Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng’s Heavy Rainfall (2022) and Mechanism Analysis of the Event
Abstract
:1. Introduction
2. Data and Methods
2.1. The Heavy Rainfall Case
2.2. The Model
2.3. AGRI Radiance and MWR Data
2.4. Quality Control
2.5. Model Configurations and Experiment Design
3. Results
3.1. The Impact of Data Assimilation on Analysis Field
3.2. The Impact of Data Assimilation on Humidity Condition
3.3. The Effects of Data Assimilation on 24 h Accumulated Rainfall Forecast
3.4. Case Study
3.4.1. Height and Wind Fields
3.4.2. Water Vapor Condition Analysis
3.4.3. Dynamic Condition Analysis
3.4.4. Terrain Condition Analysis
Experiment Scheme
- ■
- Test1: Reduces the elevation of the Taihang Mountains (34.57°N–40.72°N, 110.27°E–114.55°E) by 50%, smoothing the west-to-east elevation gradient.
- ■
- Test2: Reduces the elevation of the Taihang Mountains by 75%.
- ■
- Test3: Lowers the elevation of the Taihang Mountains by 100%, shifting the transition zone between the plateau and plain to the border area between Shaanxi and Shanxi provinces.
- ■
- Test4: Raises the elevation of the Taihang Mountains by 50%.
- ■
- Test5: Increases the elevation of the Taihang Mountains by 75%.
- ■
- Test6: Elevates the Taihang Mountains by 100%.
Terrain and Precipitation Analysis
4. Discussion
5. Conclusions
- Synergistic effect of data assimilation: The joint assimilation of FY-4A AGRI and MWR data yields a notable improvement in forecast accuracy. This synergistic effect corrects the model’s warm bias in the lower atmosphere and the cold bias in the upper atmosphere, aligning them more closely with actual observations.
- Atmospheric conditions favoring heavy rainfall: The analysis reveals that the pre-trough ascent ahead of the upper-level trough induces significant upward movement of warm and moist air, particularly between 850 hPa and 300 hPa, where relative humidity surpasses 90%. This deep moisture layer, along with strong convergence and upward motion, creates optimal conditions for heavy rainfall development.
- Dynamics of the occurrence and development of heavy rainfall: The study identifies unstable atmospheric stratification in the lower and middle troposphere over Kaifeng during the heavy rainfall event, characterized by strong vertical motion, especially noted between 500 hPa and 300 hPa. A maximum vertical velocity of 0.4 m·s−1 around 350 hPa, coupled with upper-level divergence and lower-level convergence, facilitates vertical ascent. This dynamic setup, together with the accumulation and subsequent release of convective available potential energy, correlates closely with the phases of heavy rainfall development. Moreover, the presence of a strengthening low-level jet at 850 hPa, alongside topographical influences, plays a crucial role in sustaining the rainfall.
- Topographical impact on rainfall patterns: The terrain of the Taihang Mountains significantly influences precipitation distribution in Kaifeng. Decreasing terrain height leads to a marked reduction in both the intensity and extent of precipitation by 50–60%. Conversely, increasing terrain height by more than 50% enhances the precipitation’s center, range, and intensity, with an observed overall increase of 10–20%. Elevating the terrain height by over 75% causes the rain belt to shift eastward by approximately 0.5°E, with a notable eastward movement of the precipitation center. However, further increasing the terrain height beyond 100% does not perpetuate an increase in precipitation; instead, results similar to those observed with a 75% increase are shown.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lehner, B.; Döll, P.; Alcamo, J.; Thomas, H.; Frank, K. Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Clim. Chang. 2006, 75, 273–299. [Google Scholar] [CrossRef]
