Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = ACOLITE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10881 KB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 516
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

15 pages, 12546 KB  
Article
Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework
by Weibin Gu, Ji Liang, Lian Yang, Shanshan Guo and Ruixin Jia
Water 2025, 17(15), 2190; https://doi.org/10.3390/w17152190 - 23 Jul 2025
Viewed by 339
Abstract
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and [...] Read more.
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and adaptability, this study focuses on Lake Nanyi in Anhui Province. By integrating Sentinel-2 satellite imagery with in situ water quality measurements and employing the AutoML framework AutoGluon, a Chl-a inversion model based on narrow-band spectral features is developed. Feature selection and model ensembling identify bands B6 (740 nm) and B7 (783 nm) as the optimal combination, which are then applied to multi-temporal imagery from October 2022 to generate spatial mean distributions of Chl-a in Lake Nanyi. The results demonstrate that the AutoGluon framework significantly outperforms traditional methods in both model accuracy (R2: 0.94, RMSE: 1.67 μg/L) and development efficiency. The retrieval results reveal spatial heterogeneity in Chl-a concentration, with higher concentrations observed in the southern part of the western lake and the western side of the eastern lake, while the central lake area exhibits relatively lower concentrations, ranging from 3.66 to 21.39 μg/L. This study presents an efficient and reliable approach for lake ecological monitoring and underscores the potential of AutoML in water color remote sensing applications. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 15945 KB  
Article
Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
by Dimitris Poursanidis and Stelios Katsanevakis
Remote Sens. 2025, 17(14), 2398; https://doi.org/10.3390/rs17142398 - 11 Jul 2025
Viewed by 497
Abstract
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of [...] Read more.
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of habitat monitoring under the EU Natura 2000 directive and the Nature Restoration Regulation, this study investigates the utility of high-resolution satellite remote sensing for mapping subtidal brown algae and associated benthic classes. Using imagery from the SuperDove sensor (Planet Labs, San Francisco, CA, USA), we developed an integrated mapping workflow at the Natura 2000 site GR2420009. Aquatic reflectance was derived using ACOLITE v.20250114.0, and both supervised classification and spectral unmixing were implemented in the EnMAP Toolbox v.3.16.3 within QGIS. A Random Forest classifier (100 fully grown trees) achieved high thematic accuracy across all habitat types (F1 scores: 0.87–1.00), with perfect classification of shallow soft bottoms and strong performance for Cystoseira s.l. (F1 = 0.94) and Seagrass (F1 = 0.93). Spectral unmixing further enabled quantitative estimation of fractional cover, with high predictive accuracy for deep soft bottoms (R2 = 0.99; RPD = 18.66), shallow soft bottoms (R2 = 0.98; RPD = 8.72), Seagrass (R2 = 0.88; RPD = 3.01) and Cystoseira s.l. (R2 = 0.82; RPD = 2.37). The lower performance for rocky reefs with other cover (R2 = 0.71) reflects spectral heterogeneity and shadowing effects. The results highlight the effectiveness of combining classification and unmixing approaches for benthic habitat mapping using CubeSat constellations, offering scalable tools for large-area monitoring and ecosystem assessment. Despite challenges in field data acquisition, the presented framework provides a robust foundation for remote sensing-based conservation planning in optically shallow marine environments. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Graphical abstract

