A Residual Neural Network Integrated with a Hydrological Model for Global Flood Susceptibility Mapping Based on Remote Sensing Datasets
Abstract
:1. Introduction
2. Materials
2.1. Data Preparation
2.2. Flood Inventory Map
3. Methods
3.1. ResNet
3.2. Transfer Learning and Pretraining
3.3. Model Performance Measures
3.4. Model Interpretation
4. Results
4.1. Model Performance
4.2. ROC curve
5. Discussion
5.1. Model Performance with Fewer Training Labels
5.2. Comparison with a Global Flood Dataset
5.3. Comparison among ResNet (RP50), ResNet (RP100), and ResNet (RP200)
5.4. Model Interpretation with SHAP
5.5. Model Sensitivity and Uncertainty Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jevrejeva, S.; Jackson, L.P.; Grinsted, A.; Lincke, D.; Marzeion, B. Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environ. Res. Lett. 2018, 13, 074014. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Park, J.; Fukami, K. Near Real-Time Flood Volume Estimation From MODIS Time-Series Imagery in the Indus River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 578–586. [Google Scholar] [CrossRef]
- Ahmadlou, M.; Karimi, M.; Alizadeh, S.; Shirzadi, A.; Parvinnejhad, D.; Shahabi, H.; Panahi, M. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int. 2018, 34, 1252–1272. [Google Scholar] [CrossRef]
- Swain, K.C.; Singha, C.; Nayak, L. Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud. ISPRS Int. J. Geo-Inf. 2020, 9, 720. [Google Scholar] [CrossRef]
- Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood hazard mapping methods: A review. J. Hydrol. 2021, 603, 126846. [Google Scholar] [CrossRef]
- Bellos, V. Ways for flood hazard mapping in urbanised environments: A short. Water Util. J. 2012, 4, 25–31. [Google Scholar]
- Ramírez, J.A. Chapter 11: Prediction and modeling of flood hydrology and hydraulics. In Inland Flood Hazards: Human, Riparian and Aquatic Communities; Wohl, E.E., Ed.; Cambridge University Press: Cambridge, UK, 2000; Volume 498, pp. 293–333. [Google Scholar]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.X.; Chen, W. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci. Total Environ. 2018, 625, 575–588. [Google Scholar] [CrossRef]
- Anees, M.T.; Abdullah, K.; Nordin, M.N.M.; Rahman, N.N.N.A.; Syakir, M.I.; Kadir, M.O.A. One- and Two-Dimensional Hydrological Modelling and Their Uncertainties. Flood Risk Manag. 2017, 11, 221–244. [Google Scholar]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int. J. Sediment Res. 2016, 31, 149–158. [Google Scholar] [CrossRef]
- Pan, T.-Y.; Yang, Y.-T.; Kuo, H.-C.; Tan, Y.-C.; Lai, J.-S.; Chang, T.-J.; Lee, C.-S.; Hsu, K.H. Improvement of watershed flood forecasting by typhoon rainfall climate model with an ANN-based southwest monsoon rainfall enhancement. J. Hydrol. 2013, 506, 90–100. [Google Scholar] [CrossRef]
- La Salandra, M.; Colacicco, R.; Dellino, P.; Capolongo, D. An Effective Approach for Automatic River Features Extraction Using High-Resolution UAV Imagery. Drones 2023, 7, 70. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef]
- Razavi Termeh, S.V.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 2018, 615, 438–451. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Nguyen, Q.-H.; Nguyen, X.L.; Pham, V.D.; Nguyen, H.D.; Pham, V.-M. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J. Hydrol. 2020, 581, 124379. [Google Scholar] [CrossRef]
- Schumann, G.J. Preface: Remote sensing in flood monitoring and management. Remote Sens. 2015, 7, 17013–17015. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.-w. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Yang, L.; Cervone, G. Analysis of remote sensing imagery for disaster assessment using deep learning: A case study of flooding event. Soft Comput. 2019, 23, 13393–13408. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Sun, H.; Yong, Z.; Wang, N. Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets. Remote Sens. 2021, 13, 4945. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Z.; Lin, K.; Sheng, S.; Chen, H.; Guo, S.; Xu, C.-Y. Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques. J. Hydrol. 2022, 604, 127255. [Google Scholar] [CrossRef]
