Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Required Data
2.2.1. In Situ Soil Moisture Data
2.2.2. Soil Properties Data
2.2.3. Satellite Data
2.2.4. UAV Hyperspectral Data Acquisition
2.3. Methodology
2.3.1. Spectral Indices Extraction
2.3.2. Narrow Band Spectral Indices
2.3.3. Soil Moisture Modeling
2.3.4. Validation
3. Results and Discussion
3.1. Effect of Soil Moisture on Multispectral Data
3.2. Effect of Soil Moisture on Hyperspectral Data
3.3. Soil Moisture Estimation Using Indices
3.4. Soil Moisture Retrieval Using Random Forest Algorithm
3.5. Band Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baumann, F.; He, J.-S.; Schmidt, K.; Kühn, P.; Scholten, T. Pedogenesis, Permafrost, and Soil Moisture as Controlling Factors for Soil Nitrogen and Carbon Contents across the Tibetan Plateau. Glob. Chang. Biol. 2009, 15, 3001–3017. [Google Scholar] [CrossRef]
- Zhu, M.; Kong, F.; Li, Y.; Li, M.; Zhang, J.; Xi, M. Effects of Moisture and Salinity on Soil Dissolved Organic Matter and Ecological Risk of Coastal Wetland. Environ. Res. 2020, 187, 109659. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Hoeben, R.; Verhoest, N.E.C.; De Troch, F.P.; Troch, P.A. Improvement of TOPLATS-Based Discharge Predictions through Assimilation of ERS-Based Remotely Sensed Soil Moisture Values. Hydrol. Process. 2002, 16, 995–1013. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A Review of the Methods Available for Estimating Soil Moisture and Its Implications for Water Resource Management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Ranjbareslamloo, S.; Mirzaie, S.; Bahrami, H.A.; Mirzapour, F.; Abbaszadeh Tehrani, N. Spectral Behavior of Persian Oak under Compound Stress of Water Deficit and Dust Storm. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102082. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating Soil Moisture and the Relationship with Crop Yield Using Surface Temperature and Vegetation Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Anderson, S.H.; Udawatta, R.P.; Seobi, T.; Garrett, H.E. Soil Water Content and Infiltration in Agroforestry Buffer Strips. Agroforest. Syst. 2009, 75, 5–16. [Google Scholar] [CrossRef]
- Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; et al. Impact of Different Satellite Soil Moisture Products on the Predictions of a Continuous Distributed Hydrological Model. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 131–145. [Google Scholar] [CrossRef]
- Forgotson, C.; O’Neill, P.E.; Carrera, M.L.; Bélair, S.; Das, N.N.; Mladenova, I.E.; Bolten, J.D.; Jacobs, J.M.; Cho, E.; Escobar, V.M. How Satellite Soil Moisture Data Can Help to Monitor the Impacts of Climate Change: SMAP Case Studies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1590–1596. [Google Scholar] [CrossRef]
- Zareie, A.; Amin, M.S.R.; Amador-Jiménez, L.E. Thornthwaite Moisture Index Modeling to Estimate the Implication of Climate Change on Pavement Deterioration. J. Transp. Eng. 2016, 142, 04016007. [Google Scholar] [CrossRef]
- Drusch, M. Initializing Numerical Weather Prediction Models with Satellite-Derived Surface Soil Moisture: Data Assimilation Experiments with ECMWF’s Integrated Forecast System and the TMI Soil Moisture Data Set. J. Geophys. Res. Atmos. 2007, 112, D3. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D.; Tang, J. How Soil Moisture, Rain Pulses, and Growth Alter the Response of Ecosystem Respiration to Temperature. Glob. Biogeochem. Cycles 2004, 18, 4. [Google Scholar] [CrossRef]
- Pastor, J.; Post, W.M. Influence of Climate, Soil Moisture, and Succession on Forest Carbon and Nitrogen Cycles. Biogeochemistry 1986, 2, 3–27. [Google Scholar] [CrossRef]