24 pages, 13032 KB  
Article
Testing the Limits of Atmospheric Correction over Turbid Norwegian Fjords
by Elinor Tessin, Børge Hamre and Arne Skodvin Kristoffersen
Remote Sens. 2024, 16(21), 4082; https://doi.org/10.3390/rs16214082 - 1 Nov 2024
Viewed by 1346
Abstract
Atmospheric correction, the removal of the atmospheric signal from a satellite image, still poses a challenge over optically complex coastal water. Here, we present the first atmospheric correction validation study performed in optically complex Norwegian fjords. We compare in situ reflectance measurements and [...] Read more.
Atmospheric correction, the removal of the atmospheric signal from a satellite image, still poses a challenge over optically complex coastal water. Here, we present the first atmospheric correction validation study performed in optically complex Norwegian fjords. We compare in situ reflectance measurements and chlorophyll-a concentrations from Western Norwegian fjords with atmospherically corrected Sentinel-3 Ocean and Land Colour Instrument observations and chlorophyll-a retrievals. Measurements were taken in Hardangerfjord, Bjørnafjord and Møkstrafjord during a bright green coccolithophore bloom in May 2022, and during a period of no apparent discoloration in April 2023. Coccolithophore blooms generally peak in the blue region (490 nm), but spectra measured in this bloom peaked in the green region (559 nm), possibly due to absorption by colored dissolved organic matter (aCDOM(440) = 0.18 ± 0.01 m−1) or due to high cell counts (up to 15 million cells/L). We tested a wide range of atmospheric correction algorithms, including ACOLITE, BAC, C2RCC, iCOR, L2gen, POLYMER and the SNAP Rayleigh correction. Surprisingly, atmospheric correction algorithms generally performed better during the bloom (average MAE = 1.25) rather than in the less scattering water in the following year (average MAE = 4.67), possibly because the high water-leaving radiances due to the high backscattering by coccolithophores outweighed the adjacency effect. However, atmospheric correction algorithms consistently underestimated water-leaving reflectance in the bloom. In non-bloom matchups, most atmospheric correction algorithms overestimated the water-leaving reflectance. POLYMER appears unsuitable for use over coccolithophore blooms but performed well in non-bloom matchups. Neither BAC, used in the official Level-2 OLCI products, nor C2RCC performed well in the bloom. Nine chlorophyll-a retrieval algorithms, including two algorithms based on neural nets, four based on red and near-infrared bands and three maximum band-ratio algorithms, were also tested. Most chlorophyll-a retrieval algorithms did not perform well in either year, although several did perform within the 70% accuracy threshold for case-2 waters. A red-edge algorithm performed best in the coccolithophore blooms, while a maximum band-ratio algorithm performed best in the following year. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

15 pages, 2289 KB  
Technical Note
Detection of Complex Formations in an Inland Lake from Sentinel-2 Images Using Atmospheric Corrections and a Fully Connected Deep Neural Network
by Damianos F. Mantsis, Anastasia Moumtzidou, Ioannis Lioumbas, Ilias Gialampoukidis, Aikaterini Christodoulou, Alexandros Mentes, Stefanos Vrochidis and Ioannis Kompatsiaris
Remote Sens. 2024, 16(20), 3913; https://doi.org/10.3390/rs16203913 - 21 Oct 2024
Viewed by 1277
Abstract
The detection of complex formations, initially suspected to be oil spills, is investigated using atmospherically corrected multispectral satellite images and deep learning techniques. Several formations have been detected in an inland lake in Northern Greece. Four atmospheric corrections (ACOLITE, iCOR, Polymer, and C2RCC) [...] Read more.
The detection of complex formations, initially suspected to be oil spills, is investigated using atmospherically corrected multispectral satellite images and deep learning techniques. Several formations have been detected in an inland lake in Northern Greece. Four atmospheric corrections (ACOLITE, iCOR, Polymer, and C2RCC) that are specifically designed for water applications are examined and implemented on Sentinel-2 multispectral satellite images to eliminate the influence of the atmosphere. Out of the four algorithms, iCOR and ACOLITE are able to depict the formations sufficiently; however, the latter is chosen for further processing due to fewer uncertainties in the depiction of these formations as anomalies across the multispectral range. Furthermore, a number of formations are annotated at the pixel level for the 10 m bands (red, green, blue, and NIR), and a deep neural network (DNN) is trained and validated. Our results show that the four-band configuration provides the best model for the detection of these complex formations. Despite not being necessarily related to oil spills, studying these formations is crucial for environmental monitoring, pollution detection, and the advancement of remote sensing techniques. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