- Yang, T.; Sun, F.; Gentine, P.; Liu, W.; Wang, H.; Yin, J.; Du, M.; Liu, C. Evaluation and machine learning improvement of global hydrological model-based flood simulations. Environ. Res. Lett. 2019, 14, 114027. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Zeng, J.; Jiao, Y.; Li, Y.; Zhong, L.; Yao, L. Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 265–278. [Google Scholar] [CrossRef]
- Sharma, S.; Raj Ghimire, G.; Siddique, R. Machine learning for postprocessing ensemble streamflow forecasts. J. Hydroinform. 2023, 25, 126–139. [Google Scholar] [CrossRef]
- Jia, X.; Zwart, J.; Sadler, J.; Appling, A.; Oliver, S.; Markstrom, S.; Willard, J.; Xu, S.; Steinbach, M.; Read, J. Physics-guided recurrent graph model for predicting flow and temperature in river networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), Virtual Event, 29 April–1 May 2021; pp. 612–620. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- De Roo, A. Modelling runoff and sediment transport in catchments using GIS. Hydrol. Process. 1998, 12, 905–922. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B.B. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J. Hydrol. 2019, 575, 864–873. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Predicting flood susceptibility using LSTM neural networks. J. Hydrol. 2021, 594, 125734. [Google Scholar] [CrossRef]
- Podhorányi, M.; Unucka, J.; Bobál’, P.; Říhová, V. Effects of LIDAR DEM resolution in hydrodynamic modelling: Model sensitivity for cross-sections. Int. J. Digit. Earth 2013, 6, 3–27. [Google Scholar] [CrossRef]
- La Salandra, M.; Roseto, R.; Mele, D.; Dellino, P.; Capolongo, D. Probabilistic hydro-geomorphological hazard assessment based on UAV-derived high-resolution topographic data: The case of Basento river (Southern Italy). Sci. Total Environ. 2022, 842, 156736. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.G.F.; Hunter, N.M.; Bates, P.D. Identifiability of distributed floodplain roughness values in flood extent estimation. J. Hydrol. 2005, 314, 139–157. [Google Scholar] [CrossRef]
- Billi, P. Flash flood sediment transport in a steep sand-bed ephemeral stream. Int. J. Sediment Res. 2011, 26, 193–209. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Kopecký, M.; Macek, M.; Wild, J. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 2021, 757, 143785. [Google Scholar] [CrossRef]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef]
- Brakenridge, G.; Karnes, D. The Dartmouth Flood Observatory: An electronic research tool and electronic archive for investigations of extreme flood events. Geosci. Inf. Soc. Proc. 1996, 27, 31–36. [Google Scholar]
- He, F.; Liu, T.; Tao, D. Why resnet works? residuals generalize. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5349–5362. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Hand, D.J.; Till, R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45, 171–186. [Google Scholar] [CrossRef]
- Pan, M.; Lin, P.; Beck, H.E.; Zeng, Z.; Yamazaki, D.; David, C.H.; Lu, H.; Yang, K.; Hong, Y.; Wood, E.F. Global Reach-Level 3-Hourly River Flood Reanalysis (1980–2019). Bull. Am. Meteorol. Soc. 2021, 102, E2086–E2105. [Google Scholar] [CrossRef]
- Guzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 115–131. [Google Scholar] [CrossRef]
Data Type | Subfactor | Resolution | Time | Source and Details |
---|---|---|---|---|
Elevation | Digital elevation model (DEM) | 7.5 arc | 2010 | Google Earth Engine (GEE) |
Slope | ||||
Slope aspect | ||||
General curvature (GC) | ||||
Rainfall | Global precipitation measurement (GPM) | 10 km | 2000–2018 | NASA |
Soil | Soil type | 1:5,000,000 | 2006 | Natural Resources Conservation Service, Department of Agriculture, U.S. |
Vegetation | Normalized difference vegetation index (NDVI) | 1 km | 2000–2018 | GEE |
Lithological | Lithological types | 0.5° | 2012 | PANGAEA |
