Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Same Spectral Profile but Different Depth (SSPBDD)
3.2. Parameters
3.2.1. Depth Invariant Index (DII)
3.2.2. Spatial Neighbourhood Parameters
3.3. Depth Inversion Models
3.3.1. Stumpf Model
3.3.2. Random Forest (RF) Model
3.3.3. Support Vector Machine (SVM) Model
3.3.4. Mixture Density Network (MDN) Model
3.4. Training and Evaluation of the Models
4. Results
4.1. RMSEs of Different Models
4.2. Inversion Results of the Four-Band MDNhood Model
4.3. Influence of the SSPBDD Phenomenon on the Depth Inversion via the MDNhood Model
5. Discussion
6. Conclusions
- (1)
- The SSPBDD phenomenon is observed in a relatively high percentage of the pixels. However, the more bands used, the fewer pixels there are with the SSPBDD. The percentage of the SSPBDD pixels is lower in shallower water (0–5 m) and deeper water (≥15 m), while it is higher in intermediate depths (5 m–15 m), where the satellite spectral information is dominated by the water body information, and the bottom substrate information plays a secondary role. These results suggest that these areas are prone to the SSPBDD phenomenon.
- (2)
- The RF model and the SVM model show considerable changes in RMSE under the influence of different spatial distributions in the training datasets, while the Stumpf model and the MDN model are the least affected. However, the Stumpf model typically achieves the lowest inversion accuracy.
- (3)
- The SSPBDD phenomenon can reduce the accuracy of water depth inversion models, the number and the maximum depth difference of the SSPBDD pixels in a group are the main influencing factors. Adding optical bands not only effectively decreases the percentage of SSPBDD pixels but also improves the inversion accuracy of the machine learning models. After incorporating the dual-band logarithmic ratio, DII, and spatial neighbourhood information, the MDN models show a more significant improvement in water depth inversion accuracy. Compared to the other models, the MDN model better handles the uncertainty caused by the SSPBDD phenomenon and the spatial distribution of the training dataset.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-Derived Bathymetry Using the ICESat-2 Lidar and Sentinel-2 Imagery Datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Duplančić Leder, T.; Baučić, M.; Leder, N.; Gilić, F. Optical Satellite-Derived Bathymetry: An Overview and WoS and Scopus Bibliometric Analysis. Remote Sens. 2023, 15, 1294. [Google Scholar] [CrossRef]
- Zhongqiang, W.; Mao, Z.; Wei, S.; Yuan, D.; Zhang, X.; Haiqing, H. Satellite-Derived Bathymetry Based on Machine Learning Models and an Updated Quasi-Analytical Algorithm Approach. Opt. Express 2022, 30, 16773–16793. [Google Scholar]
- Li, N.; Tang, Q.; Chen, Y.; Dong, Z.; Li, J.; Fu, X. Satellite-Derived Bathymetry Integrating Spatial and Spectral Information of Multispectral Images. Appl. Opt. 2023, 62, 2017–2029. [Google Scholar] [CrossRef]
- Lumban-Gaol, Y.; Ohori, K.A.; Peters, R. Extracting Coastal Water Depths from Multi-Temporal Sentinel-2 Images Using Convolutional Neural Networks. Mar. Geod. 2022, 45, 615–644. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; McCarthy, T. Understanding Satellite-Derived Bathymetry Using Sentinel 2 Imagery and Spatial Prediction Models. GISci. Remote Sens. 2020, 57, 271–286. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef]
- Pizani, F.; Maillard, P.; Ferreira, A.F.F.; de Amorim, C.C. Estimation of water quality in a reservoir from Sentinel-2 MSI and Landsat-8 OLI sensors. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 401–408. [Google Scholar] [CrossRef]
- Zhang, A.D. Principle and Application of Remote Sensing; Science Press: Alexandria, Australia, 2016. [Google Scholar]
- Walter, V. Object-Based Classification of Remote Sensing Data for Change Detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Chang, C.; Zhao, G.; Wang, L.; Zhu, X.; Gao, Z. Land Use Classification Based on RS Object-Oriented Method in Coastal Spectral Confusion Region. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2012, 28, 226–231. [Google Scholar]
- Howari, F.; Goodell, P. Characterization of Salt-Crust Build-Up and Soil Salinization in the United Arab Emirates by Means of Field and Remote Sensing Techniques. In Remote Sensing of Soil Salinization; CRC Press: Boca Raton, FL, USA, 2008; pp. 141–152. [Google Scholar]
- Seafloor Substrate (Hard and Soft Bottom) Maps at Select Islands and Atolls in American Samoa, the Mariana Archipelago, and the Pacific Remote Island Areas|InPort. Available online: https://www.fisheries.noaa.gov/inport/item/34310 (accessed on 15 July 2023).
