Enhancing FAIR Data Services in Agricultural Disaster: A Review
Abstract
:1. Introduction
2. The Major Players Worldwide
2.1. Intergovernmental Organizations
2.2. National Governments and Agencies
2.3. International Standard Organizations
3. EO-Based Agricultural Disaster Research: Case Studies
3.1. Agricultural Drought
3.1.1. Remote Sensing-Based Agricultural Drought Indicators
3.1.2. Integrative Methods for Drought Monitoring
3.1.3. Machine Learning and AI-Based Methods
3.2. Agricultural Flood
3.2.1. Remote Sensing-Based Agricultural Flood Monitoring
3.2.2. Coupling Hydrological Models with Earth Observation Data
3.2.3. Machine Learning and AI-Based Methods
4. Cyberinfrastructure for Agricultural Disaster Resilience
4.1. Disaster Lifecycle: The Role of Agriculture
- (1)
- Disaster risk identification and awareness
- (2)
- Disaster prevention and preparedness
- (3)
- Disaster emergence response and impact assessment
- (4)
- Disaster recovery and reconstruction
4.2. Disaster SDI
4.3. Existing Research on Agricultural Disaster Services and Systems
System | Functionality | Data | Region | Standard |
---|---|---|---|---|
GEOGLAM [213] | Provide reliable information on early warning and crop conditions | Synthesis of crop condition map, season-specific map | Globe | / |
GIEWS [212] | Disseminate the major food crop condition data at the global scale | NDVI Anomaly, VCI, VHI, ASI, and precipitation | Globe | / |
CropScape [218] | Explore and disseminate geospatial cropland data products for decision support | CDL, crop frequency | CONUS | WMS, WFS, WCS, WPS |
VegScape [221] | US vegetation condition monitoring | NDVI, VCI, MVCI, RMVCI, and RVCI | CONUS | WMS, WCS, WFS |
GDIS [225] | Drought monitoring, forecasting, impacts, history, research, and education | NADM (North American), CDI (European), DI, SPI, SPEI, EDDI, VHI, ESI, and GRACE-based soil moisture (surface and rootzone) | Globe | / |
GIDMaPS [226] | Near-real-time drought indicators for monitoring and prediction | SPI, SSI, and MSDI | Globe | / |
U.S. Drought Monitor [227] | Weekly US drought map with five classifications | USDM, DSCI | CONUS | / |
EDO [228] | Drought-relevant maps of indicators derived from precipitation, satellite, and modelled soil moisture measurement | CDI, SPI, SMI, PDSI, DI, fAPAR, Low-Flow Index, Daily temperature, and Fire Danger | Europe | WMS |
AFDM [229] | Drought information for the current date and the past one month | Soil Moisture Index | Africa | / |
GADMFS [231] | Cyberinfrastructure framework for vegetation drought monitoring and forecasting | NDVI, VCI, and VHI | Globe | WMS, WFS, WCS, WPS |
RFCLASS [235] | EO-based flood crop loss assessment for supporting flood-related crop statistics and insurance decision-making | VCI, MVCI, and DVDI | CONUS | WMS, WFS, WCS |
Crop-CASMA [223] | Soil moisture data analysis, visualization, and sharing | SMAP-based soil moisture (surface and rootzone) | CONUS | WMS, WFS, WCS, WPS |
GeoPlatform [204] | Publish, share, and assess the authoritative geospatial data and services across different levels of communities | Flood extent, flood depth grids, ESI, fire heat extent, and hurricane lane | CONUS | OpenAPI, STAC, ISO 19139 |
FDMS [238] | Rainfall monitoring, hydrological simulation, runoff prediction, risk assessment, inundation extraction, and loss assessment | NDWI, flood extent, and runoff | China | WMS, WFS, OpenMI |
GeoDR [208] | Rapid awareness, information extraction, impact assessment, and decision recommendation for disaster emergency response | NDWI, flood extent | China | WMS, WPS |
5. FAIR Agricultural Disaster Services—Challenges and Opportunities
5.1. Data Discovery and Access
5.2. Analysis Ready Data
5.3. Data and Harmonization
5.4. Data Processing
5.5. Data Quality
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAFC | Agriculture and Agri-Food Canada |
AGDAM | Agriculture Flood Damage Analysis |
ANN | Artificial Neural Network |
APSIM | Agricultural Production Systems sIMulator |
ARCT | African Regional Centre for Technology |
ARD | Analysis Ready Data |
ASAP | Anomaly Hot Spots of Agricultural Production |
ASI | Agricultural Stress Index |
AVHRR | Advanced Very High Resolution Radiometer |
BRT | Boosted Regression Trees |
CDI | Combined Drought Indicator |
CDL | Cropland Data Layer |
CGIAR | Consultative Group on International Agricultural Research |
CODATA | Committee on Data of the International Science Council |
CONUS | Contiguous United States |
COSI | Collaborative Solutions and Innovation Program |
DAPA | Data Access and Processing API |
DCNN | Deep Convolutional Neural Network |
DEFRA | Department for Environment, Food and Rural Affairs |
DFNN | Deep Forwarded Neural Network |
DG AGRI | Directorate-General for Agriculture and Rural Development |
DFO | Dartmouth Flood Observatory |
DRR | Disaster Risk Reduction |
DRI | Decision Ready Information |
DWG | Domain Working Group |
EAFRD | European Agricultural Fund for Rural Development |
EDDI | Evaporative Demand Drought Index |
EDR | Environmental Data Retrieval |
EO | Earth Observation |
EPA | Environmental Protection Agency |
ESA | European Space Agency |
ESCAP | Economic and Social Commission for Asia and the Pacific |
ESI | Evaporative Stress Index |
EVI | Enhanced Vegetation Index |
FAIR | Findable, Accessible, Interoperable, and Reusable |
FAO | Food and Agriculture Organization |
FEMA | Federal Emergency Management Agency |
FGDC | Federal Geographic Data Committee |
fAPAR | Fraction of Absorbed Photosynthetically Active Radiation |
FSA | Farm Service Agency |
GADAS | Global Agricultural & Disaster Assessment System |
GADMFS | Global Agricultural Drought Monitoring and Forecasting System |
GDC | Geospatial Data Cube |
GDO | Global Drought Observatory |
GDIS | Global Drought Information System |
GEE | Google Earth Engine |
GEO | Group on Earth Observations |
GEOSS | Global Earth Observation System of Systems |
GIDMaPS | Global Integrated Drought Monitoring and Prediction System |
GIEWS | Global Information and Early Warning System on Food and Agriculture |
GLAM | Global Agriculture Monitoring |
GloFAS | Global Flood Awareness System |
GPCC | Global Precipitation Climatology Centre |
GPP | Gross Primary Productivity |
GSDI | Global Spatial Data Infrastructure |
GWIS | Global Wildfire Information System |
HAND | Height Above the Nearest Drainage |
HSMDI | High Resolution Soil Moisture Drought Index |
IFAD | International Fund for Agricultural Development |
IPCC | Intergovernmental Panel on Climate Change |
ISO | International Organization for Standardization |
LST | Land Surface Temperature |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSDI | Multivariate Standardized Drought Index |
MVCI | Mean-referenced Vegetation Condition Index |
NADM | North American Drought Monitor |
NASA | National Aeronautics and Space Administration |
NASS | National Agricultural Statistics Service |
NDMC | National Drought Mitigation Center |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NGA | National Geospatial-Intelligence Agency |
NGP | National Geospatial Program |
NOAA | National Oceanic and Atmospheric |
NDRCC | National Disaster Reduction Center of China |
NRCan | Natural Resources Canada |
NSDI | National Spatial Data Infrastructure |
NWS | National Weather Service |
OGC | Open Geospatial Consortium |
OpenMI | Open Modelling Interface |
PADI | Process-based Accumulated Drought Index |
PCI | Precipitation Condition Index |
PDSI | Palmer Drought Severity Index |
RDF | Resource Description Framework |
RF | Random Forest |
RFSM | Rapid Flood Spreading Model |
RMA | Risk Management Agency |
RMVCI | Ratio to Median Vegetation Condition Index |
RVCI | Ratio to previous-year Vegetation Condition Index |
SDI | Spatial Data Infrastructure |
SMADI | Soil Moisture Agricultural Drought Index |
SMAP | Soil Moisture Active Passive |
SMCI | Soil Moisture Condition Index |
SMI | Soil Moisture Index |
SMOS | Soil Moisture and Ocean Salinity |
SPEI | Standardized Precipitation Evapotranspiration Index |
SPI | Standardized Precipitation Index |
SSI | Standardized Soil Moisture Index |
STAC | SpatioTemporal Asset Catalog |
SVR | Support Vector Regression |
SVM | Support Vector Machines |
SWAT | Soil & Water Assessment Tool |
SWMM | Storm Water Management Model |
TCI | Temperature Condition Index |
TOPMODEL | TOPography based hydrological MODEL |
TVDI | Temperature Vegetation Drought Index |
TVMDI | Temperature-Vegetation-Soil Moisture Dryness Index |
UNDP | United Nations Development Programme |
UNDRR | United Nations Office for Disaster Risk Reduction |
UNEP | United Nations Environment Programme |
UNFCCC | United Nations Framework Convention on Climate Change |
USDA | United States Department of Agriculture |
USDM | United States Drought Monitor |
USGS | United States Geological Survey |
USAID | United States Agency for International Development |
VCI | Vegetation Condition Index |
VHI | Vegetation Health Index |
WCS | Web Coverage Service |
WFS | Web Feature Service |
WMO | World Meteorological Organization |
WMS | Web Map Service |
WOFOST | WOrld FOod STudies |
WPS | Web Processing Service |
References
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security. 2021. Available online: http://www.fao.org/documents/card/en/c/cb3673en (accessed on 14 February 2023).