Climate classification | Köppen-Geiger climate classes (KG) | 1 km | 2017 | Climate Change & Infectious Diseases Group |
River network | River network | Variable | 2020 | Global Runoff Data Centre |
Flood inventory map | Historical flood inundation areas | 250 m | 2000–2018 | GEE |
Flood inventory map | Historical flood points | Variable | 1985–2021 | Dartmouth Flood Observatory |
Flood inventory map | Hydrological simulation of flood inundation areas | 1 km | 1980–2013 | European Commission |
Models | Accuracy | Specificity | Sensitivity | TP | TN | FP | FN | SD | RMSE |
---|---|---|---|---|---|---|---|---|---|
ResNet | 0.851 | 0.905 | 0.742 | 26242 | 10758 | 2761 | 3745 | 0.463 | 0.387 |
ResNet (RP20) | 0.853 | 0.893 | 0.773 | 25906 | 11217 | 3097 | 3286 | 0.470 | 0.383 |
ResNet (RP50) | 0.854 | 0.907 | 0.748 | 26317 | 10842 | 2686 | 3661 | 0.463 | 0.382 |
ResNet (RP100) | 0.853 | 0.909 | 0.742 | 26368 | 10759 | 2635 | 3744 | 0.462 | 0.383 |
ResNet (RP200) | 0.855 | 0.900 | 0.765 | 26095 | 11090 | 2908 | 3413 | 0.467 | 0.381 |
ResNet (RP500) | 0.853 | 0.906 | 0.749 | 26265 | 10861 | 2738 | 3642 | 0.464 | 0.383 |
30% Training Labels | AUC | Accuracy | 50% Training Labels | AUC | Accuracy | 70% Training Labels | AUC | Accuracy |
---|---|---|---|---|---|---|---|---|
ResNet | 0.879 | 0.795 | ResNet | 0.894 | 0.813 | ResNet | 0.913 | 0.834 |
ResNet (RP20) | 0.887 | 0.808 | ResNet (RP20) | 0.909 | 0.827 | ResNet (RP20) | 0.924 | 0.844 |
ResNet (RP50) | 0.906 | 0.824 | ResNet (RP50) | 0.913 | 0.831 | ResNet (RP50) | 0.920 | 0.837 |
ResNet (RP100) | 0.886 | 0.803 | ResNet (RP100) | 0.901 | 0.813 | ResNet (RP100) | 0.916 | 0.834 |
ResNet (RP200) | 0.888 | 0.805 | ResNet (RP200) | 0.910 | 0.829 | ResNet (RP200) | 0.923 | 0.843 |
ResNet (RP500) | 0.895 | 0.815 | ResNet (RP500) | 0.914 | 0.831 | ResNet (RP500) | 0.927 | 0.849 |
Experiment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Min | Max | SD | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | 0.932 | 0.935 | 0.937 | 0.934 | 0.934 | 0.935 | 0.935 | 0.935 | 0.932 | 0.933 | 0.932 | 0.937 | 0.001 | 0.934 |
Accuracy | 0.854 | 0.856 | 0.861 | 0.856 | 0.858 | 0.858 | 0.857 | 0.860 | 0.854 | 0.854 | 0.854 | 0.861 | 0.002 | 0.857 |
Specificity | 0.918 | 0.910 | 0.909 | 0.909 | 0.914 | 0.919 | 0.919 | 0.923 | 0.907 | 0.903 | 0.903 | 0.923 | 0.006 | 0.913 |
Sensitivity | 0.733 | 0.761 | 0.746 | 0.750 | 0.810 | 0.795 | 0.791 | 0.793 | 0.748 | 0.758 | 0.733 | 0.810 | 0.026 | 0.768 |
Experiment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Min | Max | SD | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | 0.932 | 0.925 | 0.927 | 0.929 | 0.930 | 0.928 | 0.931 | 0.931 | 0.928 | 0.927 | 0.925 | 0.932 | 0.002 | 0.929 |
Accuracy | 0.854 | 0.846 | 0.846 | 0.849 | 0.851 | 0.849 | 0.852 | 0.852 | 0.849 | 0.848 | 0.846 | 0.854 | 0.003 | 0.850 |
Specificity | 0.907 | 0.928 | 0.933 | 0.915 | 0.919 | 0.883 | 0.913 | 0.909 | 0.893 | 0.898 | 0.883 | 0.933 | 0.015 | 0.910 |
Sensitivity | 0.748 | 0.682 | 0.673 | 0.718 | 0.717 | 0.780 | 0.730 | 0.738 | 0.761 | 0.747 | 0.673 | 0.780 | 0.033 | 0.729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, K.; Wang, M. A Residual Neural Network Integrated with a Hydrological Model for Global Flood Susceptibility Mapping Based on Remote Sensing Datasets. Remote Sens. 2023, 15, 2447. https://doi.org/10.3390/rs15092447
Liu J, Liu K, Wang M. A Residual Neural Network Integrated with a Hydrological Model for Global Flood Susceptibility Mapping Based on Remote Sensing Datasets. Remote Sensing. 2023; 15(9):2447. https://doi.org/10.3390/rs15092447
Chicago/Turabian StyleLiu, Junfei, Kai Liu, and Ming Wang. 2023. "A Residual Neural Network Integrated with a Hydrological Model for Global Flood Susceptibility Mapping Based on Remote Sensing Datasets" Remote Sensing 15, no. 9: 2447. https://doi.org/10.3390/rs15092447
APA StyleLiu, J., Liu, K., & Wang, M. (2023). A Residual Neural Network Integrated with a Hydrological Model for Global Flood Susceptibility Mapping Based on Remote Sensing Datasets. Remote Sensing, 15(9), 2447. https://doi.org/10.3390/rs15092447