- Engman, E.T. Applications of Microwave Remote Sensing of Soil Moisture for Water Resources and Agriculture. Remote Sens. Environ. 1991, 35, 213–226. [Google Scholar] [CrossRef]
- Wood, E.F.; Lettenmaier, D.P.; Zartarian, V.G. A Land-Surface Hydrology Parameterization with Subgrid Variability for General Circulation Models. J. Geophys. Res. Atmos. 1992, 97, 2717–2728. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. Satellite Remote Sensing Applications for Surface Soil Moisture Monitoring: A Review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface Soil Moisture Retrievals from Remote Sensing: Current Status, Products & Future Trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Korres, W.; Reichenau, T.G.; Fiener, P.; Koyama, C.N.; Bogena, H.R.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; et al. Spatio-Temporal Soil Moisture Patterns—A Meta-Analysis Using Plot to Catchment Scale Data. J. Hydrol. 2015, 520, 326–341. [Google Scholar] [CrossRef]
- Mirzaei, S.; Darvishi Boloorani, A.; Bahrami, H.A.; Alavipanah, S.K.; Mousivand, A.; Mouazen, A.M. Minimising the Effect of Moisture on Soil Property Prediction Accuracy Using External Parameter Orthogonalization. Soil Tillage Res. 2022, 215, 105225. [Google Scholar] [CrossRef]
- Gangat, R.; van Deventer, H.; Naidoo, L.; Adam, E. Estimating Soil Moisture Using Sentinel-1 and Sentinel-2 Sensors for Dryland and Palustrine Wetland Areas. S. Afr. J. Sci. 2020, 116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, E.H.; Samak, A.A.; Yang, L.; Huang, R.; Huang, J. Prediction of Soil Moisture Content from Sentinel-2 Images Using Convolutional Neural Network (CNN). Agronomy 2023, 13, 656. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine Learning to Estimate Surface Soil Moisture from Remote Sensing Data. Water 2020, 12, 3223. [Google Scholar] [CrossRef]
- Ghasemloo, N.; Matkan, A.A.; Alimohammadi, A.; Aghighi, H.; Mirbagheri, B. Estimating the Agricultural Farm Soil Moisture Using Spectral Indices of Landsat 8, and Sentinel-1, and Artificial Neural Networks. J. Geovisualization Spat. Anal. 2022, 6, 19. [Google Scholar] [CrossRef]
- Hezarian, F.; Khalilimoghadam, B.; Zoratipour, A.; Nejad, M.F.; Yusefi, A. Assessment of the Capability of Satellite Images in Determining the Topsoil Moisture Content in the Dust Hotspot of Southeastern Ahvaz in Iran. Eurasian Soil Sc. 2022, 55, 1576–1590. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of Vineyard Water Status Variability by Thermal and Multispectral Imagery Using an Unmanned Aerial Vehicle (UAV). Irrig Sci 2012, 30, 511–522. [Google Scholar] [CrossRef]
- de Lima, R.S.; Li, K.-Y.; Vain, A.; Lang, M.; Bergamo, T.F.; Kokamägi, K.; Burnside, N.G.; Ward, R.D.; Sepp, K. The Potential of Optical UAS Data for Predicting Surface Soil Moisture in a Peatland across Time and Sites. Remote Sens. 2022, 14, 2334. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Allen, L.N.; Torres-Rua, A.F.; McKee, M.; Coopmans, C. Estimation of Soil Moisture at Different Soil Levels Using Machine Learning Techniques and Unmanned Aerial Vehicle (UAV) Multispectral Imagery. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, Baltimore, MD, USA, 14 May 2019; SPIE: Bellingham, WA, USA; Volume 11008, pp. 216–226. [Google Scholar]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-Based Hyperspectral Imagery and Machine Learning Algorithms for Soil Moisture Content Monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274–3284. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6. [Google Scholar]