- OECD; Food and Agriculture Organization of the United Nations. Building Agricultural Resilience to Natural Hazard-Induced Disasters: Insights from Country Case Studies; OECD Publishing: Paris, France, 2021. [Google Scholar]
- USDA. Drought Recovery and Risk Management Resources. Available online: https://www.farmers.gov/protection-recovery/drought (accessed on 15 February 2023).
- Yue, P.; Ramachandran, R.; Baumann, P.; Khalsa, S.J.S.; Deng, M.; Jiang, L. Recent Activities in Earth Data Science. IEEE Geosci. Remote Sens. Mag. 2016, 4, 84–89. [Google Scholar] [CrossRef]
- OGC. Standards. Available online: https://www.ogc.org/standards/ (accessed on 18 February 2023).
- United Nations. Sustainable Development Goals Report. 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 12 March 2023).
- UN System. Available online: https://www.un.org/en/about-us/un-system (accessed on 13 February 2023).
- United Nations. Sendai Framework for Disaster Risk Reduction 2015–2030. Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 13 February 2023).
- United Nations Development Programme. The Drought Initiative. Available online: https://www.undp.org/policy-centre/nairobi/resilience-building-support (accessed on 13 February 2023).
- United Nations Environment Programme. Disaster Risk Reduction. Available online: http://www.unep.org/explore-topics/disasters-conflicts/what-we-do/risk-reduction (accessed on 14 February 2023).
- United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/ (accessed on 14 February 2023).
- IFAD Strategic Framework. Available online: https://www.ifad.org/en/strategic-framework (accessed on 14 February 2023).
- Food and Agriculture Organization of the United Nations. Geospatial Information for Sustainable Food Systems. Available online: https://www.fao.org/geospatial/projects/en/ (accessed on 14 February 2023).
- FAO. The Impact of Natural Hazards and Disasters on Agriculture and Food Security and Nutrition: A Call for Action to Build Resilient Livelihoods. Available online: https://www.fao.org/3/i4434e/i4434e.pdf (accessed on 14 February 2023).
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security. 2017. Available online: https://www.fao.org/3/i8656en/i8656en.pdf (accessed on 14 February 2023).
- Building Agricultural Resilience to Natural Disasters. GCP/GLO/986/ITA. Available online: https://www.fao.org/publications/card/en/c/CB8758EN/ (accessed on 14 February 2023).
- IPCC—Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/ (accessed on 13 February 2023).
- GEO—Earth Observation for Disaster Risk Reduction. Available online: https://www.earthobservations.org/area.php?a=dr (accessed on 17 February 2023).
- GEOGLAM Crop Monitor. Available online: https://cropmonitor.org/ (accessed on 21 February 2023).
- GEOSS Portal. Available online: https://www.geoportal.org/?m:activeLayerTileId=osm&f:dataSource=dab (accessed on 17 February 2023).
- World Bank. Climate-Smart Agriculture. Available online: https://www.worldbank.org/en/topic/climate-smart-agriculture (accessed on 14 February 2023).
- European Agricultural Fund for Rural Development (EAFRD). Available online: https://commission.europa.eu/funding-tenders/find-funding/eu-funding-programmes/european-agricultural-fund-rural-development-eafrd_en (accessed on 17 February 2023).
- European Regional Development Fund (ERDF). Available online: https://commission.europa.eu/funding-tenders/find-funding/eu-funding-programmes/european-regional-development-fund-erdf_en (accessed on 17 February 2023).
- Copernicus Emergency Management Service. Available online: https://emergency.copernicus.eu/ (accessed on 17 February 2023).
- ESCAP. Asia Pacific Risk & Resilience Portal. Available online: https://rrp.unescap.org/ (accessed on 17 February 2023).
- ESCAP. Building Resilience to Disasters: Reports. Available online: https://www.unescap.org/taxonomy/term/868 (accessed on 17 February 2023).
- APN. Risk and Resilience. Available online: https://www.apn-gcr.org/themes/risk-and-resilience/ (accessed on 19 February 2023).
- ADPC. Reducing Disaster Risks Amidst the COVID-19 Pandemic. Available online: https://www.adpc.net/igo/category/ID1710/doc/2021-p73Wo0-ADPC-Annual_Report_2020_ADPC.pdf (accessed on 19 February 2023).
- CGIAR. Initiative Explorer. Available online: https://www.cgiar.org/research/cgiar-portfolio/initiatives-explorer/ (accessed on 17 February 2023).
- USDA National Agricultural Statistics Service (NASS). Research and Science. Available online: https://www.nass.usda.gov/Research_and_Science/ (accessed on 17 February 2023).
- USDA Farm Service Agency (FSA). Disaster Assistance Programs. Available online: https://fsa.usda.gov/programs-and-services/disaster-assistance-program/index (accessed on 17 February 2023).
- USDA Foreign Agricultural Service. Global Agricultural & Disaster Assessment System. Available online: https://geo.fas.usda.gov/GADAS/index.html (accessed on 4 April 2023).
- USDA RMA. Emergency Relief Program and Natural Disaster Resources. Available online: https://www.rma.usda.gov/en/News-Room/Continuing-Interest/Emergency-Relief-Program-and-Natural-Disaster-Resources (accessed on 17 February 2023).
- EPA. Natural Disasters. Available online: https://www.epa.gov/natural-disasters (accessed on 14 February 2023).
- NASA. Landsat Science. Available online: https://landsat.gsfc.nasa.gov/ (accessed on 18 February 2023).
- NASA Terra. The EOS Flagship. Available online: https://terra.nasa.gov/ (accessed on 18 February 2023).
- NASA Aqua. Earth-Observing Satellite Mission. Available online: https://aqua.nasa.gov/ (accessed on 18 February 2023).
- NASA MODIS. Available online: https://modis.gsfc.nasa.gov/ (accessed on 18 February 2023).
- NASA SMAP. Available online: https://smap.jpl.nasa.gov/ (accessed on 18 February 2023).
- NASA Global Precipitation Measurement Mission. Available online: https://gpm.nasa.gov/ (accessed on 18 February 2023).
