Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. MODIS Snow Cover Products
2.2.2. Ground Snow Depth (SD) Measurements
2.2.3. Landsat OLI Satellite Images
2.2.4. Digital Elevation Model (DEM) Data
3. Methods
3.1. Cloud-Gap-Filled (CGF) Method
3.1.1. Terra and Aqua Daily Combination (TAC)
3.1.2. Temporal Interpolation (TI) Method
3.1.3. Spatio-Temporal Weighted (STW) Method
3.2. Validation Method
3.2.1. Accuracy Assessment Based on “Cloud Assumption”
3.2.2. Validation Based on In-Situ SD Observations
3.2.3. Validation Based on Landsat-8 OLI Images Derived BSC Maps
4. Results
4.1. The Determination and Effectiveness of the CGF Method
4.2. The Accuracy of the CGF MODIS NDSI Product
4.2.1. Validation Based on In Situ SD Observations
4.2.2. Validation Based on High-Resolution BSC Maps
4.3. Spatio-Temporal Patterns of Snow Cover over HMA
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Abbreviation | Full Terminology |
---|---|---|
1 | BSC | Binary snow cover |
2 | CGF | Cloud-gap-filled |
3 | CPD | Cloud persistence days |
4 | CE | Commission error |
5 | CSI | Cubic spline interpolation |
6 | HMA | High Mountain Asia |
7 | LI | Linear interpolation |
8 | MAE | Mean absolute error |
9 | MODIS | Moderate Resolution Imaging Spectroradiometer |
10 | NDSI | Normalized difference snow index |
11 | OE | Omission error |
12 | OA | Overall accuracy |
13 | MO | Overestimation error |
14 | QI | Quadratic interpolation |
15 | RMSE | Root–mean–square–error |
16 | SCD | Snow-covered days |
17 | SCE | Snow-covered extent |
18 | SD | Snow depth |
19 | STW | Spatio-temporal weighted |
20 | TAC | Terra and Aqua combination |
21 | TI | Temporal interpolation |
22 | MU | Underestimation error |
Image Pair No. | Path/Row | Date of Acquisition | Cloud Cover (%) |
---|---|---|---|
1 | 134/37 | 2017/04/18 | 4.28 |
2 | 134/40 | 2017/06/05 | 11.78 |
3 | 134/40 | 2020/02/06 | 4.82 |
4 | 134/40 | 2021/03/28 | 4.44 |
5 | 135/33 | 2017/11/19 | 2.72 |
6 | 135/33 | 2019/05/01 | 3.12 |
7 | 135/33 | 2021/12/16 | 2.61 |
8 | 140/36 | 2018/04/15 | 11.66 |
9 | 141/36 | 2021/11/08 | 2.92 |
10 | 141/40 | 2016/12/28 | 2.78 |
11 | 141/40 | 2018/05/08 | 13.14 |
12 | 141/40 | 2019/02/04 | 3.49 |
13 | 141/40 | 2021/12/10 | 2.95 |
14 | 142/37 | 2016/01/18 | 7.05 |
15 | 142/37 | 2021/12/17 | 3.23 |
16 | 143/36 | 2017/06/04 | 12.29 |
17 | 143/36 | 2021/11/22 | 0.29 |
18 | 144/36 | 2021/11/13 | 2.04 |
19 | 145/30 | 2016/03/27 | 26.43 |
20 | 145/30 | 2018/10/27 | 4.9 |
21 | 145/30 | 2019/09/12 | 6.61 |
22 | 145/39 | 2017/06/02 | 12.39 |
23 | 145/39 | 2018/04/18 | 6.15 |
24 | 145/39 | 2019/12/01 | 3.27 |
25 | 145/39 | 2020/02/03 | 2.31 |
26 | 145/39 | 2021/04/26 | 2.75 |
27 | 146/35 | 2016/07/24 | 3.83 |
28 | 146/35 | 2018/05/11 | 3.37 |
29 | 147/37 | 2017/01/23 | 3.26 |
30 | 147/37 | 2017/07/02 | 13.45 |
31 | 147/37 | 2018/06/03 | 2.45 |
32 | 147/37 | 2019/10/28 | 1.49 |
33 | 148/35 | 2016/12/29 | 28.13 |
34 | 148/35 | 2018/05/09 | 12.37 |
35 | 148/35 | 2019/06/29 | 13.19 |
36 | 149/34 | 2018/01/24 | 2.99 |
37 | 149/34 | 2021/07/11 | 2.26 |
38 | 150/34 | 2016/07/20 | 2.46 |
39 | 150/34 | 2016/11/09 | 4.46 |
40 | 151/33 | 2017/04/09 | 0.3 |
41 | 151/33 | 2019/05/01 | 4.46 |
42 | 151/33 | 2020/08/23 | 2.37 |
43 | 151/33 | 2021/07/09 | 1.59 |
44 | 151/35 | 2017/04/09 | 0.43 |
45 | 151/35 | 2019/05/01 | 9.88 |
References