- Zhai, P.M.; Wang, C.C.; Li, W. A Review on Study of Change in Precipitation Extremes. Clim. Change Res. 2007, 3, 144. [Google Scholar]
- Tao, S.Y. Heavy Rain in China; Science Press: Beijing, China, 1980. [Google Scholar]
- Suppiah, R.; Hennessy, K.J. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int. J. Climatol. 1998, 18, 1141–1164. [Google Scholar] [CrossRef]
- Ding, Y.H.; Zhang, J.Y. Meteorological Disaster Series-Heavy Rain and Flood; Meteorological Press: Beijing, China, 2009. [Google Scholar]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Vitolo, R.; Stephenson, D.B.; Krajewski, W.F. On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol. 2011, 400, 103–120. [Google Scholar] [CrossRef]
- Villarini, G.; Smith, J.A.; Vecchi, G.A. Changing frequency of heavy rainfall over the central United States. J. Clim. 2013, 26, 351–357. [Google Scholar] [CrossRef]
- Lin, J.; Yang, G.M. Spatio-Temporal Characteristics of Rainstorm in China During 1981–2010. Meteorology 2014, 40, 816–826. [Google Scholar]
- Ding, Y.H. The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain Disasters 2019, 38, 395–406. [Google Scholar]
- Gao, Z.; Zhang, J.; Yu, M.; Liu, Z.; Yin, R.; Zhou, S.; Zong, L.; Ning, G.; Xu, X.; Guo, Y.; et al. Role of water vapor modulation from multiple pathways in the occurrence of a record-breaking heavy rainfall event in China in 2021. Earth Space Sci. 2022, 9, e2022EA002357. [Google Scholar] [CrossRef]
- Gao, S.T.; Zhao, S.X.; Zhou, X.P.; Sun, S.Q.; Tao, S.Y. Progress of Research on sub-synoptic scale and mesoscale Torrential Rain systems. Chin. J. Atmos. Sci. 2003, 27, 618–627. [Google Scholar]
- Bao, M. Statistical analysis of continuous rainstorm in China in the past 50 years and its large-scale circulation background. Chin. J. Atmos. Sci. 2007, 31, 779–792. [Google Scholar]
- Luo, Y.; Sun, J.; Li, Y.; Xia, R.; Du, Y.; Yang, S.; Zhang, Y.C.; Chen, J.; Dai, K.; Shen, X.S.; et al. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of the People’s Republic of China. Acta Meteorol. Sin. 2020, 78, 419–450. [Google Scholar]
- Li, Z.C.; Bi, B.G.; Jin, R.H.; Xu, Z.F.; Xue, F. The development and application of the modern weather forecast in China for the recent ten years. Acta Meteorol. Sin. 2014, 72, 1069–1078. [Google Scholar]
- Qin, D.H.; Sun, H.L.; Sun, S.; Liu, Y.J. The strategy of Chinese meteorological Service and development: 2005–2020. Adv. Earth Sci. 2005, 20, 268–274. [Google Scholar]
- Shen, F.; Shu, A.; Li, H.; Xu, D.; Min, J. Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor. Nat. Hazards Earth Syst. Sci. 2021, 21, 1569–1582. [Google Scholar] [CrossRef]
- Xu, D.; Shu, A.; Li, H.; Shen, F.; Min, J.; Su, H. Effects of assimilating clearsky FY-3D MWHS2 radiance on the numerical simulation of tropical storm ampil. Remote Sens. 2021, 13, 2873. [Google Scholar] [CrossRef]
- Shen, F.; Min, J. Assimilating AMSU-A radiance data with the WRF hybrid En3DVAR system for track predictions of typhoon megi (2010). Adv. Atmos. Sci. 2015, 32, 1231–1243. [Google Scholar] [CrossRef]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst. 2016, 8, 1014–1028. [Google Scholar] [CrossRef]
- Kutty, G.; Muraleedharan, R.; Kesarkar, A.P. Impact of representing model error in a hybrid ensemble-variational data assimilation system for track forecast of tropical cyclones over the Bay of Bengal. Pure Appl. Geophys. 2018, 175, 1155–1167. [Google Scholar] [CrossRef]
- De Souza, P.M.M.; Vendrasco, E.P.; Saraiva, I.; Trindade, M.; de Oliveira, M.B.L.; Saraiva, J.; Trindade, M.; Betânia, M.; Oliveira, L.; Saraiva, J.; et al. Impact of radar data assimilation on the simulation of a heavy rainfall event over manaus in the Central Amazon. Pure Appl. Geophys. 2022, 179, 425–440. [Google Scholar] [CrossRef]