- Sentinel Online—Missions. Available online: https://sentinels.copernicus.eu/web/sentinel/missions (accessed on 18 February 2023).
- ESA SMOS. Available online: https://earth.esa.int/eogateway/missions/smos (accessed on 18 February 2023).
- NOAA Geostationary Operational Environmental Satellites (GOES). Available online: https://www.ospo.noaa.gov/Operations/GOES/index.html (accessed on 18 February 2023).
- NOAA AVHRR. Available online: https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm (accessed on 18 February 2023).
- NOAA National Weather Service. Available online: https://www.weather.gov/ (accessed on 18 February 2023).
- USGS. National Geospatial Program. Available online: https://www.usgs.gov/programs/national-geospatial-program (accessed on 18 February 2023).
- USGS Vegetation Drought Response Index (VegDRI). Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-vegetation-monitoring-vegetation-drought-response-index (accessed on 24 March 2022).
- NASA Applied Sciences. Disaster Activations. Available online: http://appliedsciences.nasa.gov/what-we-do/disasters/disaster-activations (accessed on 24 March 2022).
- NASA Earth Science Disasters Program. Available online: https://www.nasa.gov/centers/ames/earthscience/nasa-earth-science-disasters-program (accessed on 24 March 2022).
- NOAA. Disaster Preparedness. Available online: https://response.restoration.noaa.gov/disaster-preparedness (accessed on 18 February 2023).
- NOAA & NIDIS. Agricultural Drought. Available online: https://www.drought.gov/topics/agriculture (accessed on 14 February 2023).
- National Drought Mitigation Center. U.S. Drought Monitor. Available online: https://droughtmonitor.unl.edu/ (accessed on 15 February 2023).
- Dartmouth Flood Observatory. Global Active Archive of Large Flood Events, 1985-Present. Available online: https://floodobservatory.colorado.edu/Archives/index.html (accessed on 14 February 2023).
- UK.gov. Flood and Coastal Resilience Innovation Fund. Available online: https://www.gov.uk/guidance/flood-and-coastal-resilience-innovation-programme (accessed on 18 February 2023).
- UK.gov. Countryside Stewardship. Available online: https://www.gov.uk/environment/countryside-stewardship (accessed on 18 February 2023).
- NDRCC. Sharing and Learning on Community Based Disaster Management in Asia Programme (CBDM Asia). Available online: https://en.ndrcc.org.cn/jzsqxm/index.jhtml (accessed on 18 February 2023).
- OGC. Domain Working Groups. Available online: https://www.ogc.org/about/committees/dwg/ (accessed on 18 February 2023).
- OGC. Active Initiatives. Available online: https://www.ogc.org/innovation/active/ (accessed on 18 February 2023).
- ISO 31000—Risk Management. Available online: https://www.iso.org/iso-31000-risk-management.html (accessed on 18 February 2023).
- ISO 22320:2018—Security and Resilience—Emergency Management — Guidelines for Incident Management. Available online: https://www.iso.org/standard/67851.html (accessed on 18 February 2023).
- ISO 22322:2022—Security and Resilience—Emergency Management—Guidelines for Public Warning. Available online: https://www.iso.org/standard/84558.html (accessed on 18 February 2023).
- ISO 22000—Food Safety Management. Available online: https://www.iso.org/iso-22000-food-safety-management.html (accessed on 18 February 2023).
- ISO 19115-1:2014—Geographic Information—Metadata—Part 1: Fundamentals. Available online: https://www.iso.org/standard/53798.html (accessed on 18 February 2023).
- ISO 19118:2011—Geographic Information—Encoding. Available online: https://www.iso.org/standard/44212.html (accessed on 18 February 2023).
- ISO 19157:2013—Geographic Information—Data Quality. Available online: https://www.iso.org/standard/32575.html (accessed on 18 February 2023).
- ISO 19119:2016—Geographic Information—Services. Available online: https://www.iso.org/standard/59221.html (accessed on 18 February 2023).
- FGDC. National Spatial Data Infrastructure Strategic Plan 2021–2024. Available online: https://www.fgdc.gov/nsdi-plan (accessed on 18 February 2023).
- W3C Spatial Data on the Web Working Group. Available online: https://www.w3.org/2021/sdw/ (accessed on 18 February 2023).
- CODATA Initiatives. Available online: https://codata.org/initiatives/ (accessed on 14 February 2023).
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural Drought Monitoring: Progress, Challenges, and Prospects. J. Geogr. Sci. 2016, 26, 750–767. [Google Scholar] [CrossRef] [Green Version]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of Drought: Progress, Challenges and Opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- NDMC. Types of Drought. Available online: https://drought.unl.edu/Education/DroughtIn-depth/TypesofDrought.aspx (accessed on 21 February 2023).
- West, H.; Quinn, N.; Horswell, M. Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past Challenges and Future Opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gutman, G.G. Vegetation Indices from AVHRR: An Update and Future Prospects. Remote Sens. Environ. 1991, 35, 121–136. [Google Scholar] [CrossRef]
- Krofcheck, D.J.; Eitel, J.U.H.; Vierling, L.A.; Schulthess, U.; Hilton, T.M.; Dettweiler-Robinson, E.; Pendleton, R.; Litvak, M.E. Detecting Mortality Induced Structural and Functional Changes in a Piñon-Juniper Woodland Using Landsat and RapidEye Time Series. Remote Sens. Environ. 2014, 151, 102–113. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Gao, P. Mapping the Agricultural Drought Based on the Long-Term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013. Appl. Geogr. 2019, 104, 10–20. [Google Scholar] [CrossRef]
- Shahriar Pervez, M.; Budde, M.; Rowland, J. Mapping Irrigated Areas in Afghanistan over the Past Decade Using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef] [Green Version]
- West, H.; Quinn, N.; Horswell, M.; White, P. Assessing Vegetation Response to Soil Moisture Fluctuation under Extreme Drought Using Sentinel-2. Water 2018, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Dridi, G.; Amri, R.; Lili-Chabaane, Z. Analysis of the Effects of Drought on Vegetation Cover in a Mediterranean Region through the Use of SPOT-VGT and TERRA-MODIS Long Time Series. Remote Sens. 2016, 8, 992. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A Remotely Sensed Global Terrestrial Drought Severity Index. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Sayago, S.; Ovando, G.; Bocco, M. Landsat Images and Crop Model for Evaluating Water Stress of Rainfed Soybean. Remote Sens. Environ. 2017, 198, 30–39. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Kogan, F. World Droughts in the New Millennium from AVHRR-Based Vegetation Health Indices. Eos Trans. Am. Geophys. Union 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Barrett, A.B.; Duivenvoorden, S.; Salakpi, E.E.; Muthoka, J.M.; Mwangi, J.; Oliver, S.; Rowhani, P. Forecasting Vegetation Condition for Drought Early Warning Systems in Pastoral Communities in Kenya. Remote Sens. Environ. 2020, 248, 111886. [Google Scholar] [CrossRef]
- Zhong, S.; Di, L.; Sun, Z.; Xu, Z.; Guo, L. Investigating the Long-Term Spatial and Temporal Characteristics of Vegetative Drought in the Contiguous United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 836–848. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Torn, M.S.; Cook, D.R.; Matamala, R.; Fischer, M.L.; Jin, C.; Dong, J.; Biradar, C. Sensitivity of Vegetation Indices and Gross Primary Production of Tallgrass Prairie to Severe Drought. Remote Sens. Environ. 2014, 152, 1–14. [Google Scholar] [CrossRef]
