Detection of Multitemporal Changes with Artificial Neural Network-Based Change Detection Algorithm Using Hyperspectral Dataset
Abstract
:1. Introduction
2. Materials
Study Area
3. Methods
3.1. Preprocessing of Hyperion Dataset
3.2. ANPC as a Change Detection
3.3. Cross-Referencing
3.4. Accuracy Assessment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Arefin, R.; Meshram, S.G.; Santos, C.A.G. Comparison of land use/land cover change of fused image and multispectral image of landsat mission: A case study of Rajshahi, Bangladesh. Environ. Earth Sci. 2021, 80, 1–16. [Google Scholar] [CrossRef]
- Marsal-Llacuna, M.-L.; López-Ibáñez, M.-B. Smart Urban Planning: Designing Urban Land Use from Urban Time Use. J. Urban Technol. 2014, 21, 39–56. [Google Scholar] [CrossRef]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinformat. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Shi, C.; Benediktsson, J.A.; Du, H. Novel Land Cover Change Detection Method Based on k-Means Clustering and Adaptive Majority Voting Using Bitemporal Remote Sensing Images. IEEE Access 2019, 7, 34425–34437. [Google Scholar] [CrossRef]
- He, C.; Wei, A.; Shi, P.; Zhang, Q.; Zhao, Y. Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis. Int. J. Appl. Earth Obs. Geoinformat. 2011, 13, 572–585. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing 2020, 12, 2659. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R. Hyperspectral Remote Sensing of Vegetation. Hyperspectral Remote Sens. Veg. 2016, 6, 1943–1961. [Google Scholar] [CrossRef]
- Lupo, F.; Reginster, I.; Lambin, E.F. Monitoring land-cover changes in West Africa with SPOT Vegetation: Impact of natural disasters in 1998–1999. Int. J. Remote Sens. 2001, 22, 2633–2639. [Google Scholar] [CrossRef]
- Nijhawan, R.; Raman, B.; Das, J. Meta-Classifier Approach with ANN, SVM, Rotation Forest, and Random Forest for Snow Cover Mapping; Springer: Singapore, 2018; Volume 704. [Google Scholar] [CrossRef]
- Berterretche, M.; Hudak, A.T.; Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Dungan, J. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sens. Environ. 2005, 96, 49–61. [Google Scholar] [CrossRef]
- Cap, H.Q.; Suwa, K.; Fujita, E.; Kagiwada, S.; Uga, H.; Iyatomi, H. A deep learning approach for on-site plant leaf detection. In Proceedings of the 2018 IEEE 14th International Colloquium on Signal Processing and its Application, CSPA 2018, Penang, Malaysia, 9–10 March 2018; pp. 118–122. [Google Scholar] [CrossRef]
- Blaschke, T. Object-based contextual image classification built on image segmentation. In Proceedings of the 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD, USA, 27–28 October 2004; pp. 113–119. [Google Scholar] [CrossRef]
- Amini, S.; Homayouni, S.; Safari, A.; Darvishsefat, A.A. Object-based classification of hyperspectral data using Random Forest algorithm. Geo-Spat. Inf. Sci. 2017, 21, 127–138. [Google Scholar] [CrossRef]
- Puletti, N.; Camarretta, N.; Corona, P. Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests. Eur. J. Remote Sens. 2016, 49, 157–169. [Google Scholar] [CrossRef]
- Allen, T. Application of spherical statistics to change vector analysis of landsat data southern appalachian spruce–Fir forests. Remote Sens. Environ. 2000, 74, 482–493. [Google Scholar] [CrossRef]
