Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. A-RSEI
3.2. Urbanization Indicator
3.3. CCD
3.4. Spatial Autocorrelation
3.5. The Tapio Decoupling Model
4. Results
4.1. Applicability Evaluation of A-RSEI
4.2. Multi-Scale Analysis of A-RSEI, Urbanization and CCD
4.2.1. Urban Agglomeration Perspective
4.2.2. Municipal-Scale Perspective
4.2.3. County-Scale Perspective
4.2.4. Pixel-Scale Perspective
4.3. Spatio-Temporal Characteristics of CCD
4.3.1. Spatial Autocorrelation Analysis of CCD
4.3.2. Decoupling Analysis of CCD
4.4. Multi-Scale Analysis in the Upper, Middle and Lower Reaches
- Lanxi Urban agglomeration (LX) in the upper reaches
- Ji-Shaped Bend Metropolitan Area (JSB) in the middle reaches
- Central Plains urban agglomeration (CP) in the lower reaches.
5. Discussion
5.1. Characteristics of A-RSEI
5.2. Implcations and Further Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, M.; Yang, Z.; Zuo, Q.; Wu, Q.; Jiang, L.; Zhang, Z.; Zhang, J. Evaluation on the relevance of regional urbanization and ecological security in the nine provinces along the Yellow River, China. Ecol. Indic. 2021, 132, 108346. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D.J. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.Y.; Yang, L.; Chen, X.H.; Gao, Y. The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River Basin, China. Land Degrad. Dev. 2012, 23, 62–71. [Google Scholar] [CrossRef]
- Chen, Y.P.; Fu, B.J.; Zhao, Y.; Wang, K.B.; Zhao, M.M.; Ma, J.F.; Wu, J.H.; Xu, C.; Liu, W.G.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Zhao, Y. Master Planning of Yellow River Basin: Meaning, Measures and Implementing Results. Yellow River 2013, 35, 5–7. [Google Scholar]
- Shao, Z.; Ding, L.; Li, D.; Altan, O.; Huq, E.; Li, C. Exploring the relationship between urbanization and ecological environment using remote sensing images and statistical data: A case study in the Yangtze River Delta, China. Sustainability 2020, 12, 5620. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Pengwang, C.; Gao, W. Evaluation of urbanization dynamics and its impacts on surface heat islands: A case study of Beijing, China. Remote Sens. 2017, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Huang, K.; Wang, N. Assessing spatiotemporal characteristics of urbanization dynamics in Southeast Asia using time series of DMSP/OLS nighttime light data. Remote Sens. 2018, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; He, X.; Chen, L.; Hu, X.; Tang, W.; Li, J. How does the urbanization level change in the Yangtze River economic belt, China? A multi-scale evaluation using DMSP/OLS nighttime light data. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 675, p. 012112. [Google Scholar]
- Zhou, Y.; Tu, M.; Wang, S.; Liu, W. A novel approach for identifying urban built-up area boundaries using high-resolution remote-sensing data based on the scale effect. ISPRS Int. J. Geo-Inform. 2018, 7, 135. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Guo, B.; Fang, Y.; Jin, X.; Zhou, Y. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Qi, K.; Wang, W.; Cai, W.; Chen, N. Research and analysis of ecological environment quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Nie, X.; Hu, Z.; Zhu, Q.; Ruan, M. Research on temporal and spatial resolution and the driving forces of ecological environment quality in coal mining areas considering topographic correction. Remote Sens. 2021, 13, 2815. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, H.; Li, L.; Tang, F.; Lin, Z. Ecological change in the Hangzhou area using the remote sensing based ecological index. J. Basic Sci. Eng. 2015, 23, 728–739. [Google Scholar]
- Pariha, H.; Zan, M.; Alimjan, K. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors. Arid Zone Res. 2021, 38, 1484–1496. [Google Scholar]
