Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Water Sampling
2.3. Chemical and Physical Parameters
2.4. Remote Sensing Detection
3. Results
3.1. Chlorophyll-a Field Values
3.2. Remote Sensing Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Yamaç, S.S.; Velmurugan, A. Applications of remote sensing and GIS in natural resource management. J. Andaman Sci. Assoc. 2015, 20, 1–6. [Google Scholar]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; Millán, V.E.G.; Strasser, T.; Borre, J.V.; Toon, S.; Michael, F. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- Cabello, J.; Fernández, N.; Alcaraz-Segura, D.; Oyonarte, C.; Piñeiro, G.; Altesor, A.; Delibes, M.; Paruelo, J. The ecosystem functioning dimension in conservation: Insights from remote sensing. Biodivers. Conserv. 2012, 21, 3287–3305. [Google Scholar] [CrossRef]
- Khorasani, H.; Kerachian, R.; Malakpour-Estalaki, S. Developing a comprehensive framework for eutrophication management in off-stream artificial lakes. J. Hydrol. 2018, 562, 103–124. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Zhao, D.; Xing, X.; Liu, Y.; Yang, J.; Wang, L. The Relation of Chlorophyll- a Concentration with the Reflectance Peak near 700 Nm in Algae-Dominated Waters and Sensitivity of Fluorescence Algorithms for Detecting Algal Bloom. Int. J. Remote Sens. 2010, 31, 39–48. [Google Scholar] [CrossRef]
- Kolokoussis, P.; Karathanassi, V. Oil Spill Detection and Mapping Using Sentinel 2 Imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef]
- Laneve, G.; Bruno, M.; Mukherjee, A.; Messineo, V.; Giuseppetti, R.; De Pace, R.; Magurano, F.; D’Ugo, E. Remote sensing detection of algal blooms in a lake impacted by petroleum hydrocarbons. Remote Sens. 2022, 14, 121. [Google Scholar] [CrossRef]
- Bulgarelli, B.; Djavidnia, S. On MODIS retrieval of oil spill spectral properties in the marine environment. IEEE Geosci. Remote Sens. Lett. 2012, 9, 398–402. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755. [Google Scholar] [CrossRef] [PubMed]
- Luciani, R.; Laneve, G. Oil Spill Detection Using Optical Sensors: A Multi-Temporal Approach. Satell. Oceanogr. Meteorol. 2018, 3. [Google Scholar] [CrossRef]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Y.; Lin, S.; Xi, J. Remote Sensing of the Seasonal and Interannual Variability of Surface Chlorophyll-a Concentration in the Northwest Pacific over the Past 23 Years (1997–2020). Remote Sens. 2022, 14, 5611. [Google Scholar] [CrossRef]
- Marcelli, M.; Piermattei, V.; Madonia, A.; Mainardi, U. Design and application of new low-cost instruments for marine environmental research. Sensors 2014, 14, 23348–23364. [Google Scholar] [CrossRef] [PubMed]
- Karetnikov, S.; Leppäranta, M.; Montonen, A. A time series of over 100 years of ice seasons on Lake Ladoga. J. Great Lakes Res. 2017, 43, 979–988. [Google Scholar] [CrossRef]
- Gbagir, A.-M.G.; Colpaert, A. Assessing the trend of the trophic state of lake Ladoga based on multi-year (1997-2019) CMEMS globcolour-merged CHL-OC5 satellite observations. Sensors 2020, 20, 6881. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote sensing evaluation of ecological restoration engineering effect: A case study of the Yongding River watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Bouffard, D.; Kiefer, I.; Wüest, A.; Wunderle, S.; Odermatt, D. Are surface temperature and chlorophyll in a large deep lake related? An analysis based on satellite observations in synergy with hydrodynamic modelling and in-situ data. Remote Sens. Environ. 2018, 209, 510–523. [Google Scholar] [CrossRef]
- Fichot, C.G.; Matsumoto Holt, K.B.; Gierach, M.M.; Tokos, K.S. Assessing change in the overturning trend of the Laurentian Great Lakes using remotely sensed lake surface water temperatures. Remote Sens. Environ. 2019, 235, 111427. [Google Scholar] [CrossRef]
- Yao, F.F.; Wang, J.D.; Wang, C.; Crétaux, J.F. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Chen, W.F.; Li, G.; Yang, W.; Yi, S.; Luo, W. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle. Remote Sens. Environ. 2020, 237, 111554. [Google Scholar] [CrossRef]
- Cordell, S.; Questad, E.J.; Asner, G.P.; Kinney, K.M.; Thaxton, J.M.; Uowolo, A.; Brooks, S.; Chynoweth, M.W. Remote sensing for restoration planning: How the big picture can inform stakeholders. Restor. Ecol. 2017, 25, S147–S154. [Google Scholar] [CrossRef]
- Escoto, J.E.; Blanco, A.C.; Argamosa, R.J.; Medina, J.M. Pasig river water quality estimationusing an empirical ordinary least squares regression model of Sentinel 2 satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 161–168. [Google Scholar] [CrossRef]
- Barbanti, L.; Carollo, A.; Libera, V. Carta batimetrica del Lago di Vico. In Indagini Limnologiche sui Laghi di Bolsena, Bracciano, Vico e Trasimeno; Series Quaderni dell’Istituto di Ricerca Sulle Acque, CNR, Eds.; CNR: Roma, Italia, 1974; Volume 17. [Google Scholar]
- Gelosi, EClassification of the ecological status of volcanic lakes in Central Italy. Available online: https://www.semanticscholar.org/paper/Classification-of-the-ecological-status-of-volcanic-Margaritora-Bazzanti/e663484d5d2546f731628e30e7efbf26f6076444 (accessed on 15 May 2024).