- Vivekananda, G.; Swathi, R.; Sujith, A. Multi-temporal image analysis for LULC classification and change detection. Eur. J. Remote Sens. 2020, 54, 189–199. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Dahiya, N.; Gupta, S.; Singh, S. A Comparative Analysis of Different Land-use and Land-cover Classifiers using Hyperspectral Data. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, GUCON 2021, Kuala Lumpur, Malaysia, 24–26 September 2021. [Google Scholar] [CrossRef]
- Li, Y.; Xie, P.; Tang, Z.; Jiang, T.; Qi, P. SVM-Based Sea-Surface Small Target Detection: A False-Alarm-Rate-Controllable Approach. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1225–1229. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMS and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Cao, G. Cascaded Random Forest for Hyperspectral. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1082–1094. [Google Scholar]
- Lee, D.D.; Garnett, R.; Lawrence, N.D. Advances in Neural Information Processing Systems 25. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012’, Lake Tahoe, NA, USA, 3–6 December 2012; Volume 4. [Google Scholar]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Blum, A.L.; Rivest, R.L. Training a 3-node neural network is NP-complete. In Proceedings of the 1st Annual Workshop on Computational Learning Theory, COLT 1988, Cambridge, MA, USA, 3–5 August 1988; Volume 5, pp. 9–18. [Google Scholar] [CrossRef]
- Matthews, J.A. Land-Change Science; Sage Knowledge: Thousand Oaks, CA, USA, 2014. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Pradhan, S.; Ahmad, T.; Sahoo, P.M. Hyperspectral satellite data analysis for pure pixels extraction and evaluation of advanced classifier algorithms for LULC classification. Earth Sci. Inform. 2017, 11, 159–170. [Google Scholar] [CrossRef]
- Bauer, M.E. The role of remote sensing in determining the distribution and yield of crops. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1975; Volume 27, pp. 271–304. [Google Scholar] [CrossRef]
- Estep, L.; Terrie, G.; Davis, B. Crop stress detection using AVIRIS hyperspectral imagery and artificial neural networks. Int. J. Remote Sens. 2004, 25, 4999–5004. [Google Scholar] [CrossRef]
- Caballero, D.; Calvini, R.; Amigo, J.M. Hyperspectral imaging in crop fields: Precision agriculture. Data Handl. Sci. Technol. 2019, 32, 453–473. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Prakash, A.; Gupta, R.P. Land-use mapping and change detection in a coal mining area—A case study in the Jharia coalfield, India. Int. J. Remote Sens. 1998, 19, 391–410. [Google Scholar] [CrossRef]
- Stow, D.A.; Collins, D.; McKinsey, D. Land use change detection based on multi-date imagery from different satellite sensor systems. Geocarto Int. 1990, 5, 3–12. [Google Scholar] [CrossRef]
- Singh, S.; Talwar, R. A comparative study on change vector analysis. Sadhana 2014, 39, 1311–1331. [Google Scholar] [CrossRef]
- Rédei, G.P. PCA (principal component analysis). Encycl. Genet. Genom. Proteom. Inform. 2008, 1457. [Google Scholar] [CrossRef]
- Zheng, Z.; Cao, J.; Lv, Z.; Benediktsson, J.A. Spatial–spectral feature fusion coupled with multi-scale segmentation voting decision for detecting land cover change with VHR remote sensing images. Remote Sens. 2019, 11, 1903. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Sood, V.; Gusain, H.S. Detection and validation of spatiotemporal snow cover variability in the Himalayas using Ku-band (13.5 GHz) SCATSAT-1 data. Int. J. Remote Sens. 2020, 42, 805–815. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Dahiya, N.; Gupta, S.; Singh, S. Quantitative Analysis of Different Land-use and Land-cover Classifiers using Hyperspectral Dataset. In Proceedings of the IEEE International Conference Image Information Processing, Shimla, India, 26–28 November 2021; pp. 256–260. [Google Scholar] [CrossRef]