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Dong, C. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. J. Hydrol. 2018, 561, 573–583. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Karl, T.R.; Knight, R.W. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 1994, 263, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- You, Q.; Wu, T.; Shen, L.; Pepin, N.; Zhang, L.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth Sci. Rev. 2020, 201, 103043. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yang, D.; Wang, J.; Gao, B.; Pan, X.; Zhang, Y.; Hao, X. Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale. J. Geophys. Res. Atmos. 2019, 124, 8874–8895. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.; Elmore, A. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Yao, T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 2019, 64, 417. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, N.; Gauthier, Y.; Bernier, M. Capability of multitemporal ERS-1 SAR data for wet-snow mapping. Remote Sens. Environ. 1997, 60, 174–186. [Google Scholar] [CrossRef]
- Che, T.; Dai, L.; Zheng, X.; Li, X.; Zhao, K. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sens. Environ. 2016, 183, 334–349. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, X.; Xie, H.; Wu, C.; Feng, Q.; Huang, X.; Chen, Q. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ. 2008, 112, 3750–3761. [Google Scholar] [CrossRef]
- Romanov, P.; Gutman, G.; Csiszar, I. Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteorol. 2000, 39, 1866–1880. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef]
- Smith, T.; Bookhagen, B. Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). Sci. Adv. 2018, 4, e1701550. [Google Scholar] [CrossRef]
- Tedesco, M.; Narvekar, P.S. Assessment of the nasa amsr-e swe product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 141–159. [Google Scholar] [CrossRef]
- Crawford, C.J.; Manson, S.M.; Bauer, M.E.; Hall, D.K. Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sens. Environ. 2013, 135, 224–233. [Google Scholar] [CrossRef]
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere 2014, 8, 73–90. [Google Scholar] [CrossRef]
- Jing, Y.; Shen, H.; Li, X.; Guan, X. A two-stage fusion framework to generate a spatio–temporally continuous MODIS NDSI product over the Tibetan Plateau. Remote Sens. 2019, 11, 2261. [Google Scholar] [CrossRef]
- Simic, A.; Fernandes, R.; Brown, R.; Romanov, P.; Park, W. Validation of VEGETATION, MODIS, and GOES+ SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol. Process. 2004, 18, 1089–1104. [Google Scholar] [CrossRef]
- Naegeli, K.; Neuhaus, C.; Salberg, A.; Schwaizer, G.; Wiesmann, A.; Wunderle, S.; Nagler, T. ESA Snow Climate Change Initiative (Snow_cci): Daily Global Snow Cover Fraction—Snow on Ground (SCFG) from AVHRR (1982–2019), version 1.0.; Centre for Environmental Data Analysis: Chilton, UK, 2021. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K. NASA S-NPP VIIRS Snow Cover Products Collection 2 User Guide; National Snow and Ice Data Center: Boulder, CO, USA, 2021. Available online: https://modis-snow-ice.gsfc.nasa.gov/uploads/VIIRS_snow_products_user_guide_version_2.pdf (accessed on 2 August 2022).
- Riggs, G.A.; Hall, D.K.; Román, M.O. MODIS Snow Products Collection 6 User Guide; National Snow and Ice Data Center: Boulder, CO, USA, 2015. Available online: https://modis-snow-ice.gsfc.nasa.gov/uploads/snow_user_guide_C6.1_final_revised_april.pdf (accessed on 10 April 2022).
