Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Study Data
2.2.1. Satellite Imagery
2.2.2. Dataset Construction
3. Methods
3.1. Calculating Spectral Indices
3.2. Selecting Spectral Indices
3.3. Improving the UNet Model by Incorporating the Image Pyramid
3.4. Model Setting and Compiling
3.4.1. Loss Function
3.4.2. Building the Model
3.5. Evaluation Metrics
4. Results
4.1. Selecting Spectral Features
4.2. Comparison of Models
4.3. Ablation Experiments
4.3.1. Effectiveness for the Image Pyramid Structure and ASPP
4.3.2. Comparison of Different Modules
4.3.3. Comparison of Loss
4.4. Analysis of Results from Various Regions
4.5. Comparison with the Method of Object-Oriented RF
5. Discussion
5.1. Validity of the Proposed Model
5.2. Extraction Model Transferability
5.3. Computational Costs of Extraction Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Zhang, L.; Zhao, J.-F.; Zhang, X.-K.; Wang, Y.; Li, T.-S.; Zhang, W.; Zhou, Y. New Geographic Distribution and Molecular Diversity of Citrus Chlorotic Dwarf-Associated Virus in China. J. Integr. Agric. 2022, 21, 293–298. [Google Scholar] [CrossRef]
- Tang, P.; Du, P.; Xia, J.; Zhang, P.; Zhang, W. Channel Attention-Based Temporal Convolutional Network for Satellite Image Time Series Classification. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef]
- Wei, P.; Ye, H.; Qiao, S.; Liu, R.; Nie, C.; Zhang, B.; Song, L.; Huang, S. Early Crop Mapping Based on Sentinel-2 Time-Series Data and the Random Forest Algorithm. Remote Sens. 2023, 15, 3212. [Google Scholar] [CrossRef]
- Morell-Monzó, S.; Sebastiá-Frasquet, M.-T.; Estornell, J.; Moltó, E. Detecting Abandoned Citrus Crops Using Sentinel-2 Time Series. A Case Study in the Comunitat Valenciana. ISPRS J. Photogramm. Remote Sens. 2023, 201, 54–66. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhan, Y.L.; Tian, Q.J.; Wang, L.; Wang, P.Y.; Zhang, W.M. Winter Wheat Extraction Using Curvilinear Integra Of GF-1 NDVI Time Series. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3174–3177. [Google Scholar]
- Zhang, M.; Li, Q.Z.; Wu, B.F. Investigating the Capability of Multi-Temporal Landsat Images for Crop Identification in High Farmland Fragmentation Regions. In Proceedings of the 1st International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 26–29. [Google Scholar]
- Di, W.; Zhou, Q.B.; Yan, S.; Chen, Z.X. Advances in Research on Crop Identification Using SAR. In Proceedings of the Fourth International Conference on Agro Geoinformatics, Istanbul, Turkey, 20–24 July 2015; pp. 312–317. [Google Scholar]
- Zhang, R.; Tang, Z.; Luo, D.; Luo, H.; You, S.; Zhang, T. Combined Multi-Time Series SAR Imagery and InSAR Technology for Rice Identification in Cloudy Regions. Appl. Sci. 2021, 11, 6923. [Google Scholar] [CrossRef]
- Chen, L.; Chien, T.-W.; Hsu, C.-S.; Tan, C.-H.; Hsu, H.-Y.; Kou, C.-H. Water Requirement for Irrigation of Complicated Agricultural Land by Using Classified Airborne Digital Sensor Images. J. Indian Soc. Remote Sens. 2019, 47, 1307–1314. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Shang, K.; Zhang, L.; Wang, S. Crop Classification Based on Feature Band Set Construction and Object-Oriented Approach Using Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4117–4128. [Google Scholar] [CrossRef]
- Luo, C.; Qi, B.; Liu, H.; Guo, D.; Lu, L.; Fu, Q.; Shao, Y. Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine. Remote Sens. 2021, 13, 561. [Google Scholar] [CrossRef]