- Kwan, C.; Budavari, B.; Dao, M.; Zhou, J. New sparsity based pansharpening algorithms for hyperspectral images. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017, New York, NY, USA, 19–21 October 2017; pp. 88–93. [Google Scholar] [CrossRef]
- Sood, V.; Gusain, H.S.; Gupta, S.; Singh, S. Topographically derived subpixel-based change detection for monitoring changes over rugged terrain Himalayas using AWiFS data. J. Mt. Sci. 2021, 18, 126–140. [Google Scholar] [CrossRef]
- Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef]
- Goswami, A.; Sharma, D.; Mathuku, H.; Gangadharan, S.M.P.; Yadav, C.S.; Sahu, S.K.; Pradhan, M.K.; Singh, J.; Imran, H. Change Detection in Remote Sensing Image Data Comparing Algebraic and Machine Learning Methods. Electronics 2022, 11, 431. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhou, Q.; Tang, F.; Zhang, B.; Huang, N.; Nath, B. Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring. Land 2022, 11, 504. [Google Scholar] [CrossRef]
- Dahiya, N.; Singh, S.; Gupta, S. A Review on Deep Learning Classifier for Hyperspectral Imaging. Int. J. Image Graph. 2022, 22, 2350036. [Google Scholar] [CrossRef]
- Liu, L.; Hong, D.; Ni, L.; Gao, L. Multilayer Cascade Screening Strategy for Semi-Supervised Change Detection in Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1926–1940. [Google Scholar] [CrossRef]
- Paul, S.; Kumar, D.N. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach. ISPRS J. Photogramm. Remote Sens. 2018, 138, 265–280. [Google Scholar] [CrossRef]
- Luo, J.; Huang, W.; Zhao, J.; Zhang, J.; Ma, R.; Huang, M. Predicting the probability of wheat aphid occurrence using satellite remote sensing and meteorological data. Optik 2014, 125, 5660–5665. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Strachan, I.B.; Pattey, E.; Boisvert, J.B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ. 2002, 80, 213–224. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Wang, Y.; Wu, L. Use of SAR/InSAR in Mining Deformation Monitoring, Parameter Inversion, and Forward Predictions: A Review. IEEE Geosci. Remote Sens. Mag. 2020, 8, 71–90. [Google Scholar] [CrossRef]
- Mishra, V.D.; Sharma, J.K.; Singh, K.K.; Thakur, N.K.; Kumar, M. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain. J. Earth Syst. Sci. 2009, 118, 11–26. [Google Scholar] [CrossRef]
- Datta, A.; Ghosh, S.; Ghosh, A. Band elimination of hyperspectral imagery using partitioned band image correlation and capacitory discrimination. Int. J. Remote Sens. 2014, 35, 554–577. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Ray, S.; Manjunath, K.R. Hyperspectral remote sensing of agriculture. Curr. Sci. 2015, 108, 848–859. [Google Scholar]
- Singh, D.K.; Gusain, H.S.; Mishra, V.; Gupta, N. Snow cover variability in North-West Himalaya during last decade. Arab. J. Geosci. 2018, 11, 579. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.-W. Principles of Hyperspectral Imaging Technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2010; pp. 3–43. [Google Scholar] [CrossRef]
