.P.; Zha, X.B.; Xu, C.Y.; Kang, S.X.; Zhou, M.M.; Nover, D.; Wang, Y.H. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Han, D.M.; Song, X.F.; Currell, M.J.; Cao, G.L.; Zhang, Y.H.; Kang, Y.H. A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: Implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J. Hydrol. 2011, 405, 217–234. [Google Scholar] [CrossRef]
- Nong, X.Z.; Shao, D.G.; Zhong, H.; Liang, J.K. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xu, P.P.; Qian, H. Groundwater Quality Assessment Using Improved Water Quality Index (WQI) and Human Health Risk (HHR) Evaluation in a Semi-arid Region of Northwest China. Expo. Health 2020, 12, 487–500. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xu, P.P.; Chen, J.; Qian, H.; Qu, W.G.; Liu, R. Evaluation of groundwater quality using an integrated approach of set pair analysis and variable fuzzy improved model with binary semantic analysis: A case study in Jiaokou Irrigation District, east of Guanzhong Basin, China. Sci. Total Environ. 2021, 767, 145247. [Google Scholar] [CrossRef]
- Dehghanipoura, A.H.; Schoups, G.; Zahabiyoun, B.; Babazadeh, H. Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran. Agric. Water Manag. 2020, 241, 106353. [Google Scholar] [CrossRef]
- Mostaza-Colado, D.; Carreño-Conde, F.; Rasines-Ladero, R.; Iepure, S. Hydrogeochemical characterization of a shallow alluvial aquifer: 1 baseline for groundwater quality assessment and resource management. Sci. Total Environ. 2018, 639, 1110–1125. [Google Scholar] [CrossRef]
- Singh, A. Simulation-optimization modeling for conjunctive water use management. Agric. Water Manag. 2014, 141, 23–29. [Google Scholar] [CrossRef]
- Liu, W.; Park, S.; Bailey, R.T.; Molina-Navarro, E.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen, E.; Jensen, J.S.; Jensen, J.B.; et al. Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW. Environ. Sci. Eur. 2020, 32, 113. [Google Scholar] [CrossRef]
- Ni, X.J.; Parajuli, P.B.; Ouyang, Y. Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale. Water Resour. Manag. 2020, 34, 1553–1566. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Feng, X. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization. Adv. Water Resour. 2017, 110, 445–458. [Google Scholar] [CrossRef]
- Peng, J.B.; Sun, X.H.; Wang, W.; Sun, G.C. Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China. Environ. Earth Sci. 2016, 75, 15. [Google Scholar] [CrossRef]
- Jia, Z.J.; Qiao, J.W.; Peng, J.B.; Lu, Q.Z.; Xia, Y.Y.; Zang, M.D.; Wang, F.Y.; Zhao, J.Y. Formation of ground fissures with synsedimentary characteristics: A case study in the Linfen Basin, northern China. J. Asian Earth Sci. 2021, 214, 104790. [Google Scholar] [CrossRef]
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashra, S. Land subsidence: A global challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef]
- Li, H.J.; Zhu, L.; Guo, G.X.; Zhang, Y.; Dai, Z.X.; Li, X.J.; Chang, L.Z.; Teatini, P. Land subsidence due to groundwater pumping: Hazard probability assessment through the combination of Bayesian model and fuzzy set theory. Nat. Hazards Earth Syst. Sci. 2021, 21, 823–835. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xu, P.P.; Qian, H.; Yang, F.X. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk. Sci. Total Environ. 2020, 741, 140460. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Qian, H.; Xu, P.P.; Li, W.Q.; Feng, W.W.; Liu, R. Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. J. Clean. Prod. 2021, 298, 126783. [Google Scholar] [CrossRef]