- Huang, X.; Liang, T.; Zhang, X.; Guo, Z. Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens. 2011, 32, 133–152. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Yan, L. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J. Appl. Remote Sens. 2013, 7, 073582. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Ménard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Xiao, X.; He, T.; Liang, S.; Liu, X.; Ma, Y.; Liang, S.; Chen, X. Estimating fractional snow cover in vegetated environments using MODIS surface reflectance data. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103030. [Google Scholar] [CrossRef]
- Luo, J.; Dong, C.; Lin, K.; Chen, X.; Zhao, L.; Menzel, L. Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography. Remote Sens. Environ. 2022, 275, 113017. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal dynamics of snowline altitude and their responses to climate change in the Tienshan Mountains, Central Asia, During 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44, W03406. [Google Scholar] [CrossRef]
- Lindsay, C.; Zhu, J.; Miller, A.E.; Kirchner, P.; Wilson, T.L. Deriving snow cover metrics for Alaska from MODIS. Remote Sens. 2015, 7, 12961–12985. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ. 2011, 115, 1234–1246. [Google Scholar] [CrossRef]
- Dietz, A.J.; Wohner, C.; Kuenzer, C. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens. 2012, 4, 2432–2454. [Google Scholar] [CrossRef]
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H.; Rittger, K.; Frew, J.E. Time–space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 2008, 31, 1515–1526. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Liang, J.; Li, C.; Wang, X. Extraction and assessment of snowline altitude over the Tibetan plateau using MODIS fractional snow cover data (2001 to 2013). J. Appl. Remote Sens. 2014, 8, 084689. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- López-Burgos, V.; Gupta, H.; Clark, M. Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach. Hydrol. Earth Syst. Sci. 2013, 17, 1809–1823. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Atmos. 2010, 115, D16111. [Google Scholar] [CrossRef]
- Gafurov, A.; Vorogushyn, S.; Farinotti, D.; Duethmann, D.; Merkushkin, A.; Merz, B. Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. Cryosphere 2015, 9, 451–463. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Ma, X.; Wang, Y.; Feng, Q.; Hao, X.; Liang, T. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 2016, 10, 2453–2463. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A. Sequence-based mapping approach to spatio-temporal snow patterns from MODIS time-series applied to Scotland. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 122–135. [Google Scholar] [CrossRef]
- Hou, J.; Huang, C.; Zhang, Y.; Guo, J.; Gu, J. Gap-filling of modis fractional snow cover products via non-local spatio-temporal filtering based on machine learning techniques. Remote Sens. 2019, 11, 90. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Yu, B.; Wu, J.; Kang, E.L.; Xu, M.; Wang, S.; Klein, A.; Chen, Y. Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin. Remote Sens. Environ. 2018, 204, 568–582. [Google Scholar] [CrossRef]
- Li, X.; Fu, W.; Shen, H.; Huang, C.; Zhang, L. Monitoring snow cover variability (2000–2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method. J. Hydrol. 2017, 551, 314–327. [Google Scholar] [CrossRef]