- Ye, H.; Pan, X.; You, W.; Zhu, X.; Zang, Z.; Wang, D.; Zhang, X.; Hu, Y.; Jin, S. Impact of CALIPSO profile data assimilation on 3-D aerosol improvement in a size-resolved aerosol model. Atmos. Res. 2021, 264, 105877. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, W.; Cao, X.Q.; Zhao, Y.; Liu, B. Assimilation of all-sky radiance from the FY-3 MWHS-2 with the Yinhe 4D-Var system. J. Meteor. Res. 2022, 36, 750–766. [Google Scholar] [CrossRef]
- Wang, D.C.; You, W.; Zang, Z.L.; Pan, X.B.; Hu, Y.W.; Liang, Y.F. A threedimensional variational data assimilation system for aerosol optical properties based on WRF-chem v4.0: Design, development, and application of assimilating himawari-8 aerosol observations. Geosci. Model. Dev. 2022, 15, 1821–1840. [Google Scholar] [CrossRef]
- Yang, C.; Min, J.Z.; Liu, Z.Q. The impact of AMSR2 radiance data assimilation on the analysis and forecast of typhoon son-tinh. Chin. J. Atmos. Sci. 2017, 41, 372–384. [Google Scholar]
- Wang, Y.; Liu, Z.; Yang, S.; Min, J.; Chen, L.; Chen, Y.; Zhang, T. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over north China. J. Geophys. Res. Atmos. 2018, 123, 3374–3394. [Google Scholar] [CrossRef]
- Dong, Y.H. FY-4 meteorological satellite and its application prospect. Aerosp. Shanghai 2016, 33, 1–8. [Google Scholar]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Shi, Y.; Luo, Z.; Chen, X.; Zhang, Q.; Liu, Y.; Liu, C. Effects of joint assimilation of FY-4A AGRI and ground-based microwave radiometer on heavy rainfall prediction. Front. Environ. Sci. 2023, 11, 1083517. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Liu, R.; Shen, F. Impacts of FY-4A AGRI radiance data assimilation on the forecast of the super typhoon “in-fa” (2021). Remote Sens. 2022, 14, 4718. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Li, H.; Min, J.; Liu, R. Assimilation of GPM microwave imager radiance data with the WRF hybrid 3DEnVar system for the prediction of typhoon chan-hom (2015). Atmos. Res. 2021, 251, 105422. [Google Scholar] [CrossRef]
- Okamoto, K.; Sawada, Y.; Kunii, M. Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Q. J. R. Meteorol. Soc. 2019, 145, 745–766. [Google Scholar] [CrossRef]
- Honda, T.; Kotsuki, S.; Lien, G.Y.; Maejima, Y.; Okamoto, K.; Miyoshi, T. Assimilation of himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res. Atmos. 2018, 123, 965–976. [Google Scholar] [CrossRef]
- Honda, T.; Miyoshi, T.; Lien, G.; Nishizawa, S.; Yoshida, R.; Adachi, S.A.; Terasaki, K.; Okamoto, K.; Tomita, H.; Bessho, K. Assimilating all-sky himawari-8 satellite infrared radiances: A case of typhoon soudelor (2015). Mon. Weather. Rev. 2018, 146, 213–229. [Google Scholar] [CrossRef]
- Minamide, M.; Zhang, F. Assimilation of all-sky infrared radiances from himawari-8 and impacts of moisture and hydrometer initialization on convectionpermitting tropical cyclone prediction. Mon. Weather. Rev. 2018, 146, 3241–3258. [Google Scholar] [CrossRef]
- Cimini, D.; Westwater, E.R.; Gasiewski, A.J.; Klein, M.; Leuski, V.Y.; Liljegren, J.C. Ground-based millimeter-and submillimeter-wave observations of low vapor and liquid water contents. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2169–2180. [Google Scholar] [CrossRef]
- Löhnert, U.; Maier, O. Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech. 2012, 5, 1121–1134. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Li, B.; Mao, J.; Lin, D. Assimilation of ground-based microwave radiometer on heavy rainfall forecast in beijing. Atmosphere 2021, 13, 74. [Google Scholar] [CrossRef]