- Noori, R.; Hooshyaripor, F.; Javadi, S.; Dodangeh, M.; Tian, F.Q.; Adamowski, J.F.; Berndtsson, R.; Baghvand, A.; Klöve, B. PODMT3DMS-Tool: Proper orthogonal decomposition linked to the MT3DMS model for nitrate simulation in aquifers. Hydrogeol. J. 2020, 28, 1125–1142. [Google Scholar] [CrossRef]
- Chen, J.; Qian, H.; Gao, Y.Y.; Wang, H.K.; Zhang, M.S. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions. J. Hydrol. 2020, 581, 124386. [Google Scholar] [CrossRef]
- Wu, X.; Xia, J.; Zhan, C.S.; Jia, R.L.; Li, Y.; Qiao, Y.F.; Zou, L. Modeling soil salinization at the downstream of a lowland reservoir. Hydrol. Res. 2019, 50, 1202–1215. [Google Scholar] [CrossRef]
- Yang, G.; Tian, L.J.; Li, X.L.; He, X.L.; Gao, Y.L.; Li, F.D.; Xue, L.Q.; Li, P.F. Numerical assessment of the effect of water-saving irrigation on the water cycle at the Manas River Basin oasis, China. Sci. Total Environ. 2020, 707, 135587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Qian, H.; Xu, P.P.; Hou, K.; Yang, F.X. Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China. Ecotox. Environ. Saf. 2021, 212, 111992. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Ochoa, C.; Medina-Sierra, A.; Vives, L. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Sci. Total Environ. 2020, 722, 137886. [Google Scholar] [CrossRef]
- Klaas, D.K.S.Y.; Imteaz, M.A.; Sudiayem, I.; Klaas, E.M.E.; Klaas, E.C.M. Assessing climate changes impacts on tropical karst catchment: Implications on groundwater resource sustainability and management strategies. J. Hydrol. 2020, 582, 124426. [Google Scholar] [CrossRef]
- Wang, S.; Cao, Z.; Luo, P.; Zhu, W. Spatiotemporal Variations and Climatological Trends in Precipitation Indices in Shaanxi Province, China. Atmosphere 2022, 13, 744. [Google Scholar] [CrossRef]
- Chang, S.W.; Chung, I.-M.; Kim, M.G.; Yifru, B.A. Vulnerability assessment considering impact of future groundwater exploitation on coastal groundwater resources in northeastern Jeju Island, South Korea. Environ. Earth Sci. 2020, 79, 498. [Google Scholar] [CrossRef]
- Mohseni, N.; Bol, R. Variation in the rate of land subsidence induced by groundwater extraction and its effect on the response pattern of soil microbial communities. Earth Surf. Proc. Landf. 2021, 46, 1898–1908. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Su, F.; Zhang, S.; Sun, B. Spatiotemporal Analysis of Hydrological Variations and Their Impacts on Vegetation in Semiarid Areas from Multiple Satellite Data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Omar, P.J.; Gaur, S.; Dwivedi, S.B.; Dikshit, P.K.S. A Modular Three-Dimensional Scenario-Based Numerical Modelling of Groundwater Flow. Water Res. Manag. 2020, 34, 1913–1932. [Google Scholar] [CrossRef]
- Luo, P.P.; Luo, M.T.; Li, F.Y.; Qi, X.G.; Huo, A.D.; Wang, Z.H.; He, B.; Takara, K.; Nover, D.; Wang, Y.H. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Wang, S.T.; Luo, P.P.; Xu, C.Y.; Zhu, W.; Cao, Z.; Ly, S. Reconstruction of Historical Land Use and Urban Flood Simulation in Xi’an, Shannxi, China. Remote Sens. 2022, 14, 6067. [Google Scholar] [CrossRef]
- Butts, M.; Graham, D. Evolution of an integrated surface water-groundwater hydrological modelling system. In Proceedings of the IAHR International Groundwater Symposium—Flow and Transport in Heterogeneous Subsurface Formations: Theory, Modelling & Applications, Istanbul, Turkey, 18–20 June 2008. [Google Scholar]
