Characterization of Active Riverbed Spatiotemporal Dynamics through the Definition of a Framework for Remote Sensing Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Google Earth Engine Workflow
- Identification of the most appropriate procedure to derive a synthetic representative image for a given synthetic temporal resolution.
- Extraction of the representative active channel for a given synthetic temporal resolution.
- Computation of the multitemporal active channel as the envelope of all extracted active channels over time for the entire temporal extent of the analysis.
2.1.1. Representative Synthetic Index
2.1.2. Representative Active Channel
2.1.3. Multitemporal Active Channel
2.2. Study Areas
2.2.1. Shkumbin River
2.2.2. Tagliamento River
2.2.3. Vjosa River
3. Results
3.1. Representative Synthetic Index
3.2. Representative Active Channel
3.3. Multitemporal Active Channel
- Median and 90th percentile-derived multitemporal envelopes (Landsat, 1985–2022);
- Seasonal vs. annual 90th percentile-derived multitemporal envelopes (Landsat, 1985–2022);
- Coarser and finer spatial resolution–90th percentile-derived multitemporal envelopes (Landsat and Sentinel-2, 2018–2022).
3.3.1. Median and 90th Percentile-Derived Multitemporal Envelopes (Landsat, 1985–2022)
3.3.2. Seasonal vs. Annual 90th Percentile-Derived Multitemporal Envelopes (Landsat, 1985–2022)
3.3.3. Comparing the Spatial Resolution of 90th Percentile-Derived Multitemporal Envelopes (Landsat and Sentinel-2, 2018–2022)
4. Discussion
- The application of temporal reducers is a valid approach to obtain representative synthetic images that can be used to delineate the active channel on an annual or seasonal scale. However, synthetic images computed from single bands or from considered indexes (in this caseNDVI and MNDWI) produce different results, with the former overestimating the active channel compared to the index approach.
- The choice of the percentile of temporal reduction substantially affects the extraction of the active channel. Our work suggests using the 90th percentile with respect to the median.
- An annual temporal resolution is preferable for the computation of the active channel envelope over time in Mediterranean biogeoclimatic regions. Indeed, the annual temporal resolution improves the detection of the riverbed and the distinction from the floodplain in the three case studies. However, the difference between the annual and the seasonal multitemporal active channels is minor. A proper investigation of its effects in other biogeoclimatic regions of the planet is suggested.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Lettenmaier, D.P. Tracking Fresh Water from Space. Science 2003, 301, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J.; de Bund, W.V. The use of remote sensing to characterise hydromorphological properties of European rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Process. Landf. 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Church, M. The trajectory of geomorphology. Prog. Phys. Geogr. Earth Environ. 2010, 34, 265–286. [Google Scholar] [CrossRef]
- Passalacqua, P.; Belmont, P.; Staley, D.M.; Simley, J.D.; Arrowsmith, J.R.; Bode, C.A.; Crosby, C.; DeLong, S.B.; Glenn, N.F.; Kelly, S.A.; et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Sci. Rev. 2015, 148, 174–193. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdiscip. Rev. Water 2021, 8, e21496. [Google Scholar] [CrossRef]
- Spada, D.; Molinari, P.; Bertoldi, W.; Vitti, A.; Zolezzi, G. Multi-Temporal Image Analysis for Fluvial Morphological Characterization with Application to Albanian Rivers. ISPRS Int. J. Geo-Inf. 2018, 7, 314. [Google Scholar] [CrossRef]
- Feng, D.; Gleason, C.J.; Lin, P.; Yang, X.; Pan, M.; Ishitsuka, Y. Recent changes to Arctic river discharge. Nat. Commun. 2021, 12, 6917. [Google Scholar] [CrossRef]
- Bertoldi, W.; Piégay, H.; Buffin-Bélanger, T.; Graham, D.; Rice, S. Applications of Close-Range Imagery in River Research. In Fluvial Remote Sensing for Science and Management; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 341–366. [Google Scholar] [CrossRef]
- Belletti, B.; Dufour, S.; Piégay, H. Regional assessment of the multi-decadal changes in braided riverscapes following large floods (Example of 12 reaches in South East of France). Adv. Geosci. 2013, 37, 57–71. [Google Scholar] [CrossRef]
- Nones, M. Remote sensing and GIS techniques to monitor morphological changes along the middle-lower Vistula river, Poland. Int. J. River Basin Manag. 2021, 19, 345–357. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.D.; Hoey, T.B.; Tolentino, P.L.; Yang, X. National-scale assessment of decadal river migration at critical bridge infrastructure in the Philippines. Sci. Total Environ. 2021, 768, 144460. [Google Scholar] [CrossRef] [PubMed]