20 pages, 25474 KB  
Article
Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning
by Mingming Deng, Ronghua Ma, Steven Arthur Loiselle, Minqi Hu, Kun Xue, Zhigang Cao, Lixin Wang, Chen Lin and Guang Gao
Remote Sens. 2024, 16(20), 3881; https://doi.org/10.3390/rs16203881 - 18 Oct 2024
Cited by 2 | Viewed by 1402
Abstract
Salinity is an essential parameter for evaluating water quality and plays a crucial role in maintaining the stability of lake ecosystems, particularly in arid and semi-arid climates. Salinity responds to changes in climate and human activity, with significant impacts on water quality and [...] Read more.
Salinity is an essential parameter for evaluating water quality and plays a crucial role in maintaining the stability of lake ecosystems, particularly in arid and semi-arid climates. Salinity responds to changes in climate and human activity, with significant impacts on water quality and ecosystem services. In this study, Sentinel-2A/B Multi-Spectral Instrument (MSI) images and quasi-synchronous field data were utilized to estimate lake salinity using machine learning approaches (i.e., XGB, CNN, DNN, and RFR). Atmospheric correction for MSI images was tested using six processors (ACOLITE, C2RCC, POLYMER, MUMM, iCOR, and Sen2Cor). The most accurate model and atmospheric correction method were found to be the extreme gradient boosting tree combined with the ACOLITE correction algorithm. These were used to develop a salinity model (N = 70, mean absolute percentage error = 9.95%) and applied to eight lakes in Inner Mongolia from 2016 to 2024. Seasonal and interannual variations were explored, along with an examination of potential drivers of salinity changes over time. Average salinities in the autumn and spring were higher than in the summer. The highest salinities were observed in the lake centers and tended to be consistent and homogeneous. Interannual trends in salinity were evident in several lakes, influenced by evaporation and precipitation. Climate factors were the primary drivers of interannual salinity trends in most lakes. Full article
Show Figures

Graphical abstract

17 pages, 3445 KB  
Article
Comparative Study of In Situ Chlorophyll-a Measuring Methods and Remote Sensing Techniques Focusing on Different Applied Algorithms in an Inland Lake
by János Grósz, Veronika Zsófia Tóth, István Waltner, Zoltán Vekerdy and Gábor Halupka
Water 2024, 16(15), 2104; https://doi.org/10.3390/w16152104 - 25 Jul 2024
Cited by 1 | Viewed by 1684
Abstract
Water conservation efforts and studies receive special attention, versatile and constantly developing remote sensing methods especially so. The quality and quantity of algae fundamentally influence the ecosystems of water bodies. Inland lakes are less-frequently studied despite their essential ecological role compared to ocean [...] Read more.
Water conservation efforts and studies receive special attention, versatile and constantly developing remote sensing methods especially so. The quality and quantity of algae fundamentally influence the ecosystems of water bodies. Inland lakes are less-frequently studied despite their essential ecological role compared to ocean and sea waters. One of the reasons for this is the small-scale surface extension, which poses challenges during satellite remote sensing. In this study, we investigated the correlations between remote-sensing- (via Seninel-2 satellite) and laboratory-based results in different chlorophyll-a concentration ranges. In the case of low chlorophyll-a concentrations, the measured values were between 15 µg L−1 and 35 µg L−1. In the case of medium chlorophyll-a concentrations, the measured values ranged between 35 and 80 µg L−1. During high chlorophyll-a concentrations, the results were higher than 80 µg L−1. Finally, under extreme environmental conditions (algal bloom), the values were higher than 180 µg L−1. We also studied the accuracy and correlation and the different algorithms applied through the Acolite (20231023.0) processing software. The chl_re_mishra algorithm of the Acolite software gave the highest correlation. The strong positive correlations prove the applicability of the Sentinel-2 images and the Acolite software in the indication of chlorophyll-a. Because of the high CDOM concentration of Lake Naplás, the blue–green band ratio underestimated the concentration of chlorophyll-a. In summer, higher chlorophyll-a was detected in both laboratory and satellite investigations. In the case of extremely high chlorophyll-a concentrations, it is significantly underestimated by satellite remote sensing. This study proved the applicability of remote sensing to detect chlorophyll-a content but also pointed out the current limitations, thus assigning future development and research directions. Full article
Show Figures

Figure 1

25 pages, 8689 KB  
Article
Assessment of Atmospheric Correction Algorithms for Sentinel-3 OLCI in the Amazon River Continuum
by Aline M. Valerio, Milton Kampel, Vincent Vantrepotte, Victoria Ballester and Jeffrey Richey
Remote Sens. 2024, 16(14), 2663; https://doi.org/10.3390/rs16142663 - 20 Jul 2024
Cited by 1 | Viewed by 2017
Abstract
Water colour remote sensing is a valuable tool for assessing bio-optical and biogeochemical parameters across the vast extent of the Amazon River Continuum (ARC). However, accurate retrieval depends on selecting the best atmospheric correction (AC). Four AC processors (Acolite, Polymer, C2RCC, OC-SMART) were [...] Read more.
Water colour remote sensing is a valuable tool for assessing bio-optical and biogeochemical parameters across the vast extent of the Amazon River Continuum (ARC). However, accurate retrieval depends on selecting the best atmospheric correction (AC). Four AC processors (Acolite, Polymer, C2RCC, OC-SMART) were evaluated against in situ remote sensing reflectance (Rrs) measurements. K-means classification identified four optical water types (OWTs) that are affected by the ARC. Two OWTs showed seasonal differences in the Lower Amazon River, influenced by the increase in suspended sediment concentration with river discharge. The other OWTs in the Amazon River Plume are dominated by phytoplankton or by a mixture of optically significant constituents. The Quality Water Index Polynomial method used to assess the quality of in situ and orbital Rrs had a high failure rate when the Apparent Visible Wavelength was >580 nm for in situ Rrs. OC-SMART Rrs products showed better spectral quality compared to Rrs derived from other AC processors evaluated in this study. These results improve our understanding of remotely sensing very turbid waters, such as those in the Amazon River Continuum. Full article
(This article belongs to the Special Issue Remote Sensing for the Study of the Changes in Wetlands)
Show Figures