- Hengl, T.; Nikolić, M.; MacMillan, R.A. Mapping Efficiency and Information Content. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 127–138. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating Soil Moisture Using Remote Sensing Data: A Machine Learning Approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, C.T.; Zhang, J.; Liang, S.; Bui, X.T.; Hoang, N.B. A Low-Cost Approach for Soil Moisture Prediction Using Multi-Sensor Data and Machine Learning Algorithm. Sci. Total Environ. 2022, 833, 155066. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of Soil Moisture Content under High Maize Canopy Coverage from UAV Multimodal Data and Machine Learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Shokati, H.; Mashal, M.; Noroozi, A.; Mirzaei, S.; Mohammadi-Doqozloo, Z. Assessing Soil Moisture Levels Using Visible UAV Imagery and Machine Learning Models. Remote Sens. Appl. Soc. Environ. 2023, 32, 101076. [Google Scholar] [CrossRef]
- Finn, M.P.; Lewis, M.; Bosch, D.D.; Giraldo, M.; Yamamoto, K.; Sullivan, D.G.; Kincaid, R.; Luna, R.; Allam, G.K.; Kvien, C.; et al. Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data. GIScience Remote Sens. 2011, 48, 522–540. [Google Scholar] [CrossRef]
- Bertalan, L.; Holb, I.; Pataki, A.; Négyesi, G.; Szabó, G.; Kupásné Szalóki, A.; Szabó, S. UAV-Based Multispectral and Thermal Cameras to Predict Soil Water Content—A Machine Learning Approach. Comput. Electron. Agric. 2022, 200, 107262. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; Rodrigues, A.F.; Morais, M.A.V.; Terra, M.d.C.N.S.; Guo, L.; de Mello, C.R. Spatiotemporal Modelling of Soil Moisture in an Atlantic Forest through Machine Learning Algorithms. Eur. J. Soil Sci. 2021, 72, 1969–1987. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Hummel, J.W.; Sudduth, K.A.; Hollinger, S.E. Soil Moisture and Organic Matter Prediction of Surface and Subsurface Soils Using an NIR Soil Sensor. Comput. Electron. Agric. 2001, 32, 149–165. [Google Scholar] [CrossRef]
- Roy, S.K.; Shibusawa, S.; Okayama, T. Textural Analysis of Soil Images to Quantify and Characterize the Spatial Variation of Soil Properties Using a Real-Time Soil Sensor. Precis. Agric 2006, 7, 419–436. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Oltra-Carrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. Improvement of Soil Moisture Retrieval from Hyperspectral VNIR-SWIR Data Using Clay Content Information: From Laboratory to Field Experiments. Remote Sens. 2015, 7, 3184–3205. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rastogi, A.; Stróżecki, M.; Kalaji, H.M.; Łuców, D.; Lamentowicz, M.; Juszczak, R. Impact of Warming and Reduced Precipitation on Photosynthetic and Remote Sensing Properties of Peatland Vegetation. Environ. Exp. Bot. 2019, 160, 71–80. [Google Scholar] [CrossRef]
- Damm, A.; Paul-Limoges, E.; Haghighi, E.; Simmer, C.; Morsdorf, F.; Schneider, F.D.; van der Tol, C.; Migliavacca, M.; Rascher, U. Remote Sensing of Plant-Water Relations: An Overview and Future Perspectives. J. Plant Physiol. 2018, 227, 3–19. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1974.
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; Alvarez de Andrés, S. Gene Selection and Classification of Microarray Data Using Random Forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Inoubli, R.; Bennaceur, L.; Jarray, N.; Ben Abbes, A.; Farah, I.R. A Comparison between the Use of Machine Learning Techniques and the Water Cloud Model for the Retrieval of Soil Moisture from Sentinel-1A and Sentinel-2A Products. Remote Sens. Lett. 2022, 13, 980–990. [Google Scholar] [CrossRef]
- Caicedo, J.P.R.; Verrelst, J.; Muñoz-Marí, J.; Moreno, J.; Camps-Valls, G. Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249–1259. [Google Scholar] [CrossRef]