- Shoji, Y.; Kunii, M.; Saito, K. Mesoscale data assimilation of Myanmar Cyclone Nargis. Part II: Assimilation of GPS-derived precipitable water vapor. J. Meteor. Soc. Japan. 2011, 89, 67–88. [Google Scholar] [CrossRef]
- Geng, X.W.; Min, J.Z.; Xu, D.M. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment. Chin. J. Atmos. Sci. 2020, 44, 679–694. [Google Scholar]
- Xue, J.S. Scientific issues and perspective of assimilation of meteorolo gical satellite data. Acta Meteorol. Sin. 2009, 67, 903–911. [Google Scholar]
- Wang, Q.Y.; Li, S.X.; Zhang, Y.X. The Diagnosis and Analysis of a Regional Rainstorm Process in Kaifeng. Henan Sci. 2012, 30, 1142–1145. [Google Scholar]
- Ji, C.H.; Lv, Z.Y. Analysis of the Causes of a Local Heavy Rainfall in Kaifeng of Henan Province in 2016. J. Anhui Agric. Sci. 2017, 45, 186–189+192. [Google Scholar]
- Ji, C.H.; Li, S.X. Analysis on Extremity of the ”7·19” Severe Rainstorm Process in Kaifeng. Meteorol. Environ. Sci. 2021, 44, 53–62. [Google Scholar]
- Zhang, Z.Q.; Lu, F.; Fang, X.; Zhou, Y.Q. Application and development of FY-4 meteorological satellite. Aerosp. Shanghai 2017, 34, 8–19. [Google Scholar]
- Ware, R.; Carpenter, R.; Güldner, J.; Liljegren, J.; Nehrkorn, T.; Solheim, F.; Vandenberghe, F. A Multichannel Radiometric Profiler of Temperature, Humidity, and Cloud Liquid. Radio Sci. 2003, 38, 8079. [Google Scholar] [CrossRef]
- Caumont, O.; Cimini, D.; Löhnert, U.; Alados-Arboledas, L.; Bleisch, R.; Buffa, F.; Ferrario, M.E.; Haefele, A.; Huet, T.; Madonna, F.; et al. Assimilation of Humidity and Temperature Observations Retrieved from Ground-Based Microwave Radiometers into a Convective-Scale NWP Model. Q. J. R. Meteorol. Soc. 2016, 142, 2692–2704. [Google Scholar] [CrossRef]
- He, W.; Chen, H.; Li, J. Influence of Assimilating Ground-Based Microwave Radiometer Data into the WRF Model on Precipitation. Atmos. Ocean. Sci. Lett. 2020, 13, 107–112. [Google Scholar] [CrossRef]
- Temimi, M.; Fonseca, R.M.; Nelli, N.R.; Valappil, V.K.; Weston, M.J.; Thota, M.S.; Wehbe, Y.; Yousef, L. On the Analysis of Ground-Based Microwave Radiometer Data during Fog Conditions. Atmos. Res. 2020, 231, 104652. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Mao, J.; Li, B.; Guo, C.; Zhang, S. Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere 2021, 12, 551. [Google Scholar] [CrossRef]
- Guo, C.; Ai, W.; Zhang, X.; Guan, Y.; Liu, Y.; Hu, S.; Zhao, X. Correction of sea surface wind speed based on SAR rainfall grade classification using convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 321–328. [Google Scholar] [CrossRef]
- Dee, D.P. Bias and data assimilation. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 3323–3343. [Google Scholar] [CrossRef]
- Zou, X.; Zeng, Z. A quality control procedure for GPS radio occultation data. J. Geop 2006, 111, 2–12. [Google Scholar] [CrossRef]
- Qin, Z.K.; Zou, X.; Li, G.; Ma, X.L. Quality control of surface station temperature data with non-Gaussian observation-minus-background distributions. J. Geophys. Res. Atmos. 2010, 115, D16312. [Google Scholar] [CrossRef]
- Min, L.Z.; Sheng, T.L.; Chen, H.S.; Sun, L.P. Numerical experiment on quality control and variational assimilation of satellite image retrieval. J. Appl. Meteorol. Sci. 2000, 11, 410–418. [Google Scholar]
- Guo, C.; Ai, W.; Hu, S.; Du, X.; Chen, N. Sea surface wind direction retrieval based on convolution neural network and wavelet analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 05, 3868–3876. [Google Scholar] [CrossRef]