- Okamoto, H.; Lee, W.S. Green citrus detection using hyperspectral imaging. Comput. Electron. Agric. 2009, 66, 201–208. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Dharani, M.; Sreenivasulu, G. Land use and land cover change detection by using principal component analysis and morphological operations in remote sensing applications. Int. J. Comput. Appl. 2019, 43, 462–471. [Google Scholar] [CrossRef]
- Roy, A.; Inamdar, A.B. Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy. Heliyon 2019, 5, e01478. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Guo, A.J.X.; Zhu, F. Spectral-Spatial Feature Extraction and Classification by ANN Supervised With Center Loss in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1755–1767. [Google Scholar] [CrossRef]
- de Wit, A.; Clevers, J. Efficiency and accuracy of per-field classification for operational crop mapping. Int. J. Remote Sens. 2004, 25, 4091–4112. [Google Scholar] [CrossRef]
- Ramesh, K.N.; Chandrika, N.; Omkar, S.N.; Meenavathi, M.B.; Rekha, V. Detection of Rows in Agricultural Crop Images Acquired by Remote Sensing from a UAV. Int. J. Image Graph. Signal Process. 2016, 8, 25–31. [Google Scholar] [CrossRef]
- Waseem, K.H.; Mushtaq, H.; Abid, F.; Abu-Mahfouz, A.M.; Shaikh, A.; Turan, M.; Rasheed, J. Forecasting of Air Quality Using an Optimized Recurrent Neural Network. Processes 2022, 10, 2117. [Google Scholar] [CrossRef]
- Palakuru, M.; Adamala, S.; Bachina, H.B. Modeling yield and backscatter using satellite derived biophysical variables of rice crop based on artificial neural networks. J. Agrometeorol. 2020, 22, 41–47. [Google Scholar] [CrossRef]
- Zhang, Z.; De Wulf, R.R.; Van Coillie, F.M.B.; Verbeke, L.P.C.; De Clercq, E.M.; Ou, X. Influence of different topographic correction strategies on mountain vegetation classification accuracy in the Lancang Watershed, China. J. Appl. Remote Sens. 2011, 5, 053512. [Google Scholar] [CrossRef]
- Rojas-Moraleda, R.; Valous, N.A.; Gowen, A.; Esquerre, C.; Härtel, S.; Salinas, L.; O’Donnell, C. A frame-based ANN for classification of hyperspectral images: Assessment of mechanical damage in mushrooms. Neural Comput. Appl. 2016, 28, 969–981. [Google Scholar] [CrossRef]
- Bali, N.; Singla, A. Emerging Trends in Machine Learning to Predict Crop Yield and Study Its Influential Factors: A Survey. Arch. Comput. Methods Eng. 2021, 29, 95–112. [Google Scholar] [CrossRef]
- Kaur, H.; Koundal, D.; Kadyan, V. Image Fusion Techniques: A Survey. Arch. Comput. Methods Eng. 2021, 28, 4425–4447. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Tiwari, R.K. Detection of Cryospheric Parameters with Artificial Neural Network over Antarctic Region using Ku-Band based ISRO’s SCATSAT-1 data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 435–438. [Google Scholar] [CrossRef]
- Castellana, L.; D’Addabbo, A.; Pasquariello, G. A composed supervised/unsupervised approach to improve change detection from remote sensing. Pattern Recognit. Lett. 2007, 28, 405–413. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Cui, X.; Chen, J. Change vector analysis in posterior probability space: A new method for land cover change detection. IEEE Geosci. Remote Sens. Lett. 2010, 8, 317–321. [Google Scholar] [CrossRef]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef]
- Nackaerts, K.; Vaesen, K.; Muys, B.; Coppin, P. Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 2005, 26, 839–852. [Google Scholar] [CrossRef]