- Yue, H.; Liu, Y.; Zhu, R. Monitoring Ecological Environment Chang Based on Remote Sensing Ecological Index in Shendong Mining Area. Bull. Soil Water Conserv. 2019, 39, 101–107. [Google Scholar]
- Hu, S.; Yao, Y.; Fu, J.; Zhao, J.; Hao, D. Evaluation of ecological quality variation in mining area of Northeast China based on RSEI Index: A case study of Gongchangling District, Liaoning. Chin. J. Ecol. 2021, 40, 4053–4060. [Google Scholar]
- An, M.; Xie, P.; He, W.; Wang, B.; Huang, J.; Khanal, R. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Ge, X.; Qin, S.; Zhang, Z. Assessment of ecological quality in Northwest China (2000–2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality. J. Arid Land 2022, 14, 1196–1211. [Google Scholar] [CrossRef]
- Wu, S.; Gao, X.; Lei, J.; Zhou, N.; Guo, Z.; Shang, B. Ecological environment quality evaluation of the Sahel region in Africa based on remote sensing ecological index. J. Arid Land 2022, 14, 14–33. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Guo, W.; Yan, X.; Zhang, R. Ecological Environment Analysis of Shanxi Province and Coal Mining Areas Based on Modified Remote Sensing Ecological Index. Metal Mine 2022. Available online: https://kns.cnki.net/kcms/detail/34.1055.TD.20220907.1435.002.html (accessed on 29 November 2022).
- DiWu, J.; Mei, J.; Yu, H.; Zhang, Y.; Zhang, Y.X. Construction and Application of Remote Sensing Ecological Index in Semi-arid Region. Adm. Tech. Environ. Monit. 2022, 34, 21–26. [Google Scholar]
- Yang, Y.; Zhang, Y.; Yang, Z. Ecological Analysis of Suzhou City Using Improved Urban Remote Sensing Ecological Index. J. Geomat. Sci. Technol. 2021, 38, 323–330. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Time-Series and Cross-Country Evidence; World Bank Publications: Washington, DC, USA, 1992; Volume 904. [Google Scholar]
- Cui, X.; Fang, C.; Li, J.; Liu, H.; Zhang, Q. Progress in dynamic simulation modeling of urbanization and ecological environment coupling. Prog. Geogr. 2019, 38, 111–125. [Google Scholar]
- Gong, Z.; Mao, R.; Jiang, J. Coupling and coordination degree between urbanization and ecological environment in guizhou, China. Discret. Dyn. Nat. Soc. 2021, 2021, 8436938. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Cui, X.; Liang, L. Theoretical analysis of urbanization and eco-environment coupling coil and coupler control. Acta Geogr. Sin. 2019, 74, 2529–2546. [Google Scholar]
- Li, W.; Yi, P. Assessment of city sustainability—Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Xie, M.; Wang, J.; Chen, K. Coordinated development analysis of the “resources-environment-ecology-economy-society” complex system in China. Sustainability 2016, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Huang, Y.; Huang, Z.; Lou, Y.; Ye, G.; Wong, S.W. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Fu, S.; Zhuo, H.; Song, H.; Wang, J.; Ren, L. Examination of a coupling coordination relationship between urbanization and the eco-environment: A case study in Qingdao, China. Environ. Sci. Pollut. Res. 2020, 27, 23981–23993. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Xia, Y.; Da, B. Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China. Ecol. Indic. 2018, 93, 1163–1175. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, J.; Xu, S.; Geng, J.; Yang, F.; Fang, H.; Xu, J.; Wang, S.; Wang, Y.; Huang, J.; et al. Understanding the Relationship between China’s Eco-Environmental Quality and Urbanization Using Multisource Remote Sensing Data. Remote Sens. 2022, 14, 198. [Google Scholar] [CrossRef]
- Framework of Plan for Ecological Protection and High-Quality Development of the Yellow River Basin. Available online: http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm. (accessed on 29 November 2022).