- Dyer, M. The water quality at Lago di Vico during 1992–1993. Sci. Total Environ. 1995, 171, 77–83. [Google Scholar] [CrossRef]
- Franzoi, P.; Scialanca, F.; Castaldelli, G. Lago di Vico (Italia Centrale): Analisi delle principali variabili fisiche e chimiche delle acque in relazione al’evoluzione trofica. Available online: https://www.semanticscholar.org/paper/Lago-di-Vico-(Italia-Centrale)%3A-analisi-delle-e-in-Franzoi-Scialanca/b7f46a07d166cb40ee581eef98c704b84d695aa2 (accessed on 15 May 2024).
- Mazza, R.; Capelli, G.; Teoli, P.; Bruno, M.; Messineo, V.; Melchiorre, S.; Di Corcia, A. Toxin Contamination of Surface and Subsurface Water Bodies Connected with Lake Vicos Watershed (Central Italy). In Drinking Water: Contamination, Toxicity and Treatment; Romero, J.D., Molina, P.S., Eds.; Nova Publishers Inc.: New York, NY, USA, 2008; pp. 1–100. [Google Scholar]
- Bruno, M.; Gallo, P.; Messineo, V.; Melchiorre, S. Health risk associated with microcystin presence in the environment: The case of an Italian Lake (Lake Vico, Central Italy). Int. J. Environ. Prot. 2012, 2, 34–41. [Google Scholar]
- Chondrogianni, C.; Ariztegui, D.; Guilizzoni, P.; Lami, A. Lakes Albano and Nemi (central Italy): An overview. In Palaeoenvironmental Analysis of Italian Crater Lakes and Adriatic Sediments (PALICLAS); Guilizzoni, P., Oldfield, F., Eds.; dell’Istituto Italiano di Idrobiologia: Pallanza, Italy, 1996; Volume 55, pp. 17–22. [Google Scholar]
- Cannicci, G. Su una eccezionale fioritura del Lago di Albano. Boll. Pesca Piscic. Idrobiol. 1953, 8, 221–233. [Google Scholar]
- Utermöhl, H. Neue Wege in der quantitativen Earfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verh. Int. Ver. Theor. Angew. Limnol. 1931, 5, 567–596. [Google Scholar]
- Lund, J.W.G.; Kipling, C.; Le Cren, E. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiology 1958, 11, 143–170. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Conroy, T.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.F.; Binding, C.; Bracher, A.; et al. GLORIA—A Globally Representative Hyperspectral in Situ Dataset for Optical Sensing of Water Quality. Sci. Data 2023, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Group 17, SCOR Working. Determination of Photosynthetic Pigments in Sea-Water. 1966. Available online: https://repository.oceanbestpractices.org/handle/11329/2339 (accessed on 15 May 2024).
- Niroumand-Jadidi, M.; Bovolo, F.; Bresciani, M.; Gege, P.; Giardino, C. Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2. Remote Sens. 2022, 14, 4596. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Giardino, C.; Alikas, K.; Kangro, K.; Rõõm, E.-I.; Vaičiūtė, D.; Bučas, M.; Tiškus, E.; et al. Detecting Climate Driven Changes in Chlorophyll-a Using High Frequency Monitoring: The Impact of the 2019 European Heatwave in Three Contrasting Aquatic Systems. Sensors 2021, 21, 6242. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Nguyen, H.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Darmawan, A.; Herawati, E.Y.; Azkiya, M.; Cahyani, R.N.; Aryani, S.H.; Fradaningtyas; Hardiyanti, C.A.; Dwiyanti, R.S.M. Seasonal Monitoring of Chlorophyll-a with Landsat 8 Oli in the Madura Strait, Pasuruan, East Java, Indonesia. Georaphy. Environ. Sustain. 2021, 14, 22–29. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, J.; Zheng, Z. Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8- 9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression. Int. J. Environ. Res. Public Health 2022, 19, 7725. [Google Scholar] [CrossRef] [PubMed]
- Buma, W.G.; Lee, S.-I. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Brenes, G.C.; Alpizar, L.H.; Perez, I.A. Chlorophyll-a Modeling in the Sierpe River with Sentinel-2 and Google Earth Engine. In Proceedings of the 2022 IEEE 4th International Conference on BioInspired Processing (BIP), Cartago, Costa Rica, 15–17 November 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Moradi, M.; Keivan, K. Spatio-Temporal Variability of Red-Green Chlorophyll-a Index from MODIS Data—Case Study: Chabahar Bay, SE of Iran. Cont. Shelf Res. 2019, 184, 1–9. [Google Scholar] [CrossRef]