- Demarchi, L.; Bizzi, S.; Piégay, H. Regional hydromorphological characterization with continuous and automated remote sensing analysis based on VHR imagery and low-resolution LiDAR data. Earth Surf. Process. Landf. 2017, 42, 531–551. [Google Scholar] [CrossRef]
- Bizzi, S.; Piégay, H.; Demarchi, L.; de Bund, W.V.; Weissteiner, C.; Gob, F. LiDAR-based fluvial remote sensing to assess 50–100-year human-driven channel changes at a regional level: The case of the Piedmont Region, Italy. Earth Surf. Process. Landf. 2019, 44, 471–489. [Google Scholar] [CrossRef]
- Cavallo, C.; Nones, M.; Papa, M.N.; Gargiulo, M.; Ruello, G. Monitoring the morphological evolution of a reach of the Italian Po River using multispectral satellite imagery and stage data. Geocarto Int. 2022, 37, 8579–8601. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tobón-Marín, A.; Barriga, J.C. Analysis of changes in rivers planforms using Google Earth Engine. Int. J. Remote Sens. 2020, 41, 8654–8681. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C. Human impact on river planform within the context of multi-timescale river channel dynamics in a Himalayan river system. Geomorphology 2021, 381, 107659. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Smith, L.C. RivWidth: A Software Tool for the Calculation of River Widths From Remotely Sensed Imagery. IEEE Geosci. Remote Sens. Lett. 2008, 5, 70–73. [Google Scholar] [CrossRef]
- Rusnák, M.; Goga, T.; Michaleje, L.; Šulc Michalková, M.; Máčka, Z.; Bertalan, L.; Kidová, A. Remote Sensing of Riparian Ecosystems. Remote Sens. 2022, 14, 2645. [Google Scholar] [CrossRef]
- Tomsett, C.; Leyland, J. Remote sensing of river corridors: A review of current trends and future directions. River Res. Appl. 2019, 35, 779–803. [Google Scholar] [CrossRef]
- Piégay, H.; Darby, S.E.; Mosselman, E.; Surian, N. A review of techniques available for delimiting the erodible river corridor: A sustainable approach to managing bank erosion. River Res. Appl. 2005, 21, 773–789. [Google Scholar] [CrossRef]
- Ashmore, P. 9.17 Morphology and Dynamics of Braided Rivers; Elsevier: Amsterdam, The Netherlands, 2013; pp. 289–312. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Bussettini, M.; Comiti, F.; Gurnell, A.M.; Mao, L.; Nardi, L.; Vezza, P. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. Geomorphology 2017, 283, 143–157. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Nones, M.; Guerrero, M. Deriving Planform Morphology and Vegetation Coverage From Remote Sensing to Support River Management Applications. Front. Environ. Sci. 2021, 9, 657354. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Yadav, A.; Boothroyd, R.J.; Smith, G.H.S.; Sen, S. Morphological adjustments of the Yamuna River in the Himalayan foothills in response to natural and anthropogenic stresses. Hydrol. Process. 2023, 37, e14934. [Google Scholar] [CrossRef]
- ASIG 2015 Orthophoto. Available online: https://geoportal.asig.gov.al/geonetwork/srv/eng/catalog.search#/metadata/b50abc17-b932-4a96-b97a-ae6cba52c2fb (accessed on 1 July 2023).
- Tockner, K.; Ward, J.V.; Arscott, D.B.; Edwards, P.J.; Kollmann, J.; Gurnell, A.M.; Petts, G.E.; Maiolini, B. The Tagliamento River: A model ecosystem of European importance. Aquat. Sci. Res. Across Bound. 2003, 65, 239–253. [Google Scholar] [CrossRef]
- Schiemer, F.; Beqiraj, S.; Drescher, A.; Graf, W.; Egger, G.; Essl, F.; Frank, T.; Hauer, C.; Hohensinner, S.; Miho, A.; et al. The Vjosa River corridor: A model of natural hydro-morphodynamics and a hotspot of highly threatened ecosystems of European significance. Landsc. Ecol. 2020, 35, 953–968. [Google Scholar] [CrossRef]
- Bajrami, F.; Crivellaro, M.; Cekrezi, B.; Skrame, K.; Zolezzi, G. The Shkumbin River, Albania: Hydromorphological evolution phases. In Proceedings of the 5th International Conference on “The Status and Future of the World’s Large Rivers”, Vienna, Austria, 21–25 August 2023. [Google Scholar]
- Gurnell, A.M.; Bertoldi, W.; Corenblit, D. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Sci. Rev. 2012, 111, 129–141. [Google Scholar] [CrossRef]
- Crivellaro, M.; Serrao, L.; Bertoldi, W.; Bizzi, S.; Vitti, A.; Zolezzi, G. Morphological response to climatic and anthropic pressures of the Vjosa river, a reference system for river management and restoration. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 3–8 April 2022; p. EGU22–9135. [Google Scholar]
- Monegaglia, F.; Zolezzi, G.; Güneralp, I.; Henshaw, A.J.; Tubino, M. Automated extraction of meandering river morphodynamics from multitemporal remotely sensed data. Environ. Model. Softw. 2018, 105, 171–186. [Google Scholar] [CrossRef]
- True Ortofoto della Regione Friuli Venezia Giulia, 2017–2020. Available online: https://www.regione.fvg.it/rafvg/cms/RAFVG/ambiente-territorio/conoscere-ambiente-territorio/FOGLIA5/ (accessed on 1 July 2023).