- Du, M.; Huang, J.; Wei, P.; Yang, L.; Chai, D.; Peng, D.; Sha, J.; Sun, W.; Huang, R. Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model. Agronomy 2022, 12, 1583. [Google Scholar] [CrossRef]
- Gadiraju, K.K.; Ramachandra, B.; Chen, Z.; Vatsavai, R.R. Multimodal Deep Learning Based Crop Classification Using Multispectral and Multitemporal Satellite Imagery. In Proceedings of the KDD ‘20: The 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 23–27 August 2020; pp. 3234–3242. [Google Scholar]
- Bian, Y.; Li, L.; Jing, W. CACPU-Net: Channel Attention U-Net Constrained by Point Features for Crop Type Mapping. Front. Plant Sci. 2023, 13, 1030595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hu, D.; Wu, C.; Liu, Y.; Yang, J.; Tang, K. Large-Scale Apple Orchard Mapping from Multi-Source Data Using the Semantic Segmentation Model with Image-to-Image Translation and Transfer Learning. Comput. Electron. Agric. 2023, 213, 108204. [Google Scholar] [CrossRef]
- Clark, A.; McKechnie, J. Detecting Banana Plantations in the Wet Tropics, Australia, Using Aerial Photography and U-Net. Appl. Sci. 2020, 10, 2017. [Google Scholar] [CrossRef]
- Niu, Z.; Deng, J.; Zhang, X.; Zhang, J.; Pan, S.; Mu, H. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method. Sensors 2021, 21, 4442. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tian, J.; Li, X.; Wang, L.; Gong, H.; Shi, C.; Nie, S.; Zhu, L.; Chen, B.; Pan, Y.; et al. Developing a Sub-Meter Phenological Spectral Feature for Mapping Poplars and Willows in Urban Environment. ISPRS J. Photogramm. Remote Sens. 2022, 193, 77–89. [Google Scholar] [CrossRef]
- Culman, M.; Rodríguez, A.C.; Wegner, J.D.; Delalieux, S.; Somers, B. Deep Learning for Sub-Pixel Palm Tree Classification Using Spaceborne Sentinel-2 Imagery. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, Online Only, Spain, 3–18 September 2021. [Google Scholar]
- da Costa, L.B.; de Carvalho, O.L.F.; de Albuquerque, A.O.; Gomes, R.A.T.; Guimarães, R.F.; de Carvalho, O.A. Deep Semantic Segmentation for Detecting Eucalyptus Planted Forests in the Brazilian Territory Using Sentinel-2 Imagery. Geocarto Int. 2022, 37, 6538–6550. [Google Scholar] [CrossRef]
- Xue, Z.; Qian, S. Two-Stream Translating LSTM Network for Mangroves Mapping Using Sentinel-2 Multivariate Time Series. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Ge, Y.; Xi, S.; Zhang, T.; Zhang, W. Semi-Supervised Cooperative Regression Model for Small Sample Estimation of Citrus Leaf Nitrogen Content with UAV Images. Int. J. Remote Sens. 2023, 44, 7237–7262. [Google Scholar] [CrossRef]
- Otunga, C.; Odindi, J.; Mutanga, O.; Adjorlolo, C. Evaluating the Potential of the Red Edge Channel for C3 (Festuca spp.) Grass Discrimination Using Sentinel-2 and Rapid Eye Satellite Image Data. Geocarto Int. 2019, 34, 1123–1143. [Google Scholar] [CrossRef]
- Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF. In Proceedings of the Machine Learning: ECML-94, Catania, Italy, 6–8 April 1994; pp. 171–182. [Google Scholar]
- Pan, Y.; Jiang, J.; Liu, Z.; Du, Y.; Xiong, K. Identification of Vegetation Under Natural Gas Leakage by Spectral Index Based on Feature Selection. Int. J. Remote Sens. 2022, 43, 3082–3105. [Google Scholar] [CrossRef]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Y.; Wang, L.; Soares, L.P.; Grohmann, C.H. Feature-Based Constraint Deep CNN Method for Mapping Rainfall-Induced Landslides in Remote Regions With Mountainous Terrain: An Application to Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2644–2659. [Google Scholar] [CrossRef]