Graphical abstract

15 pages, 4772 KB  
Technical Note
Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy
by Giovanni Laneve, Alejandro Téllez, Ashish Kallikkattil Kuruvila, Milena Bruno and Valentina Messineo
Remote Sens. 2024, 16(10), 1792; https://doi.org/10.3390/rs16101792 - 18 May 2024
Cited by 7 | Viewed by 2218
Abstract
Remote sensing techniques have become pivotal in monitoring algal blooms and population dynamics in freshwater bodies, particularly to assess the ecological risks associated with eutrophication. This study focuses on remote sensing methods for the analysis of 4 Italian lakes with diverse geological origins, [...] Read more.
Remote sensing techniques have become pivotal in monitoring algal blooms and population dynamics in freshwater bodies, particularly to assess the ecological risks associated with eutrophication. This study focuses on remote sensing methods for the analysis of 4 Italian lakes with diverse geological origins, leveraging water quality samples and data from the Sentinel-2 and Landsat 5.7–8 platforms. Chl-a, a well-correlated indicator of phytoplankton biomass abundance and eutrophication, was estimated using ordinary least squares linear regression to calibrate surface reflectance with chl-a concentrations. Temporal gaps between sample and image acquisition were considered, and atmospheric correction dedicated to water surfaces was implemented using ACOLITE and those specific to each satellite platform. The developed models achieved determination coefficients higher than 0.69 with mean square errors close to 3 mg/m3 for water bodies with low turbidity. Furthermore, the time series described by the models portray the seasonal variations in the lakes water bodies. Full article
(This article belongs to the Special Issue Satellite-Based Climate Change and Sustainability Studies)
Show Figures

Figure 1

26 pages, 6289 KB  
Article
Comparative Evaluation of Semi-Empirical Approaches to Retrieve Satellite-Derived Chlorophyll-a Concentrations from Nearshore and Offshore Waters of a Large Lake (Lake Ontario)
by Ali Reza Shahvaran, Homa Kheyrollah Pour and Philippe Van Cappellen
Remote Sens. 2024, 16(9), 1595; https://doi.org/10.3390/rs16091595 - 30 Apr 2024
Cited by 8 | Viewed by 3037
Abstract
Chlorophyll-a concentration (Chl-a) is commonly used as a proxy for phytoplankton abundance in surface waters of large lakes. Mapping spatial and temporal Chl-a distributions derived from multispectral satellite data is therefore increasingly popular for monitoring trends in trophic state [...] Read more.
Chlorophyll-a concentration (Chl-a) is commonly used as a proxy for phytoplankton abundance in surface waters of large lakes. Mapping spatial and temporal Chl-a distributions derived from multispectral satellite data is therefore increasingly popular for monitoring trends in trophic state of these important ecosystems. We evaluated products of eleven atmospheric correction processors (LEDAPS, LaSRC, Sen2Cor, ACOLITE, ATCOR, C2RCC, DOS 1, FLAASH, iCOR, Polymer, and QUAC) and 27 reflectance indexes (including band-ratio, three-band, and four-band algorithms) recommended for Chl-a concentration retrieval. These were applied to the western basin of Lake Ontario by pairing 236 satellite scenes from Landsat 5, 7, 8, and Sentinel-2 acquired between 2000 and 2022 to 600 near-synchronous and co-located in situ-measured Chl-a concentrations. The in situ data were categorized based on location, seasonality, and Carlson’s Trophic State Index (TSI). Linear regression Chl-a models were calibrated for each processing scheme plus data category. The models were compared using a range of performance metrics. Categorization of data based on trophic state yielded improved outcomes. Furthermore, Sentinel-2 and Landsat 8 data provided the best results, while Landsat 5 and 7 underperformed. A total of 28 Chl-a models were developed across the different data categorization schemes, with RMSEs ranging from 1.1 to 14.1 μg/L. ACOLITE-corrected images paired with the blue-to-green band ratio emerged as the generally best performing scheme. However, model performance was dependent on the data filtration practices and varied between satellites. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Graphical abstract