- Doughty, R.; Xiao, X.; Wu, X.; Zhang, Y.; Bajgain, R.; Zhou, Y.; Qin, Y.; Zou, Z.; McCarthy, H.; Friedman, J.; et al. Responses of Gross Primary Production of Grasslands and Croplands under Drought, Pluvial, and Irrigation Conditions during 2010–2016, Oklahoma, USA. Agric. Water Manag. 2018, 204, 47–59. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the Relationship between Biomass, Percent Groundcover and Remote Sensing Indices across Six Winter Cover Crop Fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Um, M.-J.; Kim, Y.; Park, D. Evaluation and Modification of the Drought Severity Index (DSI) in East Asia. Remote Sens. Environ. 2018, 209, 66–76. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying Drought Phenomena in the Continental United States in 2011 and 2012 Using Various Drought Indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Z.; Yan, N. Agricultural Drought Mitigating Indices Derived from the Changes in Drought Characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Eswar, R.; Das, N.N.; Poulsen, C.; Behrangi, A.; Swigart, J.; Svoboda, M.; Entekhabi, D.; Yueh, S.; Doorn, B.; Entin, J. SMAP Soil Moisture Change as an Indicator of Drought Conditions. Remote Sens. 2018, 10, 788. [Google Scholar]
- Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought Monitoring with Soil Moisture Active Passive (SMAP) Measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moradkhani, H.; Chen, N.; Zhang, X. Continental Drought Monitoring Using Satellite Soil Moisture, Data Assimilation and an Integrated Drought Index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of the SMOS Derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Sánchez, N.; González-Zamora, Á.; Piles, M.; Martínez-Fernández, J. A New Soil Moisture Agricultural Drought Index (SMADI) Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, N.; González-Zamora, A.; Martínez-Fernández, J.; Piles, M.; Pablos, M.; Wardlow, B.; Tadesse, T.; Svoboda, M. Preliminary Assessment of an Integrated SMOS and MODIS Application for Global Agricultural Drought Monitoring. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought Monitoring Using High Resolution Soil Moisture through Multi-Sensor Satellite Data Fusion over the Korean Peninsula. Agric. For. Meteorol. 2017, 237–238, 257–269. [Google Scholar] [CrossRef]
- Shivers, S.W.; Roberts, D.A.; McFadden, J.P. Using Paired Thermal and Hyperspectral Aerial Imagery to Quantify Land Surface Temperature Variability and Assess Crop Stress within California Orchards. Remote Sens. Environ. 2019, 222, 215–231. [Google Scholar] [CrossRef]
- Qin, Q.; Wu, Z.; Zhang, T.; Sagan, V.; Zhang, Z.; Zhang, Y.; Zhang, C.; Ren, H.; Sun, Y.; Xu, W.; et al. Optical and Thermal Remote Sensing for Monitoring Agricultural Drought. Remote Sens. 2021, 13, 5092. [Google Scholar] [CrossRef]
- Sánchez, N.; González-Zamora, Á.; Martínez-Fernández, J.; Piles, M.; Pablos, M. Integrated Remote Sensing Approach to Global Agricultural Drought Monitoring. Agric. For. Meteorol. 2018, 259, 141–153. [Google Scholar] [CrossRef]
- Ghazaryan, G.; König, S.; Rezaei, E.E.; Siebert, S.; Dubovyk, O. Analysis of Drought Impact on Croplands from Global to Regional Scale: A Remote Sensing Approach. Remote Sens. 2020, 12, 4030. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-Sensor Remote Sensing for Drought Characterization: Current Status, Opportunities and a Roadmap for the Future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation. GIScience Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Li, J.; Chen, Z.; Niyogi, D. Multi-Sensor Integrated Framework and Index for Agricultural Drought Monitoring. Remote Sens. Environ. 2017, 188, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, S.; Wang, L.; Zhu, B.; Lu, T.; Yu, Y. An Agricultural Drought Index for Assessing Droughts Using a Water Balance Method: A Case Study in Jilin Province, Northeast China. Remote Sens. 2019, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Bezdan, J.; Bezdan, A.; Blagojević, B.; Mesaroš, M.; Pejić, B.; Vranešević, M.; Pavić, D.; Nikolić-Đorić, E. SPEI-Based Approach to Agricultural Drought Monitoring in Vojvodina Region. Water 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A Parametric Multi-Index Model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Son, B.; Park, S.; Im, J.; Park, S.; Ke, Y.; Quackenbush, L.J. A New Drought Monitoring Approach: Vector Projection Analysis (VPA). Remote Sens. Environ. 2021, 252, 112145. [Google Scholar] [CrossRef]
- Szewczak, K.; Łoś, H.; Pudełko, R.; Doroszewski, A.; Gluba, Ł.; Łukowski, M.; Rafalska-Przysucha, A.; Słomiński, J.; Usowicz, B. Agricultural Drought Monitoring by MODIS Potential Evapotranspiration Remote Sensing Data Application. Remote Sens. 2020, 12, 3411. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, L.; Lin, A.; Wang, L.; Li, Q.; She, D.; Qu, S. Impacts of Preseason Drought on Vegetation Spring Phenology across the Northeast China Transect. Sci. Total Environ. 2020, 738, 140297. [Google Scholar] [CrossRef]
- Ren, S.; Qin, Q.; Ren, H.; Sui, J.; Zhang, Y. Heat and Drought Stress Advanced Global Wheat Harvest Timing from 1981–2014. Remote Sens. 2019, 11, 971. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-Soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, D.; Wang, H.; Xu, Z.; Wang, G.; Yang, H. Assessment of Agricultural Drought Based on Multi-Source Remote Sensing Data in a Major Grain Producing Area of Northwest China. Agric. Water Manag. 2023, 278, 108142. [Google Scholar] [CrossRef]
- Kloos, S.; Yuan, Y.; Castelli, M.; Menzel, A. Agricultural Drought Detection with MODIS Based Vegetation Health Indices in Southeast Germany. Remote Sens. 2021, 13, 3907. [Google Scholar] [CrossRef]
- Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Libonati, R.; Trigo, I.F. The Roles of NDVI and Land Surface Temperature When Using the Vegetation Health Index over Dry Regions. Glob. Planet. Chang. 2020, 190, 103198. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for Improved Earth System Understanding: State-of-the Art and Future Directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, W. Inter-Comparison of Satellite-Retrieved and Global Land Data Assimilation System-Simulated Soil Moisture Datasets for Global Drought Analysis. Remote Sens. Environ. 2019, 220, 1–18. [Google Scholar] [CrossRef]
- Sawada, Y. Quantifying Drought Propagation from Soil Moisture to Vegetation Dynamics Using a Newly Developed Ecohydrological Land Reanalysis. Remote Sens. 2018, 10, 1197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xu, W.; Shi, Z.; Qin, Q. Establishment of a Comprehensive Drought Monitoring Index Based on Multisource Remote Sensing Data and Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2113–2126. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zeng, H.; Tian, F.; Potgieter, A.B.; Qin, X.; Yan, N.; Chang, S.; Zhao, Y.; Dong, Q.; et al. Challenges and Opportunities in Remote Sensing-Based Crop Monitoring: A Review. Natl. Sci. Rev. 2022, 10, nwac290. [Google Scholar] [CrossRef]
- Mohammed, S.; Elbeltagi, A.; Bashir, B.; Alsafadi, K.; Alsilibe, F.; Alsalman, A.; Zeraatpisheh, M.; Széles, A.; Harsányi, E. A Comparative Analysis of Data Mining Techniques for Agricultural and Hydrological Drought Prediction in the Eastern Mediterranean. Comput. Electron. Agric. 2022, 197, 106925. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Hasan, S.S.; Pangali Sharma, T.P.; Mohana, H.P. A Review of Machine Learning Methods for Drought Hazard Monitoring and Forecasting: Current Research Trends, Challenges, and Future Research Directions. Environ. Model. Softw. 2022, 149, 105327. [Google Scholar] [CrossRef]
