Impacts of Water and Stress Transfers from Ground Surface on the Shallow Earthquake of 11 November 2019 at Le Teil (France)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Differential Synthetic-Aperture Radar Interferometry (DInSAR) Using Sentinel-1 Data
2.2. Hydraulic Model Using ComPASS
2.2.1. Hydraulic Parameters in Matrix/Fault
2.2.2. Soil Moisture (SM30) Data at the Berzème Station
2.2.3. Surface Soil Moisture (SSM) Products Acquired by the SMOS Satellite
2.3. Mechanical Model Using 3DECTM
2.4. Seismological Data Analysis Using the Vibration Sensor at Clauzel House (CLAU)
3. Results
3.1. Geological Context around the Fault System
3.2. Surface Traces of the Fault System Using DInSAR
3.3. Three-Dimensional Geometry of the Three-Fault System Using M201 Cross-Section
3.4. Hydraulic Simulations Using ComPASS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sensitivity Case | SC21 | SC22 |
---|---|---|
Surface condition | SSM (SMOS-CATDS ASC, L2 cell, 3 days) | SSM (SMOSMAP-IB ASC, L2 cell, 3 days) * |
Matrix porosity, | 0.2 | 0.2 |
Matrix permeability, | 10−18 m2 in Apto-albien | 10−18 m2 in Apto-albien |
10−16 m2 elsewhere | 10−16 m2 elsewhere | |
Fault porosity, | 0.1 | 0.1 |
Fault permeability, | 10−11 m2 | 10−11 m2 |
Fault width, | 20 m | 20 m |
Maximum differential of pressure (ΔP) along intersection LRF/BRF | 0.9 MPa (9.03 bar) | 0.87 MPa (8.73 bar) |
Appendix B
Parameters | Values |
---|---|
Normal stiffness, kn (GPa/m) | 20 |
Shear stiffness, ks (GPa/m) | 20 |
Friction coefficient, μ | 0.6 |
Parameters | Value | ||
---|---|---|---|
Hauterivian | Upper Jurassic | Basement | |
0.24 | 0.27 | 0.3 | |
Young’s modulus, E (GPa) | 42 | 16 | 61 |
Density (kg/m3) | 2500 | 2600 | 2690 |
Thickness (m) | 420 | 780 | - |
References
- Stein, S.; Geller, R.J.; Liu, M. Why earthquake hazard maps often fail and what to do about it. Tectonophysics 2012, 562–563, 1–25. [Google Scholar] [CrossRef]
- Klinger, Y.; Ji, C.; Shen, Z.-K.; Bakun, W.H. Introduction to the Special Issue on the 2008 Wenchuan, China, Earthquake. Bull. Seismol. Soc. Am. 2010, 100, 2353–2356. [Google Scholar] [CrossRef]
- Lei, X. Possible roles of the Zipingpu Reservoir in triggering the 2008 Wenchuan earthquake. J. Asian Earth Sci. 2011, 40, 844–854. [Google Scholar] [CrossRef]
- Kerr, R.A.; Stone, R. A Human Trigger for the Great Quake of Sichuan? Science 2009, 323, 322. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Zhou, S.; Wang, R.; Robinson, R.; Zhao, C.; Cheng, W. Evidence that the 2008 Mw 7.9 Wenchuan Earthquake Could Not Have Been Induced by the Zipingpu Reservoir. Bull. Seismol. Soc. Am. 2010, 100, 2805–2814. [Google Scholar] [CrossRef]
- Gahalaut, K.; Gahalaut, V.K. Effect of the Zipingpu reservoir impoundment on the occurrence of the 2008 Wenchuan earthquake and local seismicity. Geophys. J. Int. 2010, 183, 277–285. [Google Scholar] [CrossRef]
- Ge, S.; Liu, M.; Lu, N.; Godt, J.W.; Luo, G. Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake? Geophys. Res. Lett. 2009, 36, L20315. [Google Scholar] [CrossRef]
- Tao, W.; Masterlark, T.; Shen, Z.-K.; Ronchin, E. Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. J. Geophys. Res. Solid Earth 2015, 120, 7033–7047. [Google Scholar] [CrossRef] [PubMed]
