Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. GPR Data
3.2. Glacier Outline
3.3. DEM
3.4. Glacier Velocities
4. Method
4.1. Ice Thickness Inversion Models
4.1.1. Shear Stress-Based Approaches
- Li et al.’s approach
- Glabtop2
4.1.2. Ice Velocity-Based Approaches
- VWDV
- ITIBOV
4.1.3. Mass Conserving Approach
4.2. Ice Thickness Model Calibration and Validation
4.3. Uncertainty of the Ice Volume Estimate
5. Results
5.1. Characteristics of Ice Thickness along Transverse and Longitudinal Profiles
5.2. Spatial Distribution of Simulated Ice Thickness and Ice Volume
5.3. Accuracy of Estimated Ice Thickness
6. Discussion
6.1. Comparison with Previous Research
6.2. Uncertainty and Sensitivity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Farinotti, D.; Brinkerhoff, D.J.; Fürst, J.J.; Gantayat, P.; Gillet-Chaulet, F.; Huss, M.; Leclercq, P.W.; Maurer, H.; Morlighem, M.; Pandit, A. Results from the ice thickness models intercomparison experiment phase 2 (ITMIX2). Front. Earth Sci. 2021, 8, 571923. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L. Global glacier change in the 21st century: Every increase in temperature matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.; Bierkens, M.F.; Lutz, A.F.; Immerzeel, W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Aðalgeirsdóttir, G.; Guðmundsson, S.; Björnsson, H.; Pálsson, F.; Jóhannesson, T.; Hannesdóttir, H.; Sigurðsson, S.Þ.; Berthier, E. Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland. Cryosphere 2011, 5, 961–975. [Google Scholar] [CrossRef]
- Van Tricht, L.; Huybrechts, P.; Van Breedam, J.; Fürst, J.J.; Rybak, O.; Satylkanov, R.; Ermenbaiev, B.; Popovnin, V.; Neyns, R.; Paice, C.M. Measuring and inferring the ice thickness distribution of four glaciers in the Tien Shan, Kyrgyzstan. J. Glaciol. 2021, 67, 269–286. [Google Scholar] [CrossRef]
- Li, Y.; Tian, L.; Yi, Y.; Moore, J.; Sun, S.; Zhao, L. Simulating the Evolution of Qiangtang No. 1 Glacier in the Central Tibetan Plateau to 2050. Arct. Antarct. Alp. Res. 2017, 49, 1–12. [Google Scholar] [CrossRef]
- Booth, A.D.; Mercer, A.; Clark, R.; Murray, T.; Jansson, P.; Axtell, C. A comparison of seismic and radar methods to establish the thickness and density of glacier snow cover. Ann. Glaciol. 2013, 54, 73–82. [Google Scholar] [CrossRef]
- Pang, X.; Jiang, L.; Guo, R.; Xu, Z.; Li, X.; Lu, X. Surface Motion and Topographic Effects on Ice Thickness Inversion for High Mountain Asia Glaciers: A Comparison Study from Three Numerical Models. Remote Sens. 2023, 15, 5378. [Google Scholar] [CrossRef]
- Sommer, C.; Fürst, J.J.; Huss, M.; Braun, M.H. Constraining regional glacier reconstructions using past ice thickness of deglaciating areas—A case study in the European Alps. Cryosphere 2023, 17, 2285–2303. [Google Scholar] [CrossRef]
- Zekollari, H.; Huss, M.; Farinotti, D.; Lhermitte, S. Ice-Dynamical Glacier Evolution Modeling—A Review. Rev. Geophys. 2022, 60, e2021RG000754. [Google Scholar] [CrossRef]
- Rowan, A.V.; Egholm, D.L.; Quincey, D.J.; Glasser, N.F. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth Planet. Sci. Lett. 2015, 430, 427–438. [Google Scholar] [CrossRef]
- Grab, M.; Mattea, E.; Bauder, A.; Huss, M.; Rabenstein, L.; Hodel, E.; Linsbauer, A.; Langhammer, L.; Schmid, L.; Church, G. Ice thickness distribution of all Swiss glaciers based on extended ground-penetrating radar data and glaciological modeling. J. Glaciol. 2021, 67, 1074–1092. [Google Scholar] [CrossRef]
- Plewes, L.A.; Hubbard, B. A review of the use of radio-echo sounding in glaciology. Prog. Phys. Geogr. 2001, 25, 203–236. [Google Scholar] [CrossRef]
- Woodward, J.; Burke, M.J. Applications of ground-penetrating radar to glacial and frozen materials. J. Environ. Eng. Geophys. 2007, 12, 69–85. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, S.; Zhang, S.; Xiao, H. Internal structure and trend of glacier change assessed by geophysical investigations. Environ. Earth Sci. 2013, 68, 1513–1525. [Google Scholar]
- Li, F.; Maussion, F.; Wu, G.; Chen, W.; Yu, Z.; Li, Y.; Liu, G. Influence of glacier inventories on ice thickness estimates and future glacier change projections in the Tian Shan range, Central Asia. J. Glaciol. 2023, 69, 266–280. [Google Scholar] [CrossRef]