- DHI. MIKE SHE User Manual; DHI—Water and Environment: Hørsholm, Denmark, 2007. [Google Scholar]
- Jones, J.P.; Sudicky, E.A.; McLaren, R.G. Application of a fully-integrated surface-subsurface flow model at the watershed-scale: A case study. Water Resour. Res. 2008, 44, 1–13. [Google Scholar] [CrossRef]
- Ran, Q.H.; Chen, X.X.; Hong, Y.Y.; Ye, S.; Gao, J.H. Impacts of terracing on hydrological processes: A case study from the Loess Plateau of China. J. Hydrol. 2020, 588, 125045. [Google Scholar] [CrossRef]
- Hwang, H.T.; Jeen, S.W.; Kaown, D.; Lee, S.S.; Sudicky, E.A.; Steinmoeller, D.T.; Lee, K.K. Backward probability model for identifying multiple contaminant source zones under transient variably saturated flow conditions. Water Resour. Res. 2020, 56, e2019WR025400. [Google Scholar] [CrossRef]
- Persaud, E.; Levison, J.; MacRitchie, S.; Berg, S.J.; Erler, A.R.; Parker, B.; Sudicky, E. Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing. J. Hydrol. 2020, 584, 124682. [Google Scholar] [CrossRef]
- Deng, C.; Bailey, R.T. Assessing causes and identifying solutions for high groundwater levels in a highly managed irrigated region. Agric. Water Manag. 2020, 240, 106329. [Google Scholar] [CrossRef]
- Qian, H.; Chen, J.; Howard, K.W.F. Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Environ. Pollut. 2020, 263, 114669. [Google Scholar] [CrossRef]
- Tran, Q.Q.; Meert, P.; Huysmans, M.; Willems, P. On the importance of river hydrodynamics in simulating groundwater levels and baseflows. Hydrol. Process. 2020, 34, 1754–1767. [Google Scholar]
- Xiang, Z.C.; Bailey, R.T.; Nozari, S.; Husain, Z.; Kisekka, I.; Sharda, V.; Gowda, P. DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas. Agric. Water Manag. 2020, 232, 106033. [Google Scholar] [CrossRef]
- Stefania, G.A.; Rotiroti, M.; Fumagalli, L.; Simonetto, F.; Capodaglio, P.; Zanotti, C.; Bonomi, T. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources. Hydrogeol. J. 2018, 26, 147–162. [Google Scholar] [CrossRef]
- Javadi, S.; Saatsaz, M.; Shahdany, S.M.H.; Neshat, A.; Milan, S.G.; Akbari, S. A new hybrid framework of site selection for groundwater recharge. Geosci. Front. 2021, 12, 101144. [Google Scholar] [CrossRef]
- Mirlas, V. Assessing soil salinity hazard in cultivated areas using MODFLOW model and GIS tools: A case study from the Jezre’el Valley, Israel. Agric. Water Manag. 2012, 109, 144–154. [Google Scholar] [CrossRef]
- Mirlas, V.; Kulagin, V.; Ismagulova, A.; Anker, Y. MODFLOW and HYDRUS Modeling of Groundwater Supply Prospect Assessment for Distant Pastures in the Aksu River Middle Reaches. Sustainability 2022, 14, 16783. [Google Scholar] [CrossRef]
- Duan, W.; Zou, S.; Christidis, N.; Schaller, N.; Chen, Y.; Sahu, N.; Li, Z.; Fang, G.H.; Zhou, B.T. Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. NPJ Clim. Atmos. Sci. 2022, 5, 33. [Google Scholar] [CrossRef]
- Du, X.Z.; Dong, L.H.; Kang, W.J. Research on ecological product value realization mechanism in water diversion regions of Hanjiang-to-Weihe River Valley Water Diversion Project. Water Conserv. Constr. Manag. 2021, 41, 6–11+5. (In Chinese) [Google Scholar]
- Jin, Y.; Xu, G.X.; Qiao, H.J.; Dong, L.H.; Tan, Q.L. Research on the ecological compensation mechanism of the water source protection area of the Hanjiang-to-Weihe River Valley Water Diversion Project. Water Resour. Dev. Res. 2021, 21, 50–55. (In Chinese) [Google Scholar]