- Mulargia, F.; Bizzarri, A. Anthropogenic Triggering of Large Earthquakes. Sci. Rep. 2014, 4, 6100. [Google Scholar] [CrossRef]
- Gupta, H.K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Sci. Rev. 2002, 58, 279–310. [Google Scholar] [CrossRef]
- McGarr, A.; Simpson, D.; Seeber, L.; Lee, W. Case histories of induced and triggered seismicity. Int. Geophys. Ser. 2002, 81, 647–664. [Google Scholar]
- Davies, R.; Foulger, G.; Bindley, A.; Styles, P. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar. Pet. Geol. 2013, 45, 171–185. [Google Scholar] [CrossRef]
- Foulger, G.R.; Wilson, M.P.; Gluyas, J.G.; Julian, B.R.; Davies, R.J. Global review of human-induced earthquakes. Earth-Sci. Rev. 2018, 178, 438–514. [Google Scholar] [CrossRef]
- Aochi, H.; Burnol, A. Mechanism of the ML4.0 25 April 2016 earthquake in southwest of France in the vicinity of the Lacq gas field. J. Seismol. 2018, 22, 1139–1155. [Google Scholar] [CrossRef]
- Aochi, H.; Le Guenan, T.; Burnol, A. Developing subsurface energy exploitation strategies by considering seismic risk. Pet. Geosci. 2016, 23, 298–305. [Google Scholar] [CrossRef]
- Dominique, P.; Aochi, H.; Morel, J. Triggered Seismicity in a Flooded Former Coal Mining Basin (Gardanne Area, France). Mine Water Environ. 2022, 41, 317–334. [Google Scholar] [CrossRef]
- Saar, M.O.; Manga, M. Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett. 2003, 214, 605–618. [Google Scholar] [CrossRef]
- Heki, K. Snow load and seasonal variation of earthquake occurrence in Japan. Earth Planet. Sci. Lett. 2003, 207, 159–164. [Google Scholar] [CrossRef]
- Hainzl, S.; Kraft, T.; Wassermann, J.; Igel, H.; Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006, 33, L19303. [Google Scholar] [CrossRef]
- Bollinger, L.; Perrier, F.; Avouac, J.-P.; Sapkota, S.; Gautam, U.; Tiwari, D.R. Seasonal modulation of seismicity in the Himalaya of Nepal. Geophys. Res. Lett. 2007, 34, L08304. [Google Scholar] [CrossRef]
- Ader, T.J.; Avouac, J.-P. Detecting periodicities and declustering in earthquake catalogs using the Schuster spectrum, application to Himalayan seismicity. Earth Planet. Sci. Lett. 2013, 377–378, 97–105. [Google Scholar] [CrossRef]
- Husen, S.; Bachmann, C.; Giardini, D. Locally triggered seismicity in the central Swiss Alps following the large rainfall event of August 2005. Geophys. J. Int. 2007, 171, 1126–1134. [Google Scholar] [CrossRef]
- Costain, J.K.; Bollinger, G.A.; Speer, J.A. Hydroseismicity: A Hypothesis for The Role of Water in the Generation of Intraplate Seismicity. Seismol. Res. Lett. 1987, 58, 41–64. [Google Scholar] [CrossRef]
- Costain, J.K.; Bollinger, G.A. Review: Research Results in Hydroseismicity from 1987 to 2009. Bull. Seismol. Soc. Am. 2010, 100, 1841–1858. [Google Scholar] [CrossRef]
- Costain, J.K. Finite element simulation of an intraplate earthquake setting—Implications for the Virginia earthquake of 23 August 2011. Geol. Soc. Am. Spec. Pap. 2015, 509, 137–150. [Google Scholar]
- Costain, J.K. Groundwater recharge as the trigger of naturally occurring intraplate earthquakes. Geol. Soc. Lond. Spec. Publ. 2017, 432, 91. [Google Scholar] [CrossRef]