- Hanadé Houmma, I.; El Mansouri, L.; Gadal, S.; Garba, M.; Hadria, R. Modelling Agricultural Drought: A Review of Latest Advances in Big Data Technologies. Geomat. Nat. Hazards Risk 2022, 13, 2737–2776. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Henchiri, M.; Seka, A.M.; Nanzad, L. Drought Monitoring and Performance Evaluation Based on Machine Learning Fusion of Multi-Source Remote Sensing Drought Factors. Remote Sens. 2022, 14, 6398. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Yao, F.; Shi, L.; Pangali Sharma, T.P.; Zhang, D.; Cao, D.; Zheng, M.; Ahmed, N.; Mohana, H.P. Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data. Remote Sens. 2021, 13, 1715. [Google Scholar] [CrossRef]
- Shen, R.; Huang, A.; Li, B.; Guo, J. Construction of a Drought Monitoring Model Using Deep Learning Based on Multi-Source Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 48–57. [Google Scholar] [CrossRef]
- Areffian, A.; Eslamian, S.; Sadr, M.K.; Khoshfetrat, A. Monitoring the Effects of Drought on Vegetation Cover and Ground Water Using MODIS Satellite Images and ANN. KSCE J. Civ. Eng. 2021, 25, 1095–1105. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Dubovyk, O.; Graw, V.; Kussul, N.; Schellberg, J. Local-Scale Agricultural Drought Monitoring with Satellite-Based Multi-Sensor Time-Series. GIScience Remote Sens. 2020, 57, 704–718. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G. Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2019, 11, 371. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine Learning-Based Integration of Remotely-Sensed Drought Factors Can Improve the Estimation of Agricultural Drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Jang, E.; Rhee, J. Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions. Agric. For. Meteorol. 2016, 216, 157–169. [Google Scholar] [CrossRef]
- Rahmati, O.; Falah, F.; Dayal, K.S.; Deo, R.C.; Mohammadi, F.; Biggs, T.; Moghaddam, D.D.; Naghibi, S.A.; Bui, D.T. Machine Learning Approaches for Spatial Modeling of Agricultural Droughts in the South-East Region of Queensland Australia. Sci. Total Environ. 2020, 699, 134230. [Google Scholar] [CrossRef]
- Dao, P.D.; He, Y.; Proctor, C. Plant Drought Impact Detection Using Ultra-High Spatial Resolution Hyperspectral Images and Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102364. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, R.; Singh, V.P.; Xu, C.-Y.; Yu, H.; Fan, K.; Wu, Z. Droughts across China: Drought Factors, Prediction and Impacts. Sci. Total Environ. 2022, 803, 150018. [Google Scholar] [CrossRef]
- Aghelpour, P.; Mohammadi, B.; Mehdizadeh, S.; Bahrami-Pichaghchi, H.; Duan, Z. A Novel Hybrid Dragonfly Optimization Algorithm for Agricultural Drought Prediction. Stoch Env. Res. Risk Assess 2021, 35, 2459–2477. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.-P.; Wang, G. Agricultural Drought Prediction Using Climate Indices Based on Support Vector Regression in Xiangjiang River Basin. Sci. Total Environ. 2018, 622–623, 710–720. [Google Scholar] [CrossRef]
- Bouras, E.H.; Jarlan, L.; Er-Raki, S.; Balaghi, R.; Amazirh, A.; Richard, B.; Khabba, S. Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco. Remote Sens. 2021, 13, 3101. [Google Scholar] [CrossRef]
- Zambrano, F.; Vrieling, A.; Nelson, A.; Meroni, M.; Tadesse, T. Prediction of Drought-Induced Reduction of Agricultural Productivity in Chile from MODIS, Rainfall Estimates, and Climate Oscillation Indices. Remote Sens. Environ. 2018, 219, 15–30. [Google Scholar] [CrossRef]
- An, J.; Li, W.; Li, M.; Cui, S.; Yue, H. Identification and Classification of Maize Drought Stress Using Deep Convolutional Neural Network. Symmetry 2019, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.L.; Warner, J.M.; Malik, A.S. Predicting High-Magnitude, Low-Frequency Crop Losses Using Machine Learning: An Application to Cereal Crops in Ethiopia. Clim. Chang. 2019, 154, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Zhang, Z.; Liu, J.; Yokozawa, M. Modelling the Impacts of Weather and Climate Variability on Crop Productivity over a Large Area: A New Super-Ensemble-Based Probabilistic Projection. Agric. For. Meteorol. 2009, 149, 1266–1278. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Zhang, L. Improving Regional Wheat Drought Risk Assessment for Insurance Application by Integrating Scenario-Driven Crop Model, Machine Learning, and Satellite Data. Agric. Syst. 2021, 191, 103141. [Google Scholar] [CrossRef]
- Di, L.; Üstündağ, B. (Eds.) Agro-Geoinformatics: Theory and Practice; Springer Remote Sensing/Photogrammetry; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-66386-5. [Google Scholar]
- Rahman, M.S.; Di, L. A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment. Agriculture 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Fang, Z.; Zhang, M.; Jiang, L.; Yue, P. Facilitating Typhoon-Triggered Flood Disaster-Ready Information Delivery Using SDI Services Approach—A Case Study in Hainan. Remote Sens. 2022, 14, 1832. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Tran, H.; Nguyen, P.; Ombadi, M.; Hsu, K.; Sorooshian, S.; Andreadis, K. Improving Hydrologic Modeling Using Cloud-Free MODIS Flood Maps. J. Hydrometeorol. 2019, 20, 2203–2214. [Google Scholar] [CrossRef] [Green Version]
- Shirzaei, M.; Khoshmanesh, M.; Ojha, C.; Werth, S.; Kerner, H.; Carlson, G.; Sherpa, S.F.; Zhai, G.; Lee, J.-C. Persistent Impact of Spring Floods on Crop Loss in U.S. Midwest. Weather Clim. Extrem. 2021, 34, 100392. [Google Scholar] [CrossRef]
- Moya, L.; Endo, Y.; Okada, G.; Koshimura, S.; Mas, E. Drawback in the Change Detection Approach: False Detection during the 2018 Western Japan Floods. Remote Sens. 2019, 11, 2320. [Google Scholar] [CrossRef] [Green Version]
- Boryan, C.G.; Yang, Z.; Sandborn, A.; Willis, P.; Haack, B. Operational Agricultural Flood Monitoring with Sentinel-1 Synthetic Aperture Radar. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-Based Detection of Flooded Vegetation—A Review of Characteristics and Approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Tang, J.; Yu, E.; Zhang, C.; Rahman, M.S.; Shrestha, R.; Kang, L. Improvement and Validation of NASA/MODIS NRT Global Flood Mapping. Remote Sens. 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S.; Di, L.; Yu, E.; Lin, L.; Zhang, C.; Tang, J. Rapid Flood Progress Monitoring in Cropland with NASA SMAP. Remote Sens. 2019, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, G.; Guo, E.; Yun, X. Quantitative Agricultural Flood Risk Assessment Using Vulnerability Surface and Copula Functions. Water 2018, 10, 1229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, D.; Wang, S.; Xiang, H.; Zhang, W. Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the 20 July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sens. 2022, 14, 5771. [Google Scholar] [CrossRef]
- Bofana, J.; Zhang, M.; Wu, B.; Zeng, H.; Nabil, M.; Zhang, N.; Elnashar, A.; Tian, F.; da Silva, J.M.; Botão, A.; et al. How Long Did Crops Survive from Floods Caused by Cyclone Idai in Mozambique Detected with Multi-Satellite Data. Remote Sens. Environ. 2022, 269, 112808. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, W.; Zhang, H.; Yu, L. Assessment of Direct Economic Losses of Flood Disasters Based on Spatial Valuation of Land Use and Quantification of Vulnerabilities: A Case Study on the 2014 Flood in Lishui City of China. Nat. Hazards Earth Syst. Sci. 2021, 21, 3161–3174. [Google Scholar] [CrossRef]