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A review of change detection in multitemporal hyperspectral images: Current techniques, applications, and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- El-Hattab, M.M. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). Egypt J. Remote Sens. Space Sci. 2016, 19, 23–36. [Google Scholar] [CrossRef]
- Zhang, Y. Support Vector Machine Classification Algorithm and Its Application. In Proceedings of the Information Computing and Applications: Third International Conference, ICICA 2012, Chengde, China, 14–16 September 2012; pp. 179–186. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Integrated technique of segmentation and classification methods with connected components analysis for road extraction from orthophoto images. Expert Syst. Appl. 2021, 176, 114908. [Google Scholar] [CrossRef]
- Rimal, B.; Rijal, S.; Kunwar, R. Comparing Support Vector Machines and Maximum Likelihood Classifiers for Mapping of Urbanization. J. Indian Soc. Remote Sens. 2019, 48, 71–79. [Google Scholar] [CrossRef]
- Huang, K.; Li, S.; Kang, X.; Fang, L. Spectral–Spatial Hyperspectral Image Classification Based on KNN. Sens. Imaging 2015, 17, 1–13. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M. Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1344–1355. [Google Scholar] [CrossRef]
- Singh, S.; Sood, V.; Taloor, A.K.; Prashar, S.; Kaur, R. Qualitative and quantitative analysis of topographically derived CVA algorithms using MODIS and Landsat-8 data over Western Himalayas, India. Quat. Int. 2020, 575–576, 85–95. [Google Scholar] [CrossRef]
Year | Model | Class Categories | Accuracy Assessment Parameters | |||||
---|---|---|---|---|---|---|---|---|
RT | CT | NC | PA (%) | UA (%) | KC | |||
2005 | SAM | Built-Up | 131 | 141 | 122 | 93.13 | 86.52 | 0.84 |
Dense-veg | 338 | 342 | 313 | 92.60 | 91.52 | 0.87 | ||
Deciduous-veg | 196 | 170 | 158 | 80.61 | 92.94 | 0.91 | ||
Others | 335 | 347 | 321 | 95.82 | 92.51 | 0.88 | ||
Overall Accuracy = 91.40%; Overall Kappa = 0.8799 | ||||||||
2005 | KNN | Built-Up | 196 | 200 | 189 | 96.43 | 94.50 | 0.93 |
Dense-veg | 374 | 363 | 347 | 92.78 | 95.59 | 0.92 | ||
Deciduous-veg | 259 | 259 | 238 | 91.89 | 91.89 | 0.89 | ||
Others | 171 | 178 | 159 | 92.98 | 89.33 | 0.87 | ||
Overall Accuracy = 93.30%; Overall Kappa = 0.9179 | ||||||||
2005 | ANN | Built-Up | 189 | 194 | 183 | 96.83 | 94.33 | 0.93 |
Dense-veg | 292 | 278 | 269 | 92.12 | 96.76 | 0.95 | ||
Deciduous-veg | 287 | 286 | 271 | 94.43 | 94.76 | 0.92 | ||
Others | 232 | 242 | 225 | 96.98 | 92.98 | 0.90 | ||
Overall Accuracy = 94.80.%; Overall Kappa= 0.931 | ||||||||
2014 | SAM | Built-Up | 166 | 168 | 152 | 91.57 | 90.48 | 0.88 |
Dense-veg | 311 | 300 | 280 | 90.03 | 93.33 | 0.90 | ||
Deciduous-veg | 340 | 340 | 312 | 91.76 | 91.76 | 0.87 | ||
Others | 183 | 192 | 167 | 91.26 | 86.98 | 0.84 | ||
Overall Accuracy = 91.10%; Overall Kappa = 0.8778 | ||||||||
2014 | KNN | Built-Up | 172 | 177 | 162 | 94.19 | 91.53 | 0.89 |
Dense-veg | 300 | 299 | 277 | 92.33 | 92.64 | 0.89 | ||
Deciduous-veg | 345 | 340 | 323 | 93.62 | 95.00 | 0.91 | ||
Others | 183 | 184 | 168 | 91.80 | 91.30 | 0.89 | ||
Overall Accuracy = 93.00%; Overall Kappa = 0.9040 | ||||||||
2014 | ANN | Built-Up | 122 | 127 | 115 | 94.26 | 90.55 | 0.89 |
Dense-veg | 335 | 328 | 316 | 94.33 | 96.34 | 0.94 | ||
Deciduous-veg | 291 | 278 | 270 | 92.78 | 97.12 | 0.95 | ||
Others (Minor crops) | 252 | 267 | 244 | 96.83 | 91.39 | 0.88 | ||
Overall Accuracy = 94.50%; Overall Kappa = 0.9243 |