- Peng, J.; Shen, H.; He, S.W.; Wu, J.S. Soil Moisture Retrieving Using Hyperspectral Data with the Application of Wavelet Analysis. Environ. Earth Sci. 2013, 69, 279–288. [Google Scholar] [CrossRef]
- Shokati, H.; Mashal, M.; Noroozi, A.A.; Mirzaei, S. Evaluating the Accuracy of Precipitation Products Over Utah, United States, Using the Google Earth Engine Platform. Desert 2023, 28, 145–162. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A Linear Physically-Based Model for Remote Sensing of Soil Moisture Using Short Wave Infrared Bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Li, M. Estimating Soil Moisture Content Using Laboratory Spectral Data. J. For. Res. 2019, 30, 1073–1080. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture Effects on Soil Reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation Water Content Mapping Using Landsat Data Derived Normalized Difference Water Index for Corn and Soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Hunt, E.R.; Jackson, T.J. Remote Sensing of Vegetation Water Content from Equivalent Water Thickness Using Satellite Imagery. Remote Sens. Environ. 2008, 112, 2514–2522. [Google Scholar] [CrossRef]
- Shafian, S.; Maas, S.J. Improvement of the Trapezoid Method Using Raw Landsat Image Digital Count Data for Soil Moisture Estimation in the Texas (USA) High Plains. Sensors 2015, 15, 1925–1944. [Google Scholar] [CrossRef] [PubMed]
- Hashim, B.M.; Sultan, M.A.; Attyia, M.N.; Al Maliki, A.A.; Al-Ansari, N. Change Detection and Impact of Climate Changes to Iraqi Southern Marshes Using Landsat 2 MSS, Landsat 8 OLI and Sentinel 2 MSI Data and GIS Applications. Appl. Sci. 2019, 9, 2016. [Google Scholar] [CrossRef]
- Sánchez, N.; Alonso-Arroyo, A.; Martínez-Fernández, J.; Camps, A.; González-Zamora, A.; Pablos, M.; Herrero-Jiménez, C.M.; Gumuzzio, A. Multisensor Experiments over Vineyard: New Challenges for the GNSS-R Technique. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7-W3, 1299–1303. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X.; Chen, S. Simultaneously Estimating Surface Soil Moisture and Roughness of Bare Soils by Combining Optical and Radar Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102345. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil Moisture Mapping Using Sentinel-1 Images: Algorithm and Preliminary Validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Yue, H. Comprehensive Evaluation of Sentinel-2 Red Edge and Shortwave-Infrared Bands to Estimate Soil Moisture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7448–7465. [Google Scholar] [CrossRef]
- Muller, E.; Décamps, H. Modeling Soil Moisture–Reflectance. Remote Sens. Environ. 2001, 76, 173–180. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, J.; Jin, T.; Chang, X.; Zhu, Y.; Li, Y.; Sun, J.; Li, D. Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands. Remote Sens. 2020, 12, 2708. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Pu, Z.; Chen, X. Calibration and Validation of Salt-Resistant Hyperspectral Indices for Estimating Soil Moisture in Arid Land. J. Hydrol. 2011, 408, 276–285. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The Optical Trapezoid Model: A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and Landsat-8 Observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Franz, T.E.; Jones, S.; Tuller, M. Mapping Soil Moisture with the OPtical TRApezoid Model (OPTRAM) Based on Long-Term MODIS Observations. Remote Sens. Environ. 2018, 211, 425–440. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, S.; Ye, Q.; Li, X.; Jiao, W. Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning. Agriculture 2022, 12, 1188. [Google Scholar] [CrossRef]