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Gong, C.; Wu, W.; Duan, Y.; Liu, H.; He, J.; Sun, C.; Jiang, Q. Evaluation of soil and water conservation function in karst region based on Remote Sensing RMMF Model. Acta Ecol. Sin. 2022, 42, 4389–4400. [Google Scholar]
- Jiao, Z.; Sun, G.; Zhang, A.; Jia, X.; Huang, H.; Yao, Y. Water Benefit-Based Ecological Index for Urban Ecological Environment Quality Assessments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7557–7569. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Shan, Y.; Dai, X.; Li, W.; Yang, Z.; Wang, Y.; Qu, G.; Liu, W.; Ren, J.; Li, C.; Liang, S.; et al. Detecting Spatial-Temporal Changes of Urban Environment Quality by Remote Sensing-Based Ecological Indices: A Case Study in Panzhihua City, Sichuan Province, China. Remote Sens. 2022, 14, 4137. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Yang, L.; Li, Z.; Gao, M.; Yu, C.; Gong, E.; Long, H.; Hu, H. Dynamic Monitoring of Environmental Quality in the Loess Plateau from 2000 to 2020 Using the Google Earth Engine Platform and the Remote Sensing Ecological Index. Remote Sens. 2022, 14, 5094. [Google Scholar] [CrossRef]
- López-Vicente, M.; Quijano, L.; Palazón, L.; Gaspar, L.; Navas, A. Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pre-Pyrenees). Cuad. Investig. Geogr. 2015, 41, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Zhu, X.; He, Q. Spatial interaction betwwen urbanization and ecosystem services: A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration, China. Acta Ecol. Sin. 2019, 39, 7502–7513. [Google Scholar]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Zheng, H.; Khan, Y.A.; Abbas, S.Z. Exploration on the coordinated development of urbanization and the eco-environmental system in central China. Environ. Res. 2022, 204, 112097. [Google Scholar] [CrossRef]
- Petri, T. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar]
- Li, T.; Wang, J.; Zhang, G.; Cui, Y.; Yao, Z. Spatiotemporal characteristics of an ecological footprint, decoupling effect tendency, and grey prediction in Hefei City. Acta Ecol. Sin. 2019, 39, 1735–1747. [Google Scholar]
- Xiang, K.; Zhao, A.; Liu, H.; Zhang, X.; Zhang, A.; Tian, X.; Jin, Z. Spatiotemporal Evolution and Coupling Pattern Analysis of Urbanization and Ecological Environmental Quality of the Chinese Loess Plateau. Sustainability 2022, 14, 7236. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Su, W.; Wu, J.; Liu, J.; Liu, W.; Guo, R. Analysis of Ecological Environmental Quality Change in the Yellow River Basin Using the Remote-Sensing-Based Ecological Index. Sustainability 2022, 14, 10726. [Google Scholar] [CrossRef]
- Chen, S.; Huo, A.; Zhang, D.; Chen, S.B.; Zhao, Z.; Chen, J. Key technologies for drought disaster risk assessmentin typical vulnerableareas of eastern Gansu Province. Agric. Res. Arid Areas 2022, 40, 197–204. [Google Scholar]
- Lu, G.; Pang, X.; Hou, J.; Hao, J. Evaluation and prediction of ecological security in Shizuishan City based onPSR model. J. Saf. Environ. 2023. [Google Scholar] [CrossRef]
- Wang, L.; Feng, C. Evolutionary Mechanism and Development Strategy of Resoure-based City: Taking Gansu Baiyin as An Example. Areal Res. Dev. 2013, 32, 65–70. [Google Scholar]