- Cordeiro, M.C.R.; Martinez, J.-M.; Peña-Luque, S. Automatic Water Detection from Multidimensional Hierarchical Clustering for Sentinel-2 Images and a Comparison with Level 2A Processors. Remote Sens. Environ. 2021, 253, 112209. [Google Scholar] [CrossRef]
- International Hydrographic Organization. IHO Standards for Hydrographic Surveys (S-44), 5th ed.; International Hydrographic Organization: Commune de Monaco, Monaco, 2008. [Google Scholar]
- Yang, H.; Ju, J.; Guo, H.; Qiao, B.; Nie, B.; Zhu, L. Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4279–4296. [Google Scholar] [CrossRef]
- Casal, G.; Hedley, J.D.; Monteys, X.; Harris, P.; Cahalane, C.; McCarthy, T. Satellite-Derived Bathymetry in Optically Complex Waters Using a Model Inversion Approach and Sentinel-2 Data. Estuar. Coast. Shelf Sci. 2020, 241, 106814. [Google Scholar] [CrossRef]
- Albright, A.; Glennie, C. Nearshore Bathymetry from Fusion of Sentinel-2 and ICESat-2 Observations. IEEE Geosci. Remote Sens. Lett. 2021, 18, 900–904. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Shallow-water reflectance modelling with applications to remote sensing of ocean floor. Int. Symp. Remote Sens. Environ. 1979, 13, 583–602. [Google Scholar]
- Chen, B.Q.; Yang, Y.M.; Xu, D.W.; Huang, E.H. A dual band algorithm for shallow bathymetric inversion from high spatial resolution imagery with no ground truth. ISPRS J. Photogramm. Remote Sens. 2019, 151, 1–13. [Google Scholar] [CrossRef]
- Afrasinei, G.; Melis, M.; Arras, C.; Pistis, M.; Buttau, C.; Ghiglieri, G. Spatiotemporal and Spectral Analysis of Sand Encroachment Dynamics in Southern Tunisia. Eur. J. Remote Sens. 2018, 51, 352–374. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Li, C.; Chen, Y.; Yang, L. Bathymetry Model Based on Spectral and Spatial Multifeatures of Remote Sensing Image. IEEE Geosci. Remote Sens. Lett. 2020, 17, 37–41. [Google Scholar] [CrossRef]
- Ai, B.; Wen, Z.; Wang, Z.; Wang, R.; Su, D.; Li, C.; Yang, F. Convolutional Neural Network to Retrieve Water Depth in Marine Shallow Water Area From Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2888–2898. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48 Pt 2, 547–556. [Google Scholar] [CrossRef]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, Y.; Jing, W.; Li, Y.; Yang, J.; Deng, Y.; Zhang, Y. A Comparison of Machine Learning and Empirical Approaches for Deriving Bathymetry from Multispectral Imagery. Remote Sens. 2023, 15, 393. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. Adv. Neural Inform. Process. Syst. 1997, 28, 779–784. [Google Scholar]
- Bishop, C.M. Mixture Density Networks. 1994. Available online: https://research.aston.ac.uk/en/publications/mixture-density-networks (accessed on 15 June 2023).
- Saranathan, A.M.; Pahlevan, N. Multi-Parameter Retrieval of Water Quality Indicators from Bayesian and Mixture Density Networks. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 3946–3949. [Google Scholar]
- Kun-tang, C.; Xiaolong, D.; Xingou, X.; Shuyan, L. The Study on Oceanic Vector Wind Field Retrieve Technique Based on Neural Networks of Microwave Scatterometer. Remote Sens. Technol. Appl. 2017, 32, 683–690. [Google Scholar]
- Smith, B.; Pahlevan, N.; Schalles, J.; Ruberg, S.; Errera, R.; Ma, R.; Giardino, C.; Bresciani, M.; Barbosa, C.; Moore, T.; et al. A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks. Front. Remote Sens. 2021, 1, 623678. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Saranathan, A.; Smith, B.; Pahlevan, N. Pahlevan Per-Pixel Uncertainty Quantification and Reporting for Satellite-Derived Chlorophyll-a Estimates via Mixture Density Networks. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Zolfaghari, K.; Pahlevan, N.; Simis, S.G.H.; O’Shea, R.E.; Duguay, C.R. Sensitivity of Remotely Sensed Pigment Concentration via Mixture Density Networks (MDNs) to Uncertainties from Atmospheric Correction. J. Great Lakes Res. 2023, 49, 341–356. [Google Scholar] [CrossRef]
- Mixture Density Network for Water Constituent Estimation. Available online: https://github.com/BrandonSmithJ/MDN (accessed on 15 June 2023).
- Philpot, W. Bathymetric Mapping with Passive Multispectral Imagery. Appl. Opt. 1989, 28, 1569–1578. [Google Scholar] [CrossRef]
Satellite | Region | Acquisition Time (UTC) | Tide Height (m) | Product Level | Band and Spectral Range (nm) | Spatial Resolution (m) |
---|---|---|---|---|---|---|
Sentinel-2B | Oahu Island | 2020-12-01 21:09 | 0.29 | Level 2A | B1: 433–453 | 60 |
B2: 458–523 B3: 543–578 B4: 650–680 | 10 | |||||
Sentinel-2A | Buck Island | 2022-01-29 14:57 | 0.71 |
Band Combination | Percentage of Pixels with the SSPBDD/All Water Pixels within 0–20 m on Oahu Island | Percentage of Pixels with the SSPBDD/All Water Pixels within 0–20 m on Buck Island |
---|---|---|
B2, B3 | 124,662/328,514 ≈ 37.9% | 233,398/251,867 ≈ 92.7% |
B2, B3, B4 | 86,513/328,514 ≈ 26.3% | 141,093/251,867 ≈ 56.0% |
B1, B2, B3, B4 | 12,188/328,514 ≈ 3.7% | 1878/251,867 ≈ 0.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, E.; Chen, B.; Luo, K.; Chen, S. Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data. Remote Sens. 2024, 16, 1759. https://doi.org/10.3390/rs16101759
Huang E, Chen B, Luo K, Chen S. Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data. Remote Sensing. 2024; 16(10):1759. https://doi.org/10.3390/rs16101759
Chicago/Turabian StyleHuang, Erhui, Benqing Chen, Kai Luo, and Shuhan Chen. 2024. "Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data" Remote Sensing 16, no. 10: 1759. https://doi.org/10.3390/rs16101759
APA StyleHuang, E., Chen, B., Luo, K., & Chen, S. (2024). Effect of the One-to-Many Relationship between the Depth and Spectral Profile on Shallow Water Depth Inversion Based on Sentinel-2 Data. Remote Sensing, 16(10), 1759. https://doi.org/10.3390/rs16101759