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology 2015, 251, 122–136. [Google Scholar] [CrossRef]
- Pano, N. Dinamica del litorale albanese (sintesi delle conoscenze). In Atti del 10° Congresso della Associazione Italiana di Oceanologia e Limnologia; G. Lang Publishers: Genova, Italy, 1992; pp. 3–18. [Google Scholar]
- Ciavola, P. Relation between river dynamics and coastal changes in Albania: An assessment integrating satellite imagery with historical data. Int. J. Remote Sens. 1999, 20, 561–584. [Google Scholar] [CrossRef]
- Bertoldi, W.; Gurnell, A.; Surian, N.; Tockner, K.; Zanoni, L.; Ziliani, L.; Zolezzi, G. Understanding reference processes: Linkages between river flows, sediment dynamics and vegetated landforms along the Tagliamento River, Italy. River Res. Appl. 2009, 25, 501–516. [Google Scholar] [CrossRef]
- Nanson, G.; Croke, J. A genetic classification of floodplains. Geomorphology 1992, 4, 459–486. [Google Scholar] [CrossRef]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Bertoldi, W.; Drake, N.A.; Gurnell, A.M. Interactions between river flows and colonizing vegetation on a braided river: Exploring spatial and temporal dynamics in riparian vegetation cover using satellite data. Earth Surf. Process. Landf. 2011, 36, 1474–1486. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Gurnell, A.M.; Bertoldi, W.; Drake, N.A. An assessment of the degree to which Landsat TM data can support the assessment of fluvial dynamics, as revealed by changes in vegetation extent and channel position, along a large river. Geomorphology 2013, 202, 74–85. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Belletti, B.; Micotti, M.; Lastoria, B.; Casaioli, M.; Mariani, S.; Marchetti, G.; Bizzi, S. UAV-based training for fully fuzzy classification of Sentinel-2 fluvial scenes. Earth Surf. Process. Landf. 2020, 45, 3120–3140. [Google Scholar] [CrossRef]
- Demarchi, L.; Bizzi, S.; Piégay, H. Hierarchical Object-Based Mapping of Riverscape Units and in-Stream Mesohabitats Using LiDAR and VHR Imagery. Remote Sens. 2016, 8, 97. [Google Scholar] [CrossRef]
- Hervouet, A.; Dunford, R.; Piégay, H.; Belletti, B.; Trémélo, M.L. Analysis of post-flood recruitment patterns in braided-channel rivers at multiple scales based on an image series collected by unmanned aerial vehicles, ultra-light aerial vehicles, and satellites. GISci. Remote Sens. 2011, 48, 50–73. [Google Scholar] [CrossRef]
- Latella, M.; Bertagni, M.B.; Vezza, P.; Camporeale, C. An Integrated Methodology to Study Riparian Vegetation Dynamics: From Field Data to Impact Modeling. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002094. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Pourghasemi, H.R.; Hooke, J.; Navratil, O.; Kidová, A. Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology 2016, 271, 55–64. [Google Scholar] [CrossRef]
- Ernakovich, J.G.; Hopping, K.A.; Berdanier, A.B.; Simpson, R.T.; Kachergis, E.J.; Steltzer, H.; Wallenstein, M.D. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 2014, 20, 3256–3269. [Google Scholar] [CrossRef]
- Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 2016, 121, 621–649. [Google Scholar] [CrossRef]
- Serrao, L.; Brentari, L.; Terrones, L.E.B.; Yupanqui, H.A.H.; Trigoso, J.P.R.; Zolezzi, G. Hydro-Morphological Disturbance and Suitability for Temporary Agriculture of Riverine Islands in a Tropical Wandering River. Water Resour. Res. 2022, 58, e2021WR030674. [Google Scholar] [CrossRef]