- Mobasheri, M.R.; Amani, M. Soil Moisture Content Assessment Based on Landsat 8 Red, near-Infrared, and Thermal Channels. J. Appl. Remote Sens. 2016, 10, 026011. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhu, Z.; Ma, H.; He, T. Soil Moisture Content Retrieval from Landsat 8 Data Using Ensemble Learning. ISPRS J. Photogramm. Remote Sens. 2022, 185, 32–47. [Google Scholar] [CrossRef]
- Foody, G.M.; Cox, D.P. Sub-Pixel Land Cover Composition Estimation Using a Linear Mixture Model and Fuzzy Membership Functions. Int. J. Remote Sens. 1994, 15, 619–631. [Google Scholar] [CrossRef]
Features | Landsat-8/9 | Sentinel-2 | ||||
---|---|---|---|---|---|---|
Equation | R * | Band | Equation | R * | Band | |
Bands | y = −0.0144x + 33.4 | −0.55 | Aerosol | y = −0.007x + 81.01 | −0.68 | Aerosol |
y = −0.0113x + 31.7 | −0.65 | Blue | y = −0.0059x + 74.13 | −0.68 | Blue | |
y = −0.0103x + 35.4 | −0.65 | Green | y = −0.0043x + 65.01 | −0.68 | Green | |
y = −0.007x + 29.73 | −0.64 | Red | y = −0.003x + 52.69 | −0.67 | Red | |
y = −0.0084x + 37.1 | −0.61 | Red Edge 1 | y = −0.0009x + 23.98 | −0.23 | NIR | |
y = −0.0036x + 23.9 | −0.12 | Red Edge 2 | y = −0.0027x + 57.97 | −0.67 | SWIR-1 | |
y = 0.0018x + 0.71 | 0.08 | Red Edge 3 | y = −0.0026x + 49.72 | −0.69 | SWIR-2 | |
y = 0.0018x + 0.73 | 0.07 | NIR | y = −0.0006x + 34.41 | −0.30 | TIR-1 | |
y = 0.0032x − 5.81 | 0.14 | Red Edge 4 | ||||
y = −0.0101x + 51.3 | −0.66 | SWIR-1 | ||||
y = −0.0071x + 34.8 | −0.64 | SWIR-2 | ||||
Indices | y = 54.345x + 6.56 | 0.57 | NDMI | y = 65.453x + 7.94 | 0.43 | NDMI |
y = 33.049x + 1.7 | 0.59 | NDVI | y = 45.414x + 3.11 | 0.4 | NDVI | |
y = −42.71x − 2.94 | −0.58 | NDWI | y = −47.385x + 0.56 | −0.32 | NDWI | |
y = 22.035x + 1.7 | 0.59 | SAVI | y = 30.277x + 3.11 | 0.4 | SAVI |
Index | Optimal Bands/Wavelengths | R2 | ||||
---|---|---|---|---|---|---|
Sentinel-2 | Landsat-8/9 | CoSpectroCam (nm) | Sentinel-2 | Landsat-8/9 | CoSpectroCam | |
DI | Green, Red | SWIR-2 and TIR-2 | 427.5, 678.0 | 0.36 | 0.48 | 0.78 |
NDI | Red, Red Edge 1 | SWIR-2 and TIR-2 | 525.4, 562.1 | 0.38 | 0.50 | 0.65 |
PI | Red Edge 1, SWIR-1 | SWIR-2 and TIR-2 | 431.6, 523.6 | 0.42 | 0.48 | 0.79 |
RI | Red, Red Edge 1 | SWIR-2 and TIR-2 | 525.4, 562.1 | 0.38 | 0.51 | 0.65 |
Dataset | R | R2 | R2adj | RMSE (%) | MAE |
---|---|---|---|---|---|
Sentinel-2 | 0.70 | 0.49 | 0.48 | 5.95 | 3.43 |
Landsat-8/9 | 0.81 | 0.66 | 0.65 | 4.61 | 2.42 |
CoSpectroCam | 0.93 | 0.87 | 0.86 | 2.60 | 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokati, H.; Mashal, M.; Noroozi, A.; Abkar, A.A.; Mirzaei, S.; Mohammadi-Doqozloo, Z.; Taghizadeh-Mehrjardi, R.; Khosravani, P.; Nabiollahi, K.; Scholten, T. Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data. Remote Sens. 2024, 16, 1962. https://doi.org/10.3390/rs16111962
Shokati H, Mashal M, Noroozi A, Abkar AA, Mirzaei S, Mohammadi-Doqozloo Z, Taghizadeh-Mehrjardi R, Khosravani P, Nabiollahi K, Scholten T. Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data. Remote Sensing. 2024; 16(11):1962. https://doi.org/10.3390/rs16111962
Chicago/Turabian StyleShokati, Hadi, Mahmoud Mashal, Aliakbar Noroozi, Ali Akbar Abkar, Saham Mirzaei, Zahra Mohammadi-Doqozloo, Ruhollah Taghizadeh-Mehrjardi, Pegah Khosravani, Kamal Nabiollahi, and Thomas Scholten. 2024. "Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data" Remote Sensing 16, no. 11: 1962. https://doi.org/10.3390/rs16111962
APA StyleShokati, H., Mashal, M., Noroozi, A., Abkar, A. A., Mirzaei, S., Mohammadi-Doqozloo, Z., Taghizadeh-Mehrjardi, R., Khosravani, P., Nabiollahi, K., & Scholten, T. (2024). Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data. Remote Sensing, 16(11), 1962. https://doi.org/10.3390/rs16111962