- Poddar, S.; Chacko, N.; Swain, D. Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Front. Mar. Sci. 2019, 6, 598. [Google Scholar] [CrossRef]
- Messineo, V.; Mattei, D.; Melchiorre, S.; Salvatore, G.; Bogialli, S.; Salzano, R.; Mazza, R.; Capelli, G.; Bruno, M. Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon 2006, 48, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.; Messineo, V. Extraction and Quantification of BMAA from Water Samples. In Protocols for Cyanobacteria Sampling and Detection of Cyanotoxin; Thajuddin, N., Sankara Narayanan, A., Dhanasekaran, D., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. 2001, 106, 7163–7180. [Google Scholar] [CrossRef]
- Knapp, D.; Fernández Castro, B.; Marty, D.; Loher, E.; Köster, O.; Wüest, A.; Posch, T. The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium Planktothrix rubescens Triggered by Stratification Dynamics and Irradiance. Front. Microbiol. 2021, 25, 705914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neil, C.; Spyrakos, E.; Hunter, P.; Tyler, A. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Uudeberg, K.; Ansko, I.; Põru, G.; Ansper, A.; Reinart, A. Using Optical Water Types to Monitor Changes in Optically Complex Inland and Coastal Water. Remote Sens. 2019, 11, 2297. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Peters, S.; Laanen, M.; Padula, R.; Cingolani, A.; Charavgis, F.; Giardino, C. Shorter Blooms Expected with Longer Warm Periods under Climate Change: An Example from a Shallow Meso-Eutrophic Mediterranean Lake. Hydrobiologia 2022, 849, 3963–3978. [Google Scholar] [CrossRef]
Algorithm | Equation | Reference |
---|---|---|
Jaelani | 0.9889 (red/NIR5) − 0.3619 | [43] |
Empirical (MSI) | NIR5 − (red + NIR6)/2 | [44] |
FLH Violet | green − (red + blue − red) | [45] |
Band Ratio 1 | 1.1116 (NIR5/blue) + 0.7016 | [46] |
Band Ratio 2 | blue/green | [47] |
Band Ratio 3 | red/blue | [47] |
Band Ratio 4 | red/green | [48] |
Lake | Atm. Correction | Sentinel-2 | |||||
---|---|---|---|---|---|---|---|
x | Models | N | Range mg/m3 | R2 | RMSE | ||
Albano | ACOLITE | B/G | −8.7 + (28.9 × x) | 10 | 1–22 | 0.69 | 2.7 |
Sen2cor | B/G | −25.6 + (46.9 × x) | 10 | 1–22 | 0.57 | 3.1 | |
Vico | ACOLITE | Band Ratio 1 | −9.3 + (15.6 × x) | 7 | 1–23 | 0.76 | 3.1 |
Sen2cor | Band Ratio 1 | −26.5 + (29.5 × x) | 8 | 1–23 | 0.76 | 3.12 | |
Bolsena | ACOLITE | Empirical | 3.32 + (-795.5 × x) | 7 | 1–6 | 0.72 | 0.7 |
Sen2cor | R/B | 0.18 + (11.15 × x) | 7 | 1–6 | 0.68 | 0.74 | |
Trasimeno | ACOLITE | Empirical | 1.47 + (1127.7 × x) | 16 | 1–37 | 0.72 | 6.8 |
Sen2cor | Empirical | −0.32 + (1186.2 × x) | 16 | 1–37 | 0.76 | 6.4 |
Lake | Atm. Correction | Landsat | |||||
---|---|---|---|---|---|---|---|
x | Models | N | Range mg/m3 | R2 | RMSE | ||
Albano | ACOLITE | R/G | −26.296 +(68.67 × x) | 10 | 1–11 | 0.86 | 1.2 |
LaSRC/LEDAPS | FLH Violet | 3.45 + (465.008 × x) | 10 | 1–11 | 0.56 | 2.23 | |
Vico | ACOLITE | Jaelani | 1.75 + (8.047 × x) | 14 | 0.8–14.3 | 0.79 | 1.9 |
LaSRC/LEDAPS | Jaelani | 0.681 + (7.45 × x) | 14 | 0.8–14.3 | 0.56 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laneve, G.; Téllez, A.; Kallikkattil Kuruvila, A.; Bruno, M.; Messineo, V. Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sens. 2024, 16, 1792. https://doi.org/10.3390/rs16101792
Laneve G, Téllez A, Kallikkattil Kuruvila A, Bruno M, Messineo V. Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sensing. 2024; 16(10):1792. https://doi.org/10.3390/rs16101792
Chicago/Turabian StyleLaneve, Giovanni, Alejandro Téllez, Ashish Kallikkattil Kuruvila, Milena Bruno, and Valentina Messineo. 2024. "Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy" Remote Sensing 16, no. 10: 1792. https://doi.org/10.3390/rs16101792
APA StyleLaneve, G., Téllez, A., Kallikkattil Kuruvila, A., Bruno, M., & Messineo, V. (2024). Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sensing, 16(10), 1792. https://doi.org/10.3390/rs16101792