- Grinsted, A. An estimate of global glacier volume. Cryosphere 2013, 7, 141–151. [Google Scholar] [CrossRef]
- Bahr, D.B.; Pfeffer, W.T.; Kaser, G. A review of volume-area scaling of glaciers. Rev. Geophys. 2015, 53, 95–140. [Google Scholar] [CrossRef]
- Frey, H.; Machguth, H.; Huss, M.; Huggel, C.; Bajracharya, S.; Bolch, T.; Kulkarni, A.; Linsbauer, A.; Salzmann, N.; Stoffel, M. Estimating the volume of glaciers in the Himalayan—Karakoram region using different methods. Cryosphere 2014, 8, 2313–2333. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rabatel, A.; Morlighem, M. Ice velocity and thickness of the world’s glaciers. Nat. Geosci. 2022, 15, 124–129. [Google Scholar] [CrossRef]
- Paul, F.; Linsbauer, A. Modeling of glacier bed topography from glacier outlines, central branch lines, and a DEM. Int. J. Geogr. Inf. Sci. 2012, 26, 1173–1190. [Google Scholar] [CrossRef]
- Linsbauer, A.; Paul, F.; Haeberli, W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. J. Geophys. Res. Earth Surf. 2012, 117, 3007. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Zhang, M.; Li, W. An improved method based on shallow ice approximation to calculate ice thickness along flow-line and volume of mountain glaciers. J. Earth Sci. 2011, 22, 441–448. [Google Scholar] [CrossRef]
- Maussion, F.; Butenko, A.; Champollion, N.; Dusch, M.; Eis, J.; Fourteau, K.; Gregor, P.; Jarosch, A.H.; Landmann, J.; Oesterle, F. The open global glacier model (OGGM) v1. 1. Geosci. Model Dev. 2019, 12, 909–931. [Google Scholar] [CrossRef]
- Brinkerhoff, D.J.; Aschwanden, A.; Truffer, M. Bayesian inference of subglacial topography using mass conservation. Front. Earth Sci. 2016, 4, 8. [Google Scholar] [CrossRef]
- Clarke, G.K.; Anslow, F.S.; Jarosch, A.H.; Radić, V.; Menounos, B.; Bolch, T.; Berthier, E. Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. J. Clim. 2013, 26, 4282–4303. [Google Scholar] [CrossRef]
- Gantayat, P.; Kulkarni, A.V.; Srinivasan, J. Estimation of ice thickness using surface velocities and slope: Case study at Gangotri Glacier, India. J. Glaciol. 2014, 60, 277–282. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. Earth Surf. 2012, 117, F04010. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Bauder, A.; Funk, M.; Truffer, M. A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. J. Glaciol. 2009, 55, 422–430. [Google Scholar] [CrossRef]
- Van Pelt, W.; Oerlemans, J.; Reijmer, C.; Pettersson, R.; Pohjola, V.A.; Isaksson, E.; Divine, D. An iterative inverse method to estimate basal topography and initialize ice flow models. Cryosphere 2013, 7, 987–1006. [Google Scholar] [CrossRef]
- Clarke, G.K.; Berthier, E.; Schoof, C.G.; Jarosch, A.H. Neural networks applied to estimating subglacial topography and glacier volume. J. Clim. 2009, 22, 2146–2160. [Google Scholar] [CrossRef]
- Welty, E.; Zemp, M.; Navarro, F.; Huss, M.; Fürst, J.; Gärtner-Roer, I.; Landmann, J.; Machguth, H.; Naegeli, K.; Andreassen, L. GlaThiDa Contributors: Worldwide version-controlled database of glacier thickness observations. Earth Syst. Sci. Data 2020, 12, 3039–3055. [Google Scholar] [CrossRef]
- Hock, R.; Maussion, F.; Marzeion, B.; Nowicki, S. What is the global glacier ice volume outside the ice sheets? J. Glaciol. 2023, 69, 204–210. [Google Scholar] [CrossRef]
- Werder, M.A.; Huss, M.; Paul, F.; Dehecq, A.; Farinotti, D. A Bayesian ice thickness estimation model for large-scale applications. J. Glaciol. 2020, 66, 137–152. [Google Scholar] [CrossRef]
- Zhang, J.; He, P.; Hu, X.; Liu, Z. The spatio-temporal patterns of glacier activities in the eastern Pamir Plateau investigated by time series sub-pixel offsets from Sentinel-2 optical images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1256–1268. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, T.; Yang, W.; Xu, B.; Wu, G.; Wang, X.; Xie, Y. Reconstruction of the mass balance of Muztag Ata No. 15 glacier, eastern Pamir, and its climatic drivers. J. Glaciol. 2018, 64, 259–274. [Google Scholar] [CrossRef]