27 pages, 19690 KB  
Article
Optimizing Optical Coastal Remote-Sensing Products: Recommendations for Regional Algorithm Calibration
by Rafael Simão, Juliana Távora, Mhd. Suhyb Salama and Elisa Fernandes
Remote Sens. 2024, 16(9), 1497; https://doi.org/10.3390/rs16091497 - 24 Apr 2024
Viewed by 1808
Abstract
The remote sensing of turbidity and suspended particulate matter (SPM) relies on atmospheric corrections and bio-optical algorithms, but there is no one method that has better accuracy than the others for all satellites, bands, study areas, and purposes. Here, we evaluated different combinations [...] Read more.
The remote sensing of turbidity and suspended particulate matter (SPM) relies on atmospheric corrections and bio-optical algorithms, but there is no one method that has better accuracy than the others for all satellites, bands, study areas, and purposes. Here, we evaluated different combinations of satellites (Landsat-8, Sentinel-2, and Sentinel-3), atmospheric corrections (ACOLITE and POLYMER), algorithms (single- and multiband; empirical and semi-analytical), and bands (665 and 865 nm) to estimate turbidity and SPM in Patos Lagoon (Brazil). The region is suitable for a case study of the regionality of remote-sensing algorithms, which we addressed by regionally recalibrating the coefficients of the algorithms using a method for geophysical observation models (GeoCalVal). Additionally, we examined the results associated with the use of different statistical parameters for classifying algorithms and introduced a new metric (GoF) that reflects performance. The best performance was achieved via POLYMER atmospheric correction and the use of single-band algorithms. Regarding SPM, the recalibrated coefficients yielded a better performance, but, for turbidity, a tradeoff between two statistical parameters occurred. Therefore, the uncertainties in the atmospheric corrections and algorithms used were analyzed based on previous studies. In the future, we suggest the use of in situ radiometric data to better evaluate atmospheric corrections, radiative transfer modeling to bridge data gaps, and multisensor data merging for compiling climate records. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

25 pages, 11079 KB  
Article
Spatiotemporal Variations in Biophysical Water Quality Parameters: An Integrated In Situ and Remote Sensing Analysis of an Urban Lake in Chile
by Santiago Yépez, Germán Velásquez, Daniel Torres, Rodrigo Saavedra-Passache, Martin Pincheira, Hayleen Cid, Lien Rodríguez-López, Angela Contreras, Frédéric Frappart, Jordi Cristóbal, Xavier Pons, Neftali Flores and Luc Bourrel
Remote Sens. 2024, 16(2), 427; https://doi.org/10.3390/rs16020427 - 22 Jan 2024
Cited by 12 | Viewed by 3751
Abstract
This study aims to develop and implement a methodology for retrieving bio-optical parameters in a lagoon located in the Biobío region, South-Central Chile, by analyzing time series of Landsat-8 OLI satellite images. The bio-optical parameters, i.e., chlorophyll-a (Chl-a, in mg·m−3) and [...] Read more.
This study aims to develop and implement a methodology for retrieving bio-optical parameters in a lagoon located in the Biobío region, South-Central Chile, by analyzing time series of Landsat-8 OLI satellite images. The bio-optical parameters, i.e., chlorophyll-a (Chl-a, in mg·m−3) and turbidity (in NTU) were measured in situ during a satellite overpass to minimize the impact of atmospheric distortions. To calibrate the satellite images, various atmospheric correction methods (including ACOLITE, C2RCC, iCOR, and LaSRC) were evaluated during the image preprocessing phase. Spectral signatures obtained from the scenes for each atmospheric correction method were then compared with spectral signatures acquired in situ on the water surface. In short, the ACOLITE model emerged as the best fit for the calibration process, reaching R2 values of 0.88 and 0.79 for Chl-a and turbidity, respectively. This underlies the importance of using inversion models, when processing water surfaces, to mitigate errors due to aerosols and the sun-glint effect. Subsequently, reflectance data derived from the ACOLITE model were used to establish correlations between various spectral indices and the in situ data. The empirical retrieval models (based on band combinations) yielding superior performance, with higher R2 values, were subjected to a rigorous statistical validation and optimization by applying a bootstrapping approach. From this process the green chlorophyll index (GCI) was selected as the optimal choice for constructing the Chl-a retrieval model, reaching an R2 of 0.88, while the red + NIR spectral index achieved the highest R2 value (0.79) for turbidity analysis, although in the last case, it was necessary to incorporate data from several seasons for an adequate model training. Our analysis covered a broad spectrum of dates, seasons, and years, which allowed us to search deeper into the evolution of the trophic state associated with the lake. We identified a striking eight-year period (2014–2022) characterized by a decline in Chl-a concentration in the lake, possibly attributable to governmental measures in the region for the protection and conservation of the lake. Additionally, the OLI imagery showed a spatial pattern varying from higher Chl-a values in the northern zone compared to the southern zone, probably due to the heat island effect of the northern urban areas. The results of this study suggest a positive effect of recent local regulations and serve as the basis for the creation of a modern monitoring system that enhances traditional point-based methods, offering a holistic view of the ongoing processes within the lake. Full article
(This article belongs to the Special Issue New Developments in Remote Sensing for the Environment II)
Show Figures