- Hu, X.; Huang, C.; Mei, H.; Zhang, H. Landslide Susceptibility Mapping Using an Ensemble Model of Bagging Scheme and Random Subspace–Based Naïve Bayes Tree in Zigui County of the Three Gorges Reservoir Area, China. Bull. Eng. Geol. Environ. 2021, 80, 5315–5329. [Google Scholar] [CrossRef]
- Zeng, Z.; Fan, C.; Xiao, L.; Qu, X. DEA-UNet: A Dense-Edge-Attention UNet Architecture for Medical Image Segmentation. J. Electron. Imaging 2022, 31, 043032. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Qiu, J.; Pan, X.; Zou, J.; Duan, Y.; Pan, Z.; Li, Y. A fast X-shaped foreground segmentation network with CompactASPP. Eng. Appl. Artif. Intell. 2021, 97, 104077. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.Y.; Zhong, Y.F.; Zhao, J. Multi-Scale Enhanced Deep Network for Road Detection. In Proceedings of the IEEE In-ternational Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 3947–3950. [Google Scholar]
- Ding, L.; Zhang, J.; Bruzzone, L. Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a Two-Stage Multiscale Training Architecture. IEEE Trans. Geosci. Remote 2020, 58, 5367–5376. [Google Scholar] [CrossRef]
- Abadal, S.; Salgueiro, L.; Marcello, J.; Vilaplana, V. A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery. Remote Sens. 2021, 13, 4547. [Google Scholar] [CrossRef]
- Wenger, R.; Puissant, A.; Weber, J.; Idoumghar, L.; Forestier, G. Multimodal and Multitemporal Land Use/Land Cover Semantic Segmentation on Sentinel-1 and Sentinel-2 Imagery: An Application on a MultiSenGE Dataset. Remote Sens. 2023, 15, 151. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamamoto, K.; Kuchiba, A.; Koyama, T. Confidence interval for micro-averaged F1 and macro-averaged F1 scores. Appl. Intell. 2022, 52, 4961–4972. [Google Scholar] [CrossRef] [PubMed]
- Navab, N.; Hornegger, J.; Wells, W.M.; Frangi, A.F. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhao, H.S.; Shi, J.P.; Qi, X.J.; Wang, X.G.; Jia, J.Y. Pyramid Scene Parsing Network. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Chen, L.C.E.; Zhu, Y.K.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Se-mantic Image Segmentation. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Fan, T.; Wang, G.; Li, Y.; Wang, H. MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation. IEEE Access 2020, 8, 179656–179665. [Google Scholar] [CrossRef]
- Liu, S.; Huang, D. Receptive Field Block Net for Accurate and Fast Object Detection. In Proceedings of the European conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. YOLOv6: A Single-stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Li, M.; Zhou, G.; Chen, A.; Li, L.; Hu, Y. Identification of tomato leaf diseases based on LMBRNet. Eng. Appl. Artif. Intell. 2023, 123, 106195. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.; Jia, Z.; Li, Z. BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8. Sensors 2023, 23, 8361. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, C.; Sun, Z.; Chen, S. An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas. IEEE Access 2020, 8, 167939–167949. [Google Scholar] [CrossRef]
- Wu, S.; Yang, J.; Wang, X.; Li, X. IoU-Balanced Loss Functions for Single-Stage Object Detection. Pattern Recognit. Lett. 2022, 156, 96–103. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Z.; Yao, X.; Guo, L.; Wei, Z. Remote Sensing Image Scene Classification Using Bag of Convolutional Features. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1735–1739. [Google Scholar] [CrossRef]