- Valverde-Arias, O.R.; Esteve, P.; Tarquis, A.M.; Garrido, A. Remote Sensing in an Index-Based Insurance Design for Hedging Economic Impacts on Rice Cultivation. Nat. Hazards Earth Syst. Sci. 2020, 20, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Triet, N.V.K.; Dung, N.V.; Merz, B.; Apel, H. Towards Risk-Based Flood Management in Highly Productive Paddy Rice Cultivation—Concept Development and Application to the Mekong Delta. Nat. Hazards Earth Syst. Sci. 2018, 18, 2859–2876. [Google Scholar] [CrossRef] [Green Version]
- van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A Simulation Model of Crop Production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An Overview of APSIM, a Model Designed for Farming Systems Simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Maroof, M.A.S. Assessing the Influence of Parameters for Agricultural Flood Loss Estimation in the Middle Cedar River Watershed, Iowa. Master’s Thesis, University of Iowa, Iowa City, IA, USA, 2016. [Google Scholar]
- Yildirim, E.; Demir, I. Agricultural Flood Vulnerability Assessment and Risk Quantification in Iowa. Sci. Total Environ. 2022, 826, 154165. [Google Scholar] [CrossRef]
- Molinari, D.; Scorzini, A.R.; Gallazzi, A.; Ballio, F. AGRIDE-c, a Conceptual Model for the Estimation of Flood Damage to Crops: Development and Implementation. Nat. Hazards Earth Syst. Sci. 2019, 19, 2565–2582. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Tompkins, A.M.; Lin, E.; Ju, H. Simulating the Impact of Flooding on Wheat Yield—Case Study in East China. Agric. For. Meteorol. 2016, 216, 221–231. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L.; Yu, E.; Lin, L.; Yu, Z. Remote Sensing Based Rapid Assessment of Flood Crop Damage Using Novel Disaster Vegetation Damage Index (DVDI). Int. J. Disaster Risk Sci. 2021, 12, 90–110. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Zhou, Y.; Huang, Z.; Jiang, J.; Liu, J.; Yang, L. A Multi-Strategy-Mode Waterlogging-Prediction Framework for Urban Flood Depth. Nat. Hazards Earth Syst. Sci. 2022, 22, 4139–4165. [Google Scholar] [CrossRef]
- Cohen, S.; Raney, A.; Munasinghe, D.; Loftis, J.D.; Molthan, A.; Bell, J.; Rogers, L.; Galantowicz, J.; Brakenridge, G.R.; Kettner, A.J.; et al. The Floodwater Depth Estimation Tool (FwDET v2.0) for Improved Remote Sensing Analysis of Coastal Flooding. Nat. Hazards Earth Syst. Sci. 2019, 19, 2053–2065. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie Du Bassin Versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A New Applications Manual for the Storm Water Management Model (SWMM). Environ. Model. Softw. 2010, 25, 813–814. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.; Gu, J.; Huang, C.; Li, X. SWAT-Based Hydrological Data Assimilation System (SWAT-HDAS): Description and Case Application to River Basin-Scale Hydrological Predictions. J. Adv. Model. Earth Syst. 2017, 9, 2863–2882. [Google Scholar] [CrossRef] [Green Version]
- Falter, D.; Vorogushyn, S.; Lhomme, J.; Apel, H.; Gouldby, B.; Merz, B. Hydraulic Model Evaluation for Large-Scale Flood Risk Assessments. Hydrol. Process. 2013, 27, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Maidment, D.; Tarboton, D.; Zheng, X.; Yildirim, A.; Sazib, N.; Wang, S. A CyberGIS Approach to Generating High-Resolution Height Above Nearest Drainage (HAND) Raster for National Flood Mapping. In Proceedings of the Third International Conference on CyberGIS and Geospatial Data Science, Urbana, IL, USA, 26–28 July 2019. [Google Scholar]
- Li, Z.; Mount, J.; Demir, I. Accounting for Uncertainty in Real-Time Flood Inundation Mapping Using HAND Model: Iowa Case Study. Nat. Hazards 2022, 112, 977–1004. [Google Scholar] [CrossRef]
- Hu, A.; Demir, I. Real-Time Flood Mapping on Client-Side Web Systems Using HAND Model. Hydrology 2021, 8, 65. [Google Scholar] [CrossRef]
- Xu, C.; Yang, J.; Wang, L. Application of Remote-Sensing-Based Hydraulic Model and Hydrological Model in Flood Simulation. Sustainability 2022, 14, 8576. [Google Scholar] [CrossRef]
- Araújo, P.; Amaro, V.; Silva, R.; Lopes, A.B. Delimitation of Flood Areas Based on a Calibrated a DEM and Geoprocessing: Case Study on the Uruguay River, Itaqui, Southern Brazil. Nat. Hazards Earth Syst. Sci. 2019, 19, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Hendrawan, V.; Komori, D. Developing Flood Vulnerability Curve for Rice Crop Using Remote Sensing and Hydrodynamic Modeling. Int. J. Disaster Risk Reduct. 2021, 54, 102058. [Google Scholar] [CrossRef]
- Psomiadis, E.; Diakakis, M.; Soulis, K.X. Combining SAR and Optical Earth Observation with Hydraulic Simulation for Flood Mapping and Impact Assessment. Remote Sens. 2020, 12, 3980. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Z.; Liu, Y.; Liang, Q.; Xie, S. Integrated Remote Sensing Imagery and Two-Dimensional Hydraulic Modeling Approach for Impact Evaluation of Flood on Crop Yields. J. Hydrol. 2017, 553, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. A Review on Flood Management Technologies Related to Image Processing and Machine Learning. Autom. Constr. 2021, 132, 103916. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting Grain Yield in Rice Using Multi-Temporal Vegetation Indices from UAV-Based Multispectral and Digital Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Shrestha, R.; Di, L.; Yu, E.; Kang, L.; Shao, Y.; Bai, Y. Regression Model to Estimate Flood Impact on Corn Yield Using MODIS NDVI and USDA Cropland Data Layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liang, Q.; Liang, Z.; Liu, Y.; Xie, S. Remote-Sensing Disturbance Detection Index to Identify Spatio-Temporal Varying Flood Impact on Crop Production. Agric. For. Meteorol. 2019, 269, 180–191. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Chen, H. Investigating Flood Impact on Crop Production under a Comprehensive and Spatially Explicit Risk Evaluation Framework. Agriculture 2022, 12, 484. [Google Scholar] [CrossRef]
- Li, M.; Zhang, T.; Tu, Y.; Ren, Z.; Xu, B. Monitoring Post-Flood Recovery of Croplands Using the Integrated Sentinel-1/2 Imagery in the Yangtze-Huai River Basin. Remote Sens. 2022, 14, 690. [Google Scholar] [CrossRef]
- Lazin, R.; Shen, X.; Anagnostou, E. Estimation of Flood-Damaged Cropland Area Using a Convolutional Neural Network. Environ. Res. Lett. 2021, 16, 054011. [Google Scholar] [CrossRef]
- Phan, A.; Ha, D.; Man, C.; Nguyen, T.; Bui, H.; Nguyen, T. Rapid Assessment of Flood Inundation and Damaged Rice Area in Red River Delta from Sentinel 1A Imagery. Remote Sens. 2019, 11, 2034. [Google Scholar] [CrossRef] [Green Version]
- UNDRR. Annual Report 2021. Available online: https://www.undrr.org/publication/annual-report-2021 (accessed on 27 February 2023).
- Siqueira, A.; Lewis, A.; Thankappan, M.; Szantoi, Z.; Goryl, P.; Labahn, S.; Ross, J.; Hosford, S.; Mecklenburg, S.; Tadono, T.; et al. CEOS Analysis Ready Data For Land—An Overview on the Current and Future Work. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- OGC. Disaster Pilot 2021 Engineering Report. Available online: https://docs.ogc.org/per/21-064.html (accessed on 24 March 2022).
- Disasters Community on GeoPlatform. Federal Geographic Data Committee. Available online: https://www.fgdc.gov/initiatives/disaster-risk-resilience/disasters-community-geoplatform (accessed on 24 March 2022).
- GeoPlatform Hub Template. Available online: https://disasters-geoplatform.hub.arcgis.com/ (accessed on 24 March 2022).