- Rigo, A.; Béthoux, N.; Masson, F.; Ritz, J.-F. Seismicity rate and wave-velocity variations as consequences of rainfall: The case of the catastrophic storm of September 2002 in the Nîmes Fault region (Gard, France). Geophys. J. Int. 2008, 173, 473–482. [Google Scholar] [CrossRef]
- Bollinger, L.; Nicolas, M.; Marin, S. Hydrological triggering of the seismicity around a salt diapir in Castellane, France. Earth Planet. Sci. Lett. 2010, 290, 20–29. [Google Scholar] [CrossRef]
- Causse, M.; Cornou, C.; Maufroy, E.; Grasso, J.-R.; Baillet, L.; El Haber, E. Exceptional ground motion during the shallow Mw 4.9 2019 Le Teil earthquake, France. Commun. Earth Environ. 2021, 2, 14. [Google Scholar] [CrossRef]
- Cornou, C.; Ampuero, J.-P.; Aubert, C.; Audin, L.; Baize, S.; Billant, J.; Brenguier, F.; Causse, M.; Chlieh, M.; Combey, A.; et al. Rapid response to the Mw 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus. Géoscience 2021, 353, 441–463. [Google Scholar] [CrossRef]
- Ritz, J.-F.; Baize, S.; Ferry, M.; Larroque, C.; Audin, L.; Delouis, B.; Mathot, E. Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France. Commun. Earth Environ. 2020, 1, 10. [Google Scholar] [CrossRef]
- Ampuero, J.P.; Audin, L.; Bernard, P.; Brenguier, F.; Delouis, B.; Grandin, R.; Jolivet, R.; Leloup, P.H.; Ritz, J.F.; Vergne, J.; et al. Rapport d’évaluation du Groupe de Travail (GT) CNRS-INSU sur le Séisme du Teil du 11 Novembre 2019 et ses Causes Possibles; Institut National des Sciences de l’Univers: La Seyne-sur-Mer, France, 2019. [Google Scholar]
- Larroque, C.; Ampuero, J.-P.; Delouis, B.; Cornou, C. Aux origines du séisme du Teil. La Rech. 2020, 561, 94–97. [Google Scholar]
- De Novellis, V.; Convertito, V.; Valkaniotis, S.; Casu, F.; Lanari, R.; Monterroso Tobar, M.F.; Pino, N.A. Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying. Commun. Earth Environ. 2020, 1, 20. [Google Scholar] [CrossRef]
- Delouis, B.; Oral, E.; Menager, M.; Ampuero, J.-P.; Trilla, A.G.; Régnier, M.; Deschamps, A. Constraining the point source parameters of the 11 November 2019 Mw 4.9 Le Teil earthquake using multiple relocation approaches, first motion and full waveform inversions. Comptes Rendus Géosci. 2021, 353, 493–516. [Google Scholar] [CrossRef]
- Kerrien, Y.; Elmi, S.; Busnardo, R.; Camus, G.; Kieffer, G.; Moinereau, J.; Weisbrod, A. Carte Géol. France (1/50,000) Feuille Aubenas (865); BRGM: Orléans, France, 1989. [Google Scholar]
- Burnol, A.; Aochi, H.; Raucoules, D.; Veloso, F.M.L.; Koudogbo, F.N.; Fumagalli, A.; Chiquet, P.; Maisons, C. Wavelet-based analysis of ground deformation coupling satellite acquisitions (Sentinel-1, SMOS) and data from shallow and deep wells in Southwestern France. Sci. Rep. 2019, 9, 8812. [Google Scholar] [CrossRef] [PubMed]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Raucoules, D.; Bourgine, B.; De Michele, M.; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J. Appl. Geophys. 2009, 68, 335–347. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Leprince, S.; Ayoub, F.; Klinger, Y.; Avouac, J.-P. Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. In Proceedings of the 2007 IEEE international geoscience and remote sensing symposium, Barcelona, Spain, 23–28 July 2007; pp. 1943–1946. [Google Scholar]