Dataset | Hyperion EO-1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Algorithm | SAMPC | KNNPC | ANPC | |||||||
S. No. | Change Classes | PA | UA | KC | PA | UA | KC | PA | UA | KC |
1 | Built Up-Dense veg | 97.56 | 86.96 | 0.85 | 95.56 | 88.66 | 0.87 | 86.96 | 85.11 | 0.84 |
2 | Built Up- Deciduous veg | 60.00 | 90.00 | 0.89 | 74.19 | 85.19 | 0.84 | 80.00 | 85.71 | 0.85 |
3 | Built Up-Others | 84.09 | 88.10 | 0.87 | 52.38 | 78.57 | 0.78 | 72.22 | 86.67 | 0.86 |
4 | Dense veg-Built Up | 87.04 | 82.46 | 0.81 | 88.35 | 91.46 | 0.90 | 96.19 | 94.39 | 0.93 |
5 | Dense veg-Deciduous veg | 78.95 | 88.24 | 0.87 | 88.35 | 89.22 | 0.87 | 93.27 | 94.17 | 0.93 |
6 | Dense veg-Others | 94.08 | 89.94 | 0.88 | 87.95 | 89.02 | 0.88 | 94.33 | 95.68 | 0.94 |
7 | Deciduous veg-Built Up | 66.67 | 88.24 | 0.87 | 84.93 | 89.86 | 0.89 | 76.92 | 88.24 | 0.87 |
8 | Deciduous veg- Dense veg | 91.82 | 90.68 | 0.88 | 97.13 | 93.37 | 0.91 | 93.81 | 92.86 | 0.92 |
9 | Deciduous veg-Others | 94.44 | 92.73 | 0.90 | 95.76 | 94.17 | 0.93 | 95.73 | 90.32 | 0.89 |
10 | Others -Built Up | 57.14 | 80.00 | 0.79 | 85.71 | 92.31 | 0.92 | 81.13 | 91.49 | 0.91 |
11 | Others -Built Up | 91.86 | 92.94 | 0.92 | 94.74 | 93.75 | 0.93 | 94.26 | 95.04 | 0.94 |
12 | Others -Built Up | 94.20 | 87.84 | 0.86 | 96.97 | 92.31 | 0.91 | 97.20 | 92.05 | 0.90 |
OA = 89.70%; | OA = 91.30% | OA = 92.60% | ||||||||
Kc = 0.8820 | Kc = 0.9028 | Kc = 0.9170 |
Dataset | Hyperion EO-1 | |||
---|---|---|---|---|
S. No. | Change Classes | SAMPC | KNNPC | ANPC |
1 | Built Up-Dense veg | 5.53% | 5.70% | 3.00% |
2 | Built Up- Deciduous veg | 0.55% | 1.55% | 1.00% |
3 | Built Up-Others | 2.48% | 0.82% | 1.00% |
4 | Dense veg-Built Up | 3.43% | 4.83% | 6.00% |
5 | Dense veg-Deciduous veg | 3.07% | 5.96% | 6.00% |
6 | Dense veg-Others | 9.66% | 4.81% | 8.00% |
7 | Deciduous veg-Built Up | 2.01% | 4.06% | 2.00% |
8 | Deciduous veg- Dense veg | 9.74% | 10.63% | 6.00% |
9 | Deciduous veg-Others | 13.38% | 7.05% | 7.00% |
10 | Others -Built Up | 0.82% | 1.53% | 3.00% |
11 | Others -Built Up | 5.13% | 5.65% | 7.00% |
12 | Others -Built Up | 4.46% | 6.12% | 9.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahiya, N.; Singh, S.; Gupta, S.; Rajab, A.; Hamdi, M.; Elmagzoub, M.A.; Sulaiman, A.; Shaikh, A. Detection of Multitemporal Changes with Artificial Neural Network-Based Change Detection Algorithm Using Hyperspectral Dataset. Remote Sens. 2023, 15, 1326. https://doi.org/10.3390/rs15051326
Dahiya N, Singh S, Gupta S, Rajab A, Hamdi M, Elmagzoub MA, Sulaiman A, Shaikh A. Detection of Multitemporal Changes with Artificial Neural Network-Based Change Detection Algorithm Using Hyperspectral Dataset. Remote Sensing. 2023; 15(5):1326. https://doi.org/10.3390/rs15051326
Chicago/Turabian StyleDahiya, Neelam, Sartajvir Singh, Sheifali Gupta, Adel Rajab, Mohammed Hamdi, M. A. Elmagzoub, Adel Sulaiman, and Asadullah Shaikh. 2023. "Detection of Multitemporal Changes with Artificial Neural Network-Based Change Detection Algorithm Using Hyperspectral Dataset" Remote Sensing 15, no. 5: 1326. https://doi.org/10.3390/rs15051326
APA StyleDahiya, N., Singh, S., Gupta, S., Rajab, A., Hamdi, M., Elmagzoub, M. A., Sulaiman, A., & Shaikh, A. (2023). Detection of Multitemporal Changes with Artificial Neural Network-Based Change Detection Algorithm Using Hyperspectral Dataset. Remote Sensing, 15(5), 1326. https://doi.org/10.3390/rs15051326