- Xia, Q.; Gao, X.; Chu, W.; Sorooshian, S. Estimation of daily cloud-free, snow-covered areas from MODIS based on variational interpolation. Water Resour. Res. 2012, 48, W09523. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Román, M.O. Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth Syst. Sci. Data 2017, 9, 765–777. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Zhang, G.; Che, T.; Yan, W.; Ye, M.; Ma, N. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold. Sci. Total Environ. 2019, 651, 2712–2726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, F.; Zhang, G.; Yan, W.; Li, S. Enhanced scaling effects significantly lower the ability of MODIS normalized difference snow index to estimate fractional and binary snow cover on the Tibetan Plateau. J. Hydrol. 2021, 592, 125795. [Google Scholar] [CrossRef]
- Jing, Y.; Li, X.; Shen, H. STAR NDSI collection: A cloud-free MODIS NDSI dataset (2001–2020) for China. Earth Syst. Sci. Data 2022, 14, 3137–3156. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Khanal, S.; Lutz, A.F.; Kraaijenbrink, P.D.; van den Hurk, B.; Yao, T.; Immerzeel, W.W. Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales. Water Resour. Res. 2021, 57, e2020WR029266. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; Margulis, S.A. Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset. Cryosphere 2021, 15, 5261–5280. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Wei, J.; Liu, S.; Guo, W.; Yao, X.; Xu, J.; Bao, W.; Jiang, Z. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol. 2014, 55, 213–222. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y. Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia. Sci. Rep. 2021, 11, 17920. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liang, S.; Cao, Y.; He, T.; Wang, D. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci. Rep. 2015, 5, 16820. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, L.; Qiu, Y.; Ji, L.; Tian, F.; Wang, C.; Wang, Z. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digital Earth 2015, 8, 58–75. [Google Scholar] [CrossRef]
- Chu, D.; Luosang, Q.; Lin, Z.; Yang, Y. Spatial-temporal variation of snow depth on Tibetan Plateau over the last 30 years. Meteor. Mon. 2018, 44, 233–243. [Google Scholar] [CrossRef]
- National Meteorological Information Center; Tibet Meteorological Bureau, China. Observational Snow Depth Dataset of the Tibetan Plateau (Version 1.0) (1961–2013); National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over High Mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Guo, H.; Xie, P.; Wang, J.; Hao, X. A conditional probability interpolation method based on a space-time cube for modis snow cover products gap filling. Remote Sens. 2020, 12, 3577. [Google Scholar] [CrossRef]
- Jin, X.; Ke, C.Q.; Xu, Y.Y.; Li, X.C. Spatial and temporal variations of snow cover in the Loess Plateau, China. Int. J. Climatol. 2015, 35, 1721–1731. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, V.; Joshi, P. Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. Int. J. Remote Sens. 2014, 35, 3036–3056. [Google Scholar] [CrossRef]
- Tong, J.; Déry, S.; Jackson, P. Topographic control of snow distribution in an alpine watershed of western Canada inferred from spatially-filtered MODIS snow products. Hydrol. Earth Syst. Sci. 2009, 13, 319–326. [Google Scholar] [CrossRef]
- Hou, J.; Huang, C.; Zhang, Y.; You, Y. Reconstructing a Gap-Free MODIS Normalized Difference Snow Index Product Using a Long Short-Term Memory Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Zhang, P.; Zeng, J.; Gao, S.; Zheng, Z. An Assessment and Error Analysis of MOD10A1 Snow Product Using Landsat and Ground Observations Over China During 2000–2016. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1467–1478. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Jiang, Z.; Li, H.; Hao, X. An effective method for snow-cover mapping of dense coniferous forests in the Upper Heihe River Basin using Landsat Operational Land Imager data. Remote Sens. 2015, 7, 17246–17257. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Che, T.; Huang, X.; Hao, X.; Li, H. Snow cover mapping for complex mountainous forested environments based on a multi-index technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1433–1441. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. MODIS/Terra CGF Snow Cover Daily L3 Global 500 m SIN Grid, version 61; National Snow and Ice Data Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef]