- Min, M. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteo-Rological Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Wang, F.; Guo, J.P.; Li, B.; Tang, S. Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, S.; Li, Q.; Ma, L.; Jiang, S.; Lei, L.; Lyu, W.; Wang, Z. Analysis of convective instability data derived from a ground-based microwave radiometer before triggering operations for artificial lightning. Atmos. Res. 2020, 243, 105005. [Google Scholar] [CrossRef]
- Posada, R.; García-Ortega, E.; López, L.; Marcos, J.L. A method to improve the accuracy of continuous measuring of vertical profiles of temperature and water vapor density by means of a ground-based microwave radiometer. Atmos. Res. 2013, 122, 43–54. [Google Scholar]
- Fu, X.; Tan, J.G. Quality control of temperature and humidity profile retrievals from ground-based microwave radiometer. J. Appl. Meteorol. Sci. 2017, 28, 209–217. [Google Scholar]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Dudhia, J.; Ray, P.; Miao, S.; Nikolopoulos, E.; Treinish, L. Understanding the sensitivity of WRF hindcast of Beijing extreme rainfall of 21 July 2012 to microphysics and model initial time. Atmos. Res. 2022, 271, 106085. [Google Scholar] [CrossRef]
- Chen, H.Z.; Tang, J.P.A. Mesoscale analysis and diagnose of an extreme bursting torrential rain. Meteorol. Sci. 2009, 29, 797–803. [Google Scholar]
Spectral Coverage | Channel Number | Spectral Band (μm) | Spatial Resolution (km) | Main Application |
---|---|---|---|---|
VIS/NIR | 1 | 0.45–0.49 | 1 | Aerosol, visibility |
2 | 0.55–0.75 | 0.5 | Fog, clouds | |
3 | 0.75–0.90 | 1 | Aerosol, vegetation | |
4 | 1.36–1.39 | 2 | Cirrus | |
5 | 1.58–1.64 | 2 | Cloud, snow | |
6 | 2.10–2.35 | 2 | Cloud phase, aerosol, vegetation | |
7 | 3.50–4.00 | 2 | Clouds, fire, moisture, snow | |
8 | 3.50–4.00 | 4 | Land surface | |
Midwave IR | 9 | 5.8–6.7 | 4 | Upper-level water vapor |
10 | 6.9–7.3 | 4 | Midlevel water vapor | |
Longwave IR | 11 | 8.0–9.0 | 4 | Volcanic ash, cloud-top phase |
12 | 10.3–11.3 | 4 | SST, LST | |
13 | 11.5–12.5 | 4 | Clouds, low-level WV | |
14 | 13.2–13.8 | 4 | Clouds, air temperature |
Scheme | Assimilated Data | Assimilation Interval |
---|---|---|
CTRL | No | |
Test1 | temperature and humidity profiles from seven MWRs | 1 h |
Test2 | FY-4A AGRI radiance channels 9–10 | 1 h |
Test3 | both FY-4A AGRI and MWR data | 1 h |
Scheme | Changes in Terrain Height/% | Latitude/N | Longitude/E |
---|---|---|---|
CTRL | 0 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Test1 | −50 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Test2 | −75 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Test3 | −100 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Test4 | +50 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Test5 | +75 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Test6 | +100 | 34.57°N–40.72°N | 110.27°E–114.55°E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gao, Z.; Li, Y.; Jiang, Y. Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng’s Heavy Rainfall (2022) and Mechanism Analysis of the Event. Remote Sens. 2024, 16, 1663. https://doi.org/10.3390/rs16101663
Zhang J, Gao Z, Li Y, Jiang Y. Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng’s Heavy Rainfall (2022) and Mechanism Analysis of the Event. Remote Sensing. 2024; 16(10):1663. https://doi.org/10.3390/rs16101663
Chicago/Turabian StyleZhang, Jianbin, Zhiqiu Gao, Yubin Li, and Yuncong Jiang. 2024. "Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng’s Heavy Rainfall (2022) and Mechanism Analysis of the Event" Remote Sensing 16, no. 10: 1663. https://doi.org/10.3390/rs16101663
APA StyleZhang, J., Gao, Z., Li, Y., & Jiang, Y. (2024). Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng’s Heavy Rainfall (2022) and Mechanism Analysis of the Event. Remote Sensing, 16(10), 1663. https://doi.org/10.3390/rs16101663