- Ulku, I.; Akagundüuzü, E.; Ghamisi, P. Deep Semantic Segmentation of Trees Using Multispectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7589–7604. [Google Scholar] [CrossRef]
- Li, Q.; Jia, W.; Sun, M.; Hou, S.; Zheng, Y. A Novel Green Apple Segmentation Algorithm Based on Ensemble U-Net under Complex Orchard Environment. Comput. Electron. Agric. 2021, 180, 105900. [Google Scholar] [CrossRef]
- Zuo, X.; Lin, H.; Wang, D.; Cui, Z. A Method of Crop Seedling Plant Segmentation on Edge Information Fusion Model. IEEE Access 2022, 10, 95281–95293. [Google Scholar] [CrossRef]
- Zheng, J.; Yuan, S.; Wu, W.; Li, W.; Yu, L.; Fu, H.; Coomes, D. Surveying Coconut Trees Using High-Resolution Satellite Imagery in Remote Atolls of the Pacific Ocean. Coord. Chem. Rev. 2023, 481, 113485. [Google Scholar] [CrossRef]
- Cai, X.; Jing, Q.; Peng, B.; Zhang, Y.; Wang, Y.; Tang, J. Automatic Traffic State Recognition Based on Video Features Extracted by an Autoencoder. Math. Probl. Eng. 2022, 2022, 2850111. [Google Scholar] [CrossRef]
- Chen, S.; Yao, H.; Qiao, F.; Ma, Y.; Wu, Y.; Lu, J. Vehicles Driving Behavior Recognition Based on Transfer Learning. Expert Syst. Appl. 2023, 213, 119254. [Google Scholar] [CrossRef]
Feature | Calculation Formula |
---|---|
Bands | B2, B3, B4, B5, B6, B7, B8, B11, B12 |
Ratio vegetation index (RVI) | RVI = B8/B4 |
Normalized difference red edge index 2 (NDre2) | NDre2 = (B7 − B5)/(B7 + B5) |
Normalized difference vegetation index (NDVI) | NDVI = (B8 − B4)/(B8 + B4) |
Precision | IoU | F1-Score | Recall | |
---|---|---|---|---|
PSPNet | 90.31% | 59.43% | 74.56% | 63.48% |
MANet | 86.52% | 64.69% | 78.75% | 72.25% |
Deeplabv3 | 89.81% | 65.29% | 79.01% | 70.52% |
Deeplabv3+ | 89.97% | 62.73% | 77.10% | 67.45% |
UNet | 85.74% | 68.43% | 81.26% | 77.22% |
Ours | 88.96% | 73.22% | 84.54% | 80.55% |
Precision | IoU | F1-Score | Recall | |
---|---|---|---|---|
UNet | 85.74% | 68.43% | 81.26% | 77.22% |
UNet_ASPP | 90.09% | 72.92% | 84.34% | 79.28% |
Pyramid UNet | 91.74% | 69.96% | 82.32% | 74.66% |
Pyramid UNet_ASPP (ours) | 88.93% | 73.22% | 84.54% | 80.55% |
Precision | IoU | F1-Score | Recall | |
---|---|---|---|---|
Pyramid UNet BasicRFB | 89.13% | 66.22% | 79.68% | 72.04% |
Pyramid UNet SimSPPF | 91.06% | 61.30% | 76.01% | 65.23% |
Pyramid UNet_ASPP (ours) | 88.96% | 73.22% | 84.54% | 80.55% |
Precision | IoU | F1-Score | Recall | |
---|---|---|---|---|
Cross-entropy Loss | 89.51% | 67.32% | 80.47% | 73.09% |
Dice Loss | 92.27% | 59.67% | 74.74% | 62.81% |
IoU Loss | 92.01% | 67.37% | 80.51% | 71.55% |
Weighted Cross-entropy Loss | 88.96% | 73.22% | 84.54% | 80.55% |
Ours | Object-Oriented RF | |
---|---|---|
OA | 97.28% | 87.04% |
Kappa | 0.9051 | 0.4649 |
PA | 97.27% | 78.31% |
UA | 87.55% | 40.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, W.; Ge, Y.; Yuan, S.; Zhang, T.; Liu, X. Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery. Remote Sens. 2024, 16, 36. https://doi.org/10.3390/rs16010036
Li Y, Liu W, Ge Y, Yuan S, Zhang T, Liu X. Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery. Remote Sensing. 2024; 16(1):36. https://doi.org/10.3390/rs16010036
Chicago/Turabian StyleLi, Yong, Wenjing Liu, Ying Ge, Sai Yuan, Tingxuan Zhang, and Xiuhui Liu. 2024. "Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery" Remote Sensing 16, no. 1: 36. https://doi.org/10.3390/rs16010036
APA StyleLi, Y., Liu, W., Ge, Y., Yuan, S., Zhang, T., & Liu, X. (2024). Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery. Remote Sensing, 16(1), 36. https://doi.org/10.3390/rs16010036