- Li, M.; Ge, D.Q.; Liu, B.; Zhang, L.; Wang, Y.; Guo, X.F.; Wang, Y.; Zhang, D.D. Research on development characteristics and failure mechanism of land subsidence and ground fissure in Xi’an, monitored by using time-series SAR interferometry. Geomat. Nat. Hazards Risk 2019, 10, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Ren, M.Z.; Liu, D.F.; Huang, Q. Risk evaluation of multi-objective dispatching scheme for Shaanxi Hangjiang-to-Weihe River Valley Water Diversion Project. Pearl River 2020, 41, 81–87. (In Chinese) [Google Scholar]
- Liu, R. Study on the Rational Allocation of Water Resources in Jiaokou Irrigation District; Chang’an University: Xi’an, China, 2014. (In Chinese) [Google Scholar]
- Xu, P.P.; Feng, W.W.; Qian, H.; Zhang, Q.Y. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 1492. [Google Scholar] [CrossRef] [Green Version]
- Shaanxi Geological Survey Institute. Evaluation Report of Groundwater Resources in Guanzhong Basin; Shaanxi Geological Survey Institute: Xi’an, China, 2002. (In Chinese) [Google Scholar]
- Lyu, S.; Chen, W.P.; Wen, X.F.; Chang, A.C. Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation. Irrig. Sci. 2019, 37, 35–47. [Google Scholar] [CrossRef]
- Zhang, C.C.; Shao, J.L.; Li, C.J.; Cui, Y.L. Research on groundwater ecological environment water level in north China plain. J. Jilin Univ. (Earth Sci. Ed.) 2003, 33, 323–326. (In Chinese) [Google Scholar]
- Jin, J. Study on Early Warning of Groundwater Environment under Papermaking Wastewater Irrigation Condition; Chang’an University: Xi’an, China, 2013. (In Chinese) [Google Scholar]
Recharge | Water Volume (108 m3/a) | Percentage | Discharge | Water Volume (108 m3/a) | Percentage |
---|---|---|---|---|---|
Precipitation | 1.02 | 51.26% | Lateral runoff (out) | 0.63 | 32.64% |
Canal leakage | 0.65 | 32.81% | Pumping | 0.61 | 31.61% |
Irrigation infiltration | 0.25 | 12.56% | Evaporation | 0.40 | 20.73% |
Lateral runoff (in) | 0.07 | 3.37% | Drainage ditch | 0.29 | 15.02% |
Total | 1.99 | 100% | Total | 1.93 | 100% |
Equilibrium difference | 0.06 | ||||
Relative equilibrium difference | 3.1% |
Month | Water Demand (104 m3) | Total | |||
---|---|---|---|---|---|
Wheat | Corn | Cotton | Orchard | ||
1 | 339.90 | 339.90 | |||
2 | 642.20 | 642.20 | |||
3 | 1153.70 | 1153.70 | |||
4 | 1684.85 | 59.64 | 600.52 | 2345.00 | |
5 | 2170.37 | 76.83 | 652.80 | 2900.00 | |
6 | 1867.08 | 85.88 | 742.25 | 2695.20 | |
7 | 1575.34 | 78.54 | 449.32 | 2103.20 | |
8 | 1164.07 | 71.36 | 616.77 | 1852.20 | |
11 | 321.40 | 321.40 | |||
12 | 266.40 | 266.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Qian, H.; Xu, P.; Liu, R.; Ke, X.; Furman, A.; Shang, J. A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area. Remote Sens. 2023, 15, 571. https://doi.org/10.3390/rs15030571
Zhang Q, Qian H, Xu P, Liu R, Ke X, Furman A, Shang J. A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area. Remote Sensing. 2023; 15(3):571. https://doi.org/10.3390/rs15030571
Chicago/Turabian StyleZhang, Qiying, Hui Qian, Panpan Xu, Rui Liu, Xianmin Ke, Alex Furman, and Jiatao Shang. 2023. "A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area" Remote Sensing 15, no. 3: 571. https://doi.org/10.3390/rs15030571
APA StyleZhang, Q., Qian, H., Xu, P., Liu, R., Ke, X., Furman, A., & Shang, J. (2023). A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area. Remote Sensing, 15(3), 571. https://doi.org/10.3390/rs15030571