- Rossi, D.; Zolezzi, G.; Bertoldi, W.; Vitti, A. Monitoring Braided River-Bed Dynamics at the Sub-Event Time Scale Using Time Series of Sentinel-1 SAR Imagery. Remote Sens. 2023, 15, 3622. [Google Scholar] [CrossRef]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; van de Giesen, N. A 30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K. Truths of the Riverscape: Moving beyond command-and-control to geomorphologically informed nature-based river management. Geosci. Lett. 2022, 9, 14. [Google Scholar] [CrossRef]
- Fryirs, K.A. River sensitivity: A lost foundation concept in fluvial geomorphology. Earth Surf. Process. Landf. 2017, 42, 55–70. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Bertoldi, W.; Tockner, K.; Wharton, G.; Zolezzi, G. How large is a river? Conceptualizing river landscape signatures and envelopes in four dimensions. WIREs Water 2016, 3, 313–325. [Google Scholar] [CrossRef]
- de Moraes Frasson, R.P.; Pavelsky, T.M.; Fonstad, M.A.; Durand, M.T.; Allen, G.H.; Schumann, G.; Lion, C.; Beighley, R.E.; Yang, X. Global Relationships Between River Width, Slope, Catchment Area, Meander Wavelength, Sinuosity, and Discharge. Geophys. Res. Lett. 2019, 46, 3252–3262. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Rinaldi, M.; Belletti, B.; Bizzi, S.; Blamauer, B.; Braca, G.; Buijse, A.D.; Bussettini, M.; Camenen, B.; Comiti, F.; et al. A multi-scale hierarchical framework for developing understanding of river behaviour to support river management. Aquat. Sci. 2016, 78, 1–16. [Google Scholar] [CrossRef]
- Rinaldi, M.; Gurnell, A.M.; del Tánago, M.G.; Bussettini, M.; Hendriks, D. Classification of river morphology and hydrology to support management and restoration. Aquat. Sci. 2016, 78, 17–33. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Surian, N.; Gurnell, A.M. Characterizing geomorphological change to support sustainable river restoration and management. Wiley Interdiscip. Rev. Water 2014, 1, 483–512. [Google Scholar] [CrossRef]
Morphological Metric | Shkumbin | Tagliamento | Vjosa |
---|---|---|---|
Entire river length [km] | 173 | 172 | 272 |
Catchment area [km] | 2057 | 2580 | 6704 |
Contributing catchment area to the study reach [km] | 604 (29%) | 2300 (88%) | 5242 (78%) |
Reach confinement 1 | Partially Confined | Confined | Partially Confined |
Reach morphology 1 | Braiding | Braiding | Braiding |
Reach lenght [km] | 6.9 | 4.8 | 6.9 |
Mean river corridor width [m] | 500 | 600 | 800 |
Reach Slope [%] | 0.45 | 0.36 | 0.18 |
River | Median [ha] | 90th Percentile [ha] | % Difference 1 |
---|---|---|---|
Shkumbin | 471.7 | 384.0 | 22.8 |
Tagliamento | 308.8 | 289.7 | 6.6 |
Vjosa | 2183.1 | 871.4 | 150.5 |
River | Annual [ha] | Seasonal [ha] | % Difference 1 |
---|---|---|---|
Shkumbin | 384.0 | 378.6 | 1.4 |
Tagliamento | 289.7 | 285.3 | 1.5 |
Vjosa | 871.4 | 882.8 | −1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crivellaro, M.; Vitti, A.; Zolezzi, G.; Bertoldi, W. Characterization of Active Riverbed Spatiotemporal Dynamics through the Definition of a Framework for Remote Sensing Procedures. Remote Sens. 2024, 16, 184. https://doi.org/10.3390/rs16010184
Crivellaro M, Vitti A, Zolezzi G, Bertoldi W. Characterization of Active Riverbed Spatiotemporal Dynamics through the Definition of a Framework for Remote Sensing Procedures. Remote Sensing. 2024; 16(1):184. https://doi.org/10.3390/rs16010184
Chicago/Turabian StyleCrivellaro, Marta, Alfonso Vitti, Guido Zolezzi, and Walter Bertoldi. 2024. "Characterization of Active Riverbed Spatiotemporal Dynamics through the Definition of a Framework for Remote Sensing Procedures" Remote Sensing 16, no. 1: 184. https://doi.org/10.3390/rs16010184
APA StyleCrivellaro, M., Vitti, A., Zolezzi, G., & Bertoldi, W. (2024). Characterization of Active Riverbed Spatiotemporal Dynamics through the Definition of a Framework for Remote Sensing Procedures. Remote Sensing, 16(1), 184. https://doi.org/10.3390/rs16010184