- Huang, X. MODIS Daily Cloudless Binary Snow Products in Northern Hemisphere from 2000 to 2015; National Cryosphere Desert Data Center: Lanzhou, China, 2020. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Che, T.; Ji, W.; Sun, X.; Zhao, Q.; Zhao, H.; Wang, J.; Li, H.; Yang, Q. The NIEER AVHRR snow cover extent product over China–a long-term daily snow record for regional climate research. Earth Syst. Sci. Data 2021, 13, 4711–4726. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Zheng, Z.; Sun, X.; Ji, W.; Zhao, H.; Wang, J.; Li, H.; Wang, X. Development and validation of a new MODIS snow-cover-extent product over China. Hydrol. Earth Syst. Sci. 2022, 26, 1937–1952. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06*) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345–356. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, J.; Xu, J.; Zhao, Y.; Yu, B.; Liu, H.; Wang, S.; Xu, W.; Wu, J.; Zheng, Z. HMRFS–TP: Long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model. Earth Syst. Sci. Data 2022, 14, 4445–4462. [Google Scholar] [CrossRef]
- Li, Y.; Sun, F.; Chen, Y.; Li, B.; Fang, G.; Duan, W.; Xia, Q. The continuing shrinkage of snow cover in High Mountain Asia over the last four decades. Sci. Bull. 2022, 67, 2064–2068. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, X.; Han, L.; Chang, L.; Shi, L. Daily Fractional Snow Cover (FSC) Data Set over High Asia; Science Data Bank: Beijing, China, 2017. [Google Scholar] [CrossRef]
- Han, C.; Shen, Y.; Ouyang, Z.; Xie, P.; Guo, H.; Chen, S.; Wang, X. Daily Cloudless NDSI Data Set with 500m Resolution Snow Season in Northeast China (2000–2020); National Cryosphere Desert Data Center: Lanzhou, China, 2021. [Google Scholar] [CrossRef]
- Dong, C.; Menzel, L. Producing cloud-free MODIS snow cover products with conditional probability interpolation and meteorological data. Remote Sens. Environ. 2016, 186, 439–451. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, L.; Shi, J.; Su, X. A universal ratio snow index for fractional snow cover estimation. IEEE Geosci. Remote Sens. Lett. 2020, 18, 721–725. [Google Scholar] [CrossRef]
Observed SD | |||
---|---|---|---|
Snow Cover (≥ε1 cm) | No Snow (<ε1 cm) | ||
MODIS NDSI | Snow cover (≥ε2) | a | b |
No Snow (<ε2) | c | d | |
Cloud | e | f | |
OA = ((a + d)/(a + b + c + d + e + f)) × 100% | |||
MU = (c/(a + b + c + d)) × 100% MO = (b/(a + b + c + d)) × 100% Number of available pixels = a + b + c + d |
Landsat OLI | |||
---|---|---|---|
Snow Cover | No Snow | ||
MODIS NDSI | Snow cover (≥ε2) | SS | NS |
No now (<ε2) | SN | NN | |
OA = ((SS + NN)/(SS + NS + SN + NN)) × 100% | |||
OE = (SN/(SS + SN)) × 100% CE = (NS/(NN + NS)) × 100% |
Threshold Values for Snow Cover | TAC NDSI | CSI-STW NDSI | ||||
---|---|---|---|---|---|---|
OA (%) | MU (%) | MO (%) | OA (%) | MU (%) | MO (%) | |
ε1 = 1 cm, ε2 = 0.1 | 59.21 | 1.70 | 3.23 | 93.54 | 2.32 | 4.14 |
ε1 = 1 cm, ε2 = 0.29 | 60.26 | 2.07 | 1.16 | 95.39 | 3.15 | 1.46 |
ε1 = 1 cm, ε2 = 0.4 | 60.43 | 2.26 | 0.70 | 95.67 | 3.49 | 0.84 |
ε1 = 2 cm, ε2 = 0.1 | 59.61 | 0.71 | 3.57 | 94.16 | 1.19 | 4.65 |
ε1 = 2 cm, ε2 = 0.29 | 60.86 | 0.93 | 1.34 | 96.71 | 1.56 | 1.73 |
ε1 = 2 cm, ε2 = 0.4 | 61.10 | 1.07 | 0.83 | 97.18 | 1.81 | 1.01 |
ε1 = 3 cm, ε2 = 0.1 | 59.66 | 0.32 | 3.87 | 94.30 | 0.61 | 5.10 |
ε1 = 3 cm, ε2 = 0.29 | 61.03 | 0.45 | 1.55 | 97.15 | 0.83 | 2.02 |
ε1 = 3 cm, ε2 = 0.4 | 61.33 | 0.54 | 0.99 | 97.78 | 0.99 | 1.22 |