Graphical abstract

18 pages, 20974 KB  
Article
Water Quality and Flooding Impact of the Record-Breaking Storm Gloria in the Ebro Delta (Western Mediterranean)
by Isabel Caballero, Mar Roca, Martha B. Dunbar and Gabriel Navarro
Remote Sens. 2024, 16(1), 41; https://doi.org/10.3390/rs16010041 - 21 Dec 2023
Cited by 4 | Viewed by 2923
Abstract
Extreme events are increasing in frequency and severity due to climate change, making the littoral zone even more vulnerable and requiring continuous monitoring for its optimized management. The low-lying Ebro Delta ecosystem, located in the NW Mediterranean, was subject to Storm Gloria in [...] Read more.
Extreme events are increasing in frequency and severity due to climate change, making the littoral zone even more vulnerable and requiring continuous monitoring for its optimized management. The low-lying Ebro Delta ecosystem, located in the NW Mediterranean, was subject to Storm Gloria in the winter of 2020, the most severe coastal storm registered in the area in decades and one of the most intense ever recorded in the Mediterranean. This event caused intense rainfall, severe flooding, the erosion of beaches, and the destruction of coastal infrastructures. In this study, the Landsat-8 and Sentinel-2 satellites were used to monitor the flooding impact and water quality status, including chlorophyll-a, suspended particulate matter, and turbidity, to evaluate the pre-, syn-, and post-storm scenarios. Image processing was carried out using the ACOLITE software and the on-the-cloud Google Earth Engine platform for the water quality and flood mapping, respectively, showing a consistent performance for both satellites. This cost-effective methodology allowed us to characterize the main water quality variation in the coastal environment during the storm and detect a higher flooding impact compared to the one registered three days later by the Copernicus Emergency Service for the same area. Moreover, the time series revealed how the detrimental impact on the water quality and turbidity conditions was restored two weeks after the extreme weather event. While transitional plumes of sediment discharge were formed, no phytoplankton blooms appeared during the study period in the delta. These results demonstrate that the workflow implemented is suitable for monitoring extreme coastal events using open satellite imagery at 10–30 m spatial resolution, thus providing valuable information for early warning to facilitate timely assistance and hazard impact evaluation. The integration of these tools into ecological disaster management can significantly improve current monitoring strategies, supporting decision-makers from the local to the national level in prevention, adaptation measures, and damage compensation. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Applications in Natural Hazards Research)
Show Figures