- Sun, Z.; Di, L.; Hao, H.; Wu, X.; Tong, D.; Zhang, C.; Virgei, C.; Fang, H.; Yu, E.; Tan, X.; et al. CyberConnector: A Service-Oriented System for Automatically Tailoring Multisource Earth Observation Data to Feed Earth Science Models. Earth Sci. Inf. 2018, 11, 1–17. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L.; Gaigalas, J. SUIS: Simplify the Use of Geospatial Web Services in Environmental Modelling. Environ. Model. Softw. 2019, 119, 228–241. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, F.; Zheng, X.; Zheng, X.; Qiao, X.; Li, X.; Meng, Q. Toward Interoperable Multi-Hazard Modeling: A Disaster Management System for Disaster Model Service Chain. Int. J. Disaster Risk Sci. 2022, 13, 862–877. [Google Scholar] [CrossRef]
- Fang, Z.; Yue, P.; Zhang, M.; Xie, J.; Wu, D.; Jiang, L. A Service-Oriented Collaborative Approach to Disaster Decision Support by Integrating Geospatial Resources and Task Chain. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103217. [Google Scholar] [CrossRef]
- Damalas, A.; Mettas, C.; Evagorou, E.; Giannecchini, S.; Iasio, C.; Papadopoulos, M.; Konstantinou, A.; Hadjimitsis, D. Development and Implementation of a DECATASTROPHIZE Platform and Tool for the Management of Disasters or Multiple Hazards. Int. J. Disaster Risk Reduct. 2018, 31, 589–601. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A Comparison of Global Agricultural Monitoring Systems and Current Gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Nakalembe, C.; Becker-Reshef, I.; Bonifacio, R.; Hu, G.; Humber, M.L.; Justice, C.J.; Keniston, J.; Mwangi, K.; Rembold, F.; Shukla, S.; et al. A Review of Satellite-Based Global Agricultural Monitoring Systems Available for Africa. Glob. Food Secur. 2021, 29, 100543. [Google Scholar] [CrossRef]
- FAO. Global Information and Early Warning System on Food and Agriculture (GIEWS). Available online: https://www.fao.org/giews (accessed on 19 February 2023).
- Becker-Reshef, I.; Justice, C.; Barker, B.; Humber, M.; Rembold, F.; Bonifacio, R.; Zappacosta, M.; Budde, M.; Magadzire, T.; Shitote, C.; et al. Strengthening Agricultural Decisions in Countries at Risk of Food Insecurity: The GEOGLAM Crop Monitor for Early Warning. Remote Sens. Environ. 2020, 237, 111553. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Whitcraft, A.K.; Jarvis, I. Geoglam: A Geo Initiative on Global Agricultural Monitoring. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Rembold, F.; Meroni, M.; Urbano, F.; Lemoine, G.; Kerdiles, H.; Perez-Hoyos, A.; Csak, G. ASAP—Anomaly Hot Spots of Agricultural Production, a New Early Warning Decision Support System Developed by the Joint Research Centre. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017. [Google Scholar]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Zhang, B.; Peng, C. Enhancing Agricultural Geospatial Data Dissemination and Applications Using Geospatial Web Services. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4539–4547. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web Service Based Application for Exploring and Disseminating US Conterminous Geospatial Cropland Data Products for Decision Support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Zhang, C.; Guo, L.; Di, Y.; Li, H.; Yang, A. Validation and Refinement of Cropland Data Layer Using a Spatial-Temporal Decision Tree Algorithm. Sci. Data 2022, 9, 63. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Lin, L.; Li, H.; Guo, L.; Yang, Z.; Yu, E.G.; Di, Y.; Yang, A. Towards Automation of In-Season Crop Type Mapping Using Spatiotemporal Crop Information and Remote Sensing Data. Agric. Syst. 2022, 201, 103462. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Di, L.; Yu, E.G.; Zhang, B.; Han, W.; Lin, L.; Guo, L. Near-Real-Time MODIS-Derived Vegetation Index Data Products and Online Services for CONUS Based on NASA LANCE. Sci. Data 2022, 9, 477. [Google Scholar] [CrossRef]
- Hu, L.; Di, L.; Yu, E.; Yue, P.; Tang, J.; Lin, L.; Zhang, C.; Sun, Z.; Hu, R.; Shrestha, R.; et al. Developing Geospatial Web Service and System for SMAP Soil Moisture Monitoring. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017. [Google Scholar]
- Zhang, C.; Yang, Z.; Zhao, H.; Sun, Z.; Di, L.; Bindlish, R.; Liu, P.; Colliander, A.; Mueller, R.; Crow, W.; et al. Crop-CASMA: A Web Geoprocessing and Map Service Based Architecture and Implementation for Serving Soil Moisture and Crop Vegetation Condition Data over U.S. Cropland. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102902. [Google Scholar] [CrossRef]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote Sensing-Based Global Crop Monitoring: Experiences with China’s CropWatch System. Int. J. Digit. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- Heim, R.R.; Brewer, M.J. The Global Drought Monitor Portal: The Foundation for a Global Drought Information System. Earth Interact. 2012, 16, 1–28. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Nakhjiri, N.; Farahmand, A. Global Integrated Drought Monitoring and Prediction System. Sci. Data 2014, 1, 140001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- EDO. EDO European Drought Observatory—JRC European Commission. Available online: http://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000 (accessed on 13 June 2017).
- Sheffield, J.; Wood, E.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bull. Am. Meteorol. Soc. 2014, 95, 861–882. [Google Scholar] [CrossRef]
- Deng, M.; Di, L.; Han, W.; Yagci, A.L.; Peng, C.; Heo, G. Web-Service-Based Monitoring and Analysis of Global Agricultural Drought. Photogramm. Eng. Remote Sens. 2013, 79, 929–943. [Google Scholar] [CrossRef]
- Sun, Z.; Di, L.; Fang, H.; Guo, L.; Yu, E.; Tang, J.; Zhao, H.; Gaigalas, J.; Zhang, C.; Lin, L.; et al. Advanced Cyberinfrastructure for Agricultural Drought Monitoring. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Yan, N.; Wu, B.; Boken, V.K.; Chang, S.; Yang, L. A Drought Monitoring Operational System for China Using Satellite Data: Design and Evaluation. Geomat. Nat. Hazards Risk 2016, 7, 264–277. [Google Scholar] [CrossRef]
- Peng, C.; Deng, M.; Di, L.; Han, W. Delivery of Agricultural Drought Information via Web Services. Earth Sci. Inform. 2015, 8, 527–538. [Google Scholar] [CrossRef]
- Xu, H.; Allen-Dumas, M.; Berres, A.; Kurte, K.; Liu, Y.; Zhang, G.; Sanyal, J. A HPC Theory-Guided Machine Learning Cyberinfrastructure for Communicating Hydrometeorological Data across Scales; Oak Ridge National Lab: Oak Ridge, TN, USA, 2021. [Google Scholar]
- Di, L.; Yu, E.G.; Kang, L.; Shrestha, R.; BAI, Y. RF-CLASS: A Remote-Sensing-Based Flood Crop Loss Assessment Cyber-Service System for Supporting Crop Statistics and Insurance Decision-Making. J. Integr. Agric. 2017, 16, 408–423. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, M.; Tan, Z. A Geoprocessing Workflow System for Environmental Monitoring and Integrated Modelling. Environ. Model. Softw. 2015, 69, 128–140. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, L.; Yue, P.; Gong, J. Interoperable Web Sharing of Environmental Models Using OGC Web Processing Service and Open Modeling Interface (OpenMI). Environ. Model. Softw. 2020, 133, 104838. [Google Scholar] [CrossRef]
- Qiu, L.; Du, Z.; Zhu, Q.; Fan, Y. An Integrated Flood Management System Based on Linking Environmental Models and Disaster-Related Data. Environ. Model. Softw. 2017, 91, 111–126. [Google Scholar] [CrossRef]