ε1 = 5 cm, ε2 = 0.1 | 59.52 | 0.08 | 4.35 | 94.08 | 0.15 | 5.77 |
ε1 = 5 cm, ε2 = 0.29 | 61.00 | 0.11 | 1.94 | 97.26 | 0.20 | 2.54 |
ε1 = 5 cm, ε2 = 0.4 | 61.36 | 0.15 | 1.33 | 98.08 | 0.27 | 1.65 |
Average value | 60.45 | 0.87 | 2.07 | 95.94 | 1.39 | 2.68 |
Number of available pixels | 289,595 | 465,010 |
Metrics (%) | NDSI Threshold: 0.1 | NDSI Threshold: 0.29 | NDSI Threshold: 0.40 | |||
---|---|---|---|---|---|---|
TAC NDSI | CSI-STW NDSI | TAC NDSI | CSI-STW NDSI | TAC NDSI | CSI-STW NDSI | |
SS | 1,765,524 | 2,255,700 | 1,688,278 | 2,158,014 | 1,608,492 | 2,053,084 |
NS | 575,201 | 662,668 | 290,431 | 340,524 | 190,413 | 225,094 |
SN | 21,234 | 32,577 | 98,480 | 130,263 | 178,266 | 235,193 |
NN | 2,990,539 | 3,107,687 | 3,275,309 | 3,429,831 | 3,375,327 | 3,545,261 |
Total | 5,352,498 | 6,058,632 | 5,352,498 | 6,058,632 | 5,352,498 | 6,058,632 |
OE | 1.19 | 1.42 | 5.51 | 5.69 | 9.98 | 10.28 |
CE | 16.13 | 17.58 | 8.15 | 9.03 | 5.34 | 5.97 |
OA | 88.86 | 88.52 | 92.73 | 92.23 | 93.11 | 92.40 |
Metrics (%) | NDSI Threshold: 0.1 | NDSI Threshold: 0.29 | NDSI Threshold: 0.40 |
---|---|---|---|
SS | 489,451 | 469,736 | 444,592 |
NS | 85,163 | 50,093 | 34,681 |
SN | 12,068 | 31,783 | 56,927 |
NN | 119,452 | 154,522 | 169,934 |
Total | 706,134 | 706,134 | 706,134 |
OE | 2.41 | 6.34 | 11.35 |
CE | 41.62 | 24.48 | 16.95 |
OA | 86.23 | 88.41 | 87.03 |
Product Type | References and Dataset DOI | Spatial Coverage | Temporal Coverage | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|---|
SCE | Huang [83] https://doi.org/10.12072/ncdc.CCI.db0044.2020, accessed on 21 March 2022 | Northern Hemisphere | 2000–2015 | Daily | ∼1 km |
SCE | Hao et al. [84] https://doi.org/10.11888/Snow.tpdc.271381, accessed on 21 March 2022 | China | 1981–2019 | Daily | ∼5 km |
SCE | Hao et al. [85] https://doi.org/10.12072/ncdc.I-SNOW.db0001.2020, accessed on 15 May 2022 | China | 2000–2020 | Daily | ∼500 m |
SCE | Muhammad and Thapa [86] https://doi.org/10.1594/PANGAEA.918198, accessed on 21 March 2022 | HMA | 2002–2019 | Daily | ∼500 m |
SCE | Huang et al. [87] https://doi.org/10.11888/Cryos.tpdc.272204, accessed on 30 September 2022 | Tibetan Plateau | 2002–2021 | Daily | ∼500 m |
SCE | Li et al. [88] https://doi.org/10.57760/sciencedb.j00076.00112, accessed on 27 September 2022 | HMA | 1982–2019 | Daily | ∼5 km |
FSC | Qiu et al. [89](<10% Cloud coverage) https://doi.org/10.11922/sciencedb.457, accessed on 21 March 2022 | HMA | 2002–2018 | Daily | ∼500 m |
NDSI | Hall and Riggs [81] https://doi.org/10.5067/MODIS/MOD10A1F.061, accessed on 21 March 2022 | Global coverage | 2000–present | Daily | ∼500 m |
NDSI | Han et al. [90] https://doi.org/10.12072/ncdc.I-SNOW.db0024.2021, accessed on 21 March 2022 | Northeast China | 2000–2020 (snow season) | Daily | ∼500 m |
NDSI | Tang et al. [71] https://doi.org/10.11888/Cryos.tpdc.272836, accessed on 29 September 2022 | HMA | 2000–2021 | Daily | ∼500 m |
NDSI | Jing et al. [59] https://doi.org/10.5281/zenodo.5644386, accessed on 12 July 2022 | China | 2001–2020 | Daily | ∼500 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, G.; Tang, Z.; Dong, C.; Shao, D.; Wang, X. Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sens. 2024, 16, 192. https://doi.org/10.3390/rs16010192
Deng G, Tang Z, Dong C, Shao D, Wang X. Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sensing. 2024; 16(1):192. https://doi.org/10.3390/rs16010192
Chicago/Turabian StyleDeng, Gang, Zhiguang Tang, Chunyu Dong, Donghang Shao, and Xin Wang. 2024. "Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia" Remote Sensing 16, no. 1: 192. https://doi.org/10.3390/rs16010192
APA StyleDeng, G., Tang, Z., Dong, C., Shao, D., & Wang, X. (2024). Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sensing, 16(1), 192. https://doi.org/10.3390/rs16010192