Graphical abstract

21 pages, 3106 KB  
Article
The Long-Term Detection of Suspended Particulate Matter Concentration and Water Colour in Gravel and Sand Pit Lakes through Landsat and Sentinel-2 Imagery
by Nicola Ghirardi, Monica Pinardi, Daniele Nizzoli, Pierluigi Viaroli and Mariano Bresciani
Remote Sens. 2023, 15(23), 5564; https://doi.org/10.3390/rs15235564 - 29 Nov 2023
Cited by 5 | Viewed by 2896
Abstract
Over the past half century, the demand for sand and gravel has led to extensive quarrying activities, creating many pit lakes (PLs) which now dot floodplains and urbanized regions globally. Despite the potential importance of these environments, systematic data on their location, morphology [...] Read more.
Over the past half century, the demand for sand and gravel has led to extensive quarrying activities, creating many pit lakes (PLs) which now dot floodplains and urbanized regions globally. Despite the potential importance of these environments, systematic data on their location, morphology and water quality remain limited. In this study, we present an extensive assessment of the physical and optical properties in a large sample of PLs located in the Po River basin (Italy) from 1990 to 2021, utilizing a combined approach of remote sensing (Landsat constellation and Sentinel-2) and traditional limnological techniques. Specifically, we focused on the concentration of Suspended Particulate Matter (SPM) and the dominant wavelength (λdom, i.e., water colour). This study aims to contribute to the analysis of PLs at a basin scale as an opportunity for environmental rehabilitation and river floodplain management. ACOLITE v.2022, a neural network particularly suitable for the analysis of turbid waters and small inland water bodies, was used to atmospherically correct satellite images and to obtain SPM concentration maps and the λdom. The results show a very strong correlation between SPM concentrations obtained in situ and those obtained from satellite images, both for data derived from Landsat (R2 = 0.85) and Sentinel-2 images (R2 = 0.82). A strong correlation also emerged from the comparison of spectral signatures obtained in situ via WISP-3 and those derived from ACOLITE, especially in the visible spectrum (443–705 nm, SA = 10.8°). In general, it appeared that PLs with the highest mean SPM concentrations and the highest mean λdom are located along the main Po River, and more generally near rivers. The results also show that active PLs exhibit a poor water quality status, especially those of small sizes (<5 ha) and directly connected to a river. Seasonal comparison shows the same trend for both SPM concentration and λdom: higher values in winter gradually decreasing until spring–summer, then increasing again. Finally, it emerged that the end of quarrying activity led to a reduction in SPM concentration from a minimum of 43% to a maximum of 72%. In this context, the combined use of Landsat and Sentinel-2 imagery allowed for the evaluation of the temporal evolution of the physical and optical properties of the PLs in a vast area such as the Po River basin (74,000 km2). In particular, the Sentinel-2 images consistently proved to be a reliable resource for capturing episodic and recurring quarrying events and portraying the ever-changing dynamics of these ecosystems. Full article
Show Figures

Figure 1

18 pages, 29718 KB  
Article
Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province
by Wenxin Li, Yuancheng Huang, Qian Shen, Yue Yao, Wenting Xu, Jiarui Shi, Yuting Zhou, Jinzhi Li, Yuting Zhang and Hangyu Gao
Remote Sens. 2023, 15(22), 5370; https://doi.org/10.3390/rs15225370 - 15 Nov 2023
Cited by 8 | Viewed by 2452
Abstract
The European Space Agency (ESA) developed the Sentinel-2 Multispectral Imager (MSI), which offers a higher spatial resolution and shorter repeat coverage, making it an important source for the remote-sensing monitoring of water bodies. Atmospheric correction is crucial for the monitoring of water quality. [...] Read more.
The European Space Agency (ESA) developed the Sentinel-2 Multispectral Imager (MSI), which offers a higher spatial resolution and shorter repeat coverage, making it an important source for the remote-sensing monitoring of water bodies. Atmospheric correction is crucial for the monitoring of water quality. To compare the applicability of seven publicly available atmospheric correction processors (ACOLITE, C2RCC, C2XC, iCOR, POLYMER, SeaDAS, and Sen2Cor), we chose complex and diverse lakes in Qinghai Province, China, as the research area. The lakes were divided into three types based on the waveform characteristics of Rrs: turbid water bodies (class I lakes) represented by the Dabusun Lake (DBX), clean water bodies (class II lakes) represented by the Qinghai Lake (QHH), and relatively clean water bodies (class III lakes) represented by the Longyangxia Reservoir (LYX). Compared with the in situ Rrs, it was found that for the DBX, the Sen2Cor processor performed best. The POLYMER processor exhibited a good performance in the QHH. The C2XC processor performed well with the LYX. Using the Sen2Cor, POLYMER, and C2XC processors for classes I, II, and III, respectively, compared with the Sentinel-3 OLCI Level-2 Water Full Resolution (L2-WFR) products, it was found that the estimated Rrs from the POLYMER had the highest consistency. Slight deviations were observed in the estimation results for both the Sen2Cor and C2XC. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

Back to TopTop