- Zhang, L.; Wu, M.; Bai, W.; Jin, Y.; Yu, M.; Ren, J. Measuring coupling coordination between urban economic development and air quality based on the Fuzzy BWM and improved CCD model. Sustain. Cities Soc. 2021, 75, 103283. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Multiscale assessment of the coupling coordination between innovation and economic development in resource-based cities: A case study of Northeast China. J. Clean. Prod. 2021, 318, 128597. [Google Scholar] [CrossRef]
Data Name | Spatial Resolution | Time | Source |
---|---|---|---|
Sentinel-2A | 10 m | 2019–2021 | ESA a |
Landsat8 | 30 m | 2013–2017 | USGS b |
MODIS LAI | 500 m | 2013–2021 | NASA c |
DEM | 30 m | 2000 | NASA c |
Soil | 1 km | - | CAS d |
CLCD | 30 m | 2013–2020 | Paper [45] |
POP | 1 km | 2013–2021 | WorldPop e |
GDP | 1 km | 2015–2019 | CAS d |
VIIRS | 500 m | 2014–2021 | NOAA f |
The administrative division data | 1:1 million | 2019 | NCSFGI g |
Range of CCD | Coordination Level | Range of CCD | Coordination Level |
---|---|---|---|
0.0000–0.1 | Extremely out of coordination | 0.5001–0.6 | Marginal coordination |
0.1001–0.2 | Seriously out of coordination | 0.6001–0.7 | Primary coordination |
0.2001–0.3 | Medium dysfunction | 0.7001–0.8 | Moderate coordination |
0.3001–0.4 | Mild dysfunction | 0.8001–0.9 | Good coordination |
0.4001–0.5 | Close to dysfunction | 0.9001–1.0 | High-quality coordination |
Decoupling Status | ∆E | ∆U | DI | |
---|---|---|---|---|
Decoupling | Strong decoupling | - | + | DI < 0 |
Weak decoupling | + | + | 0 ≤ DI < 1.2 | |
Negative Decoupling | Expansion negative decoupling | + | + | DI ≥ 1.2 |
Strong negative decoupling | + | - | DI < 0 | |
Weak negative decoupling | - | - | 0 ≤ DI < 0.8 | |
Recessive decoupling | Recessive decoupling | - | - | DI ≥ 1.2 |
Connection | Expansion connection | + | + | 0.8 ≤ DI ≤ 1.2 |
Recessive connection | - | - | 0.8 ≤ DI ≤ 1.2 |
Indicator | VIF | TOL |
---|---|---|
LST | 1.400 | 0.714 |
NDBSI | 4.503 | 0.222 |
NDVI | 3.374 | 0.296 |
RMMF | 3.800 | 0.263 |
SPWI | 2.302 | 0.434 |
Region | A-RSEI | Urbanization | CCD |
---|---|---|---|
LX | 0.009953 | 0.000401 | 0.005699 |
JSB | 0.007587 | 0.001612 | 0.008121 |
GZP | 0.002484 | 0.003938 | 0.009576 |
CP | 0.007831 | 0.009537 | 0.013985 |
SDP | 0.009233 | 0.005813 | 0.007695 |
Study area | 0.007418 | 0.004260 | 0.009006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, S.; Zhao, X.; Shi, S.; Xu, L. Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin. Remote Sens. 2023, 15, 743. https://doi.org/10.3390/rs15030743
Wang X, Zhang S, Zhao X, Shi S, Xu L. Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin. Remote Sensing. 2023; 15(3):743. https://doi.org/10.3390/rs15030743
Chicago/Turabian StyleWang, Xiaolei, Shiru Zhang, Xue Zhao, Shouhai Shi, and Lei Xu. 2023. "Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin" Remote Sensing 15, no. 3: 743. https://doi.org/10.3390/rs15030743
APA StyleWang, X., Zhang, S., Zhao, X., Shi, S., & Xu, L. (2023). Exploring the Relationship between the Eco-Environmental Quality and Urbanization by Utilizing Sentinel and Landsat Data: A Case Study of the Yellow River Basin. Remote Sensing, 15(3), 743. https://doi.org/10.3390/rs15030743