- Ayoub, F.; Leprince, S.; Keene, L. User’s Guide to COSI-CORR Co-Registration of Optically Sensed Images and Correlation; California Institute of Technology: Pasadena, CA, USA, 2009; Volume 38, p. 49. [Google Scholar]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer, N., Ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2001; Volume 2, p. 308. [Google Scholar]
- Raucoules, D.; Colesanti, C.; Carnec, C. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geosci. 2007, 339, 289–302. [Google Scholar] [CrossRef]
- Xing, F.; Masson, R.; Lopez, S. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media. J. Comput. Phys. 2017, 345, 637–664. [Google Scholar] [CrossRef]
- Lopez, S.; Masson, R.; Beaude, L.; Birgle, N.; Brenner, K.; Kern, M.; Smaï, F.; Xing, F. Geothermal Modeling in Complex Geological Systems with the ComPASS Code. In Proceedings of the Stanford Geothermal Workshop 2018-43rd Workshop on Geothermal Reservoir Engineering, Sanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Jeanne, P.; Guglielmi, Y.; Lamarche, J.; Cappa, F.; Marié, L. Architectural characteristics and petrophysical properties evolution of a strike-slip fault zone in a fractured porous carbonate reservoir. J. Struct. Geol. 2012, 44, 93–109. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Cappa, F.; Avouac, J.-P.; Henry, P.; Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 2015, 348, 1224–1226. [Google Scholar] [CrossRef]
- Cochard, J.; Léonide, P.; Borgomano, J.; Guglielmi, Y.; Massonnat, G.; Rolando, J.-P.; Marié, L.; Pasquier, A. Reservoir properties of barremian–aptian urgonian limestones, SE France, Part 1: Influence of structural history on porosity-permeability variations. J. Pet. Geol. 2020, 43, 75–94. [Google Scholar] [CrossRef]
- Aubert, I.; Lamarche, J.; Léonide, P. Ternary fault permeability diagram: An innovative way to estimate fault zones hydraulics. J. Struct. Geol. 2021, 147, 104349. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS Int. J. Geo-Inf. 2012, 1, 32–45. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Rodríguez-Fernández, N.; Wigneron, P.J.; Al-Yaari, A.; Al Bitar, A.; Albergel, C.; Calvet, J.-C. Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 Soil Moisture Products at Sites in Southwestern France. Remote Sens. 2018, 10, 569. [Google Scholar] [CrossRef]
- Li, X.; Wigneron, J.-P.; Frappart, F.; Lannoy, G.D.; Fan, L.; Zhao, T.; Gao, L.; Tao, S.; Ma, H.; Peng, Z.; et al. The first global soil moisture and vegetation optical depth product retrieved from fused SMOS and SMAP L-band observations. Remote Sens. Environ. 2022, 282, 113272. [Google Scholar] [CrossRef]
- Itasca. 3DEC—3 Dimensional Distinct Element Code v5.2; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2016. [Google Scholar]
- Marconato, L.; Leloup, P.H.; Lasserre, C.; Jolivet, R.; Caritg, S.; Grandin, R.; Métois, M.; Cavalié, O.; Audin, L. Insights on fault reactivation during the 2019 November 11, Mw 4.9 Le Teil earthquake in southeastern France, from a joint 3-D geological model and InSAR time-series analysis. Geophys. J. Int. 2022, 229, 758–775. [Google Scholar] [CrossRef]
- Allanic, C.; Paquet, F.; Bitri, A.; Raucoules, D.; Marc, S.; Capar, L.; Briais, J.; Lasseur, E.; Fauchadour, J.-C. Séisme du Teil (11.11.2019): Structuration géologique 3D du sous-sol. In Proceedings of the 27e édition de la Réunion des Sciences de la Terre, Lyon, France, 1–5 November 2021. [Google Scholar]