- Zhai, X.; Yue, P.; Zhang, M. A Sensor Web and Web Service-Based Approach for Active Hydrological Disaster Monitoring. IJGI 2016, 5, 171. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Luo, J.; Hu, C.; Tian, L.; Li, J.; Wang, K. An Observation Task Chain Representation Model for Disaster Process-Oriented Remote Sensing Satellite Sensor Planning: A Flood Water Monitoring Application. Remote Sens. 2018, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Demir, I.; Krajewski, W.F. Towards an Integrated Flood Information System: Centralized Data Access, Analysis, and Visualization. Environ. Model. Softw. 2013, 50, 77–84. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gao, F.; Yue, P.; Cao, Z.; Zhao, S.; Shangguan, B.; Jiang, L.; Hu, L.; Fang, Z.; Liang, Z. A Multi-Source Spatio-Temporal Data Cube for Large-Scale Geospatial Analysis. Int. J. Geogr. Inf. Sci. 2022, 36, 1853–1884. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and Lessons Learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Tzotsos, A.; Karmas, A.; Merticariu, V.; Misev, D.; Baumann, P. A Datacube Approach to Agro-Geoinformatics. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017. [Google Scholar]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated Cropland Mapping of Continental Africa Using Google Earth Engine Cloud Computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Zhang, J.; Han, J.; Xie, J. Integrating Multi-Source Data for Rice Yield Prediction across China Using Machine Learning and Deep Learning Approaches. Agric. For. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Chen, N.; Yu, L.; Zhang, X.; Shen, Y.; Zeng, L.; Hu, Q.; Niyogi, D. Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform. Remote Sens. 2020, 12, 2992. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.G.; Oliphant, A.; Xiong, J.; Giri, C.; Pyla, V.; Dixit, S.; Whitbread, A.M. Agricultural Cropland Extent and Areas of South Asia Derived Using Landsat Satellite 30-m Time-Series Big-Data Using Random Forest Machine Learning Algorithms on the Google Earth Engine Cloud. GIScience Remote Sens. 2020, 57, 302–322. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Di, L.; Yang, Z.; Lin, L.; Hao, P. AgKit4EE: A Toolkit for Agricultural Land Use Modeling of the Conterminous United States Based on Google Earth Engine. Environ. Model. Softw. 2020, 129, 104694. [Google Scholar] [CrossRef]
- Li, Z.; Demir, I. U-Net-Based Semantic Classification for Flood Extent Extraction Using SAR Imagery and GEE Platform: A Case Study for 2019 Central US Flooding 2022. Sci. Total Environ. 2023, 869, 161757. [Google Scholar] [CrossRef]
- Scheip, C.M.; Wegmann, K.W. HazMapper: A Global Open-Source Natural Hazard Mapping Application in Google Earth Engine. Nat. Hazards Earth Syst. Sci. 2021, 21, 1495–1511. [Google Scholar] [CrossRef]
- Khan, R.; Gilani, H. Global Drought Monitoring with Drought Severity Index (DSI) Using Google Earth Engine. Appl. Clim. 2021, 146, 411–427. [Google Scholar] [CrossRef]
- Khan, R.; Gilani, H. Global Drought Monitoring with Big Geospatial Datasets Using Google Earth Engine. Env. Sci Pollut Res. 2021, 28, 17244–17264. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Luo, C.; Yang, H.; Meng, X.; Ju, Y.; Guo, D. Rapid Extraction of Regional-Scale Agricultural Disasters by the Standardized Monitoring Model Based on Google Earth Engine. Sustainability 2020, 12, 6497. [Google Scholar] [CrossRef]
- Drivas, T.; Sitokonstantinou, V.; Tsardanidis, I.; Koukos, A.; Kontoes, C.; Karathanassi, V. A Data Cube of Big Satellite Image Time-Series for Agriculture Monitoring. In Proceedings of the 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Nafplio, Greece, 26–29 June 2022. [Google Scholar]
- Wardle, J.A.; Sagan, V.; Mohammed, F. Using Open Data Cube on the Cloud to Investigate Food Security by Means of Cropland Changes in Djibouti. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Nice, France, 6–11 June 2022. [Google Scholar]
- Cheng, M.C.; Chiou, C.R.; Chen, B.; Liu, C.; Lin, H.C.; Shih, I.L.; Chung, C.H.; Lin, H.Y.; Chou, C.Y. Open Data Cube (ODC) in Taiwan: The Initiative and Protocol Development. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Killough, B.; Lubawy, A.; Dyke, G.; Rosenqvist, A. The Open Data Cube Sandbox: A Tool to Support Flood Disaster Response and Recovery. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- OGC API. Records. Available online: https://ogcapi.ogc.org/records/ (accessed on 28 February 2023).
- STAC: SpatioTemporal Asset Catalogs. Available online: https://stacspec.org/en/ (accessed on 28 February 2023).
- Cloud Optimized GeoTIFF: An Imagery Format for Cloud-Native Geospatial Processing. Available online: https://www.cogeo.org/ (accessed on 4 April 2023).
- OGC API. EDR. Available online: https://ogcapi.ogc.org/edr/ (accessed on 28 February 2023).
- OGC. Testbed-16: Data Access and Processing API Engineering Report 2021. Available online: http://docs.opengeospatial.org/per/20-025r1.html (accessed on 28 February 2023).
- OGC. Testbed-16: Analysis Ready Data Engineering Report 2021. Available online: http://docs.opengeospatial.org/per/20-041.html (accessed on 28 February 2023).
- OGC. Testbed 17: Geo Data Cube API Engineering Report 2022. Available online: http://docs.ogc.org/per/21-027.html (accessed on 28 February 2023).
- OGC. Geodatacube Standard Working Group Charter 2023. Available online: https://portal.ogc.org/files/?artifact_id=103144&version=1 (accessed on 28 February 2023).
- Deep-Time Digital Earth White Paper. Available online: https://www.ddeworld.org/news/detail/135 (accessed on 8 February 2023).
- Zarr: Chunked, Compressed, N-Dimensional Arrays. Available online: https://zarr.dev/ (accessed on 4 April 2023).
- Cloud-Performant NetCDF4/HDF5 Reading with the Zarr Library. Available online: https://medium.com/pangeo/cloud-performant-reading-of-netcdf4-hdf5-data-using-the-zarr-library-1a95c5c92314 (accessed on 4 April 2023).
- GEO Knowledge Hub: An Open-Source Digital Repository of Open, Authoritative and Reproducible Knowledge. Available online: https://gkhub.earthobservations.org/ (accessed on 4 April 2023).
- OGC. Testbed-18: Identifiers for Reproducible Science Summary Engineering Report. 2023. Available online: https://docs.ogc.org/per/22-020.html (accessed on 4 April 2023).
- OGC. Candidate Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1: Conceptual Model Standard (23-008r1). Available online: https://portal.ogc.org/files/104166 (accessed on 4 April 2023).
- OGC. Testbed-18: Machine Learning Training Data Engineering Report 2023. Available online: http://docs.opengeospatial.org/per/22-020.html (accessed on 4 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Zhang, C.; Zhang, M.; Shi, Y.; Lu, J.; Fang, Z. Enhancing FAIR Data Services in Agricultural Disaster: A Review. Remote Sens. 2023, 15, 2024. https://doi.org/10.3390/rs15082024
Hu L, Zhang C, Zhang M, Shi Y, Lu J, Fang Z. Enhancing FAIR Data Services in Agricultural Disaster: A Review. Remote Sensing. 2023; 15(8):2024. https://doi.org/10.3390/rs15082024
Chicago/Turabian StyleHu, Lei, Chenxiao Zhang, Mingda Zhang, Yuming Shi, Jiasheng Lu, and Zhe Fang. 2023. "Enhancing FAIR Data Services in Agricultural Disaster: A Review" Remote Sensing 15, no. 8: 2024. https://doi.org/10.3390/rs15082024
APA StyleHu, L., Zhang, C., Zhang, M., Shi, Y., Lu, J., & Fang, Z. (2023). Enhancing FAIR Data Services in Agricultural Disaster: A Review. Remote Sensing, 15(8), 2024. https://doi.org/10.3390/rs15082024