- De Novellis, V.; Convertito, V.; Valkaniotis, S.; Casu, F.; Lanari, R.; Monterroso Tobar, M.F.; Pino, N.A. Author Correction: Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying. Commun. Earth Environ. 2021, 2, 47. [Google Scholar] [CrossRef]
- Yoshida, S.; Koketsu, K.; Shibazaki, B.; Sagiya, T.; Kato, T.; Yoshida, Y. Joint Inversion of Near- and Far-field Waveforms and Geodetic Data for the Rupture Process of the 1995 Kobe Earthquake. J. Phys. Earth 1996, 44, 437–454. [Google Scholar] [CrossRef]
- Kaverina, A.; Dreger, D.; Price, E. The Combined Inversion of Seismic and Geodetic Data for the Source Process of the 16 October 1999 Mw 7.1 Hector Mine, California, Earthquake. Bull. Seismol. Soc. Am. 2002, 92, 1266–1280. [Google Scholar] [CrossRef]
- Ozacar, A.A.; Beck, S.L. The 2002 Denali Fault and 2001 Kunlun Fault Earthquakes: Complex Rupture Processes of Two Large Strike-Slip Events. Bull. Seismol. Soc. Am. 2004, 94, S278–S292. [Google Scholar] [CrossRef]
- Masson, C.; Mazzotti, S.; Vernant, P.; Doerflinger, E. Extracting small deformation beyond individual station precision from dense Global Navigation Satellite System (GNSS) networks in France and western Europe. Solid Earth 2019, 10, 1905–1920. [Google Scholar] [CrossRef]
- Derode, B.; Guglielmi, Y.; De Barros, L.; Cappa, F. Seismic responses to fluid pressure perturbations in a slipping fault. Geophys. Res. Lett. 2015, 42, 3197–3203. [Google Scholar] [CrossRef]
Base Case | BC16 | BC20 | BC23 | BC24 |
---|---|---|---|---|
Surface condition | SM30 | SM30 | SM30 | SM30 |
Matrix porosity, | 0.2 | 0.2 | 0.2 | 0.2 |
Matrix permeability, | 10−18 m2 in Apto-albien | 10−16 m2 | 10−18 m2 in Apto-albien | 10−18 m2 in Apto-albien |
10−16 m2 elsewhere | 10−16 m2 elsewhere | 10−16 m2 elsewhere | ||
Fault porosity, | 0.1 | 0.1 | 0.1 | 0.1 |
Fault permeability, | 10−11 m2 | 10−11 m2 | 5 10−12 m2 | 10−12 m2 |
Fault width, | 20 m | 20 m | 20 m | 20 m |
Maximum differential of pressure (ΔP) along intersection LRF/BRF | 0.98 MPa (9.84 bar) | 0.97 MPa (9.75 bar) | 0.84 MPa (8.39 bar) | 0.38 MPa (3.8 bar) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burnol, A.; Armandine Les Landes, A.; Raucoules, D.; Foumelis, M.; Allanic, C.; Paquet, F.; Maury, J.; Aochi, H.; Guillon, T.; Delatre, M.; et al. Impacts of Water and Stress Transfers from Ground Surface on the Shallow Earthquake of 11 November 2019 at Le Teil (France). Remote Sens. 2023, 15, 2270. https://doi.org/10.3390/rs15092270
Burnol A, Armandine Les Landes A, Raucoules D, Foumelis M, Allanic C, Paquet F, Maury J, Aochi H, Guillon T, Delatre M, et al. Impacts of Water and Stress Transfers from Ground Surface on the Shallow Earthquake of 11 November 2019 at Le Teil (France). Remote Sensing. 2023; 15(9):2270. https://doi.org/10.3390/rs15092270
Chicago/Turabian StyleBurnol, André, Antoine Armandine Les Landes, Daniel Raucoules, Michael Foumelis, Cécile Allanic, Fabien Paquet, Julie Maury, Hideo Aochi, Théophile Guillon, Mickael Delatre, and et al. 2023. "Impacts of Water and Stress Transfers from Ground Surface on the Shallow Earthquake of 11 November 2019 at Le Teil (France)" Remote Sensing 15, no. 9: 2270. https://doi.org/10.3390/rs15092270