- Maurer, J.M.; Schaefer, J.; Rupper, S.; Corley, A. Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv. 2019, 5, eaav7266. [Google Scholar] [CrossRef] [PubMed]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Azam, M.F.; Wagnon, P.; Berthier, E.; Vincent, C.; Fujita, K.; Kargel, J.S. Review of the status and mass changes of Himalayan-Karakoram glaciers. J. Glaciol. 2018, 64, 61–74. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, D.; Lu, Y.; Zhang, S. A landsat-based dataset of glacier velocity in eastern Pamir from 1989 to 2020. China Sci. Data 2021, 6, 170–181. [Google Scholar]
- Peng, Y.; Li, Z.; Xu, C.; Zhang, H.; Han, W. Surface velocity analysis of surge region of karayaylak glacier from 2014 to 2020 in the pamir plateau. Remote Sens. 2021, 13, 774. [Google Scholar] [CrossRef]
- Yan, S.; Guo, H.; Liu, G.; Fu, W. Monitoring Muztagh Kuksai glacier surface velocity with L-band SAR data in southwestern Xinjiang, China. Environ. Earth Sci. 2013, 70, 3175–3184. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Lv, M.; Guo, H.; Lu, X.; Liu, G.; Yan, S.; Ruan, Z.; Ding, Y.; Quincey, D.J. Characterizing the behaviour of surge-and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere 2019, 13, 219–236. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, B. Meteorological Observation Data from the Integrated Observation and Research Station of the Western Environment in Muztagh Ata (2003–2016), National Tibetan Plateau/Third Pole Environment Data Center. 2018. Available online: https://data.tpdc.ac.cn/en/data/11b1d6c6-f3e2-4311-991f-b496c3aa22a8(accessed on 6 December 2023).
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Wei, J.; Xu, J.; Guo, W.; Bao, W.; Jiang, Z. Mass change of glaciers in Muztag Ata–Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PLoS ONE 2016, 11, e0147327. [Google Scholar] [CrossRef]
- Jin, S.; Li, Z.; Wang, Z.; Wang, F.; Xu, C.; Ai, S. Ice thickness distribution and volume estimation of Burqin Glacier No. 18 in the Chinese Altay Mountains. J. Arid Land 2020, 12, 905–916. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Aizen, V.; Floricioiu, D.; Surazakov, A. The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J. Glaciol. 2014, 60, 233–244. [Google Scholar] [CrossRef]
- Chen, W.; Yao, T.; Zhang, G.; Li, F.; Zheng, G.; Zhou, Y.; Xu, F. Towards ice-thickness inversion: An evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau. Cryosphere 2022, 16, 197–218. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. Validation of “AW3D” global DSM generated from Alos Prism. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 25–31. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Fowler, A.; Larson, D. On the flow of polythermal glaciers-I. Model and preliminary analysis. Proc. R. Soc. London. A. Math. Phys. Sci. 1978, 363, 217–242. [Google Scholar]
- Nye, J. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol. 1965, 5, 661–690. [Google Scholar] [CrossRef]
- Maisch, M.; Haeberli, W. Interpretation geometrischer Parameter von Spätglazialgletschern im Gebiet Mittelbünden, Schweizer Alpen, in Beiträge zur Quartärforschung in der Schweiz. Phys. Geogr. Univ. Zürich Zur. 1982, 1, 111–126. [Google Scholar]
- Zhang, D.; Yao, X.; Duan, H.; Liu, S.; Guo, W.; Sun, M.; Li, D. A new automatic approach for extracting glacier centerlines based on Euclidean allocation. Cryosphere 2021, 15, 1955–1973. [Google Scholar] [CrossRef]
- Van Wyk de Vries, M.; Carchipulla-Morales, D.; Wickert, A.D.; Minaya, V.G. Glacier thickness and ice volume of the Northern Andes. Sci. Data 2022, 9, 342. [Google Scholar] [CrossRef]
- Ramsankaran, R.; Pandit, A.; Azam, M.F. Spatially distributed ice-thickness modelling for Chhota Shigri Glacier in western Himalayas, India. Int. J. Remote Sens. 2018, 39, 3320–3343. [Google Scholar] [CrossRef]
- Glen, J. The flow law of ice: A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. IASH Publ. 1958, 47, e183. [Google Scholar]
- Qi, C.; Goldsby, D.L.; Prior, D.J. The down-stress transition from cluster to cone fabrics in experimentally deformed ice. Earth Planet. Sci. Lett. 2017, 471, 136–147. [Google Scholar] [CrossRef]
- Farinotti, D.; Brinkerhoff, D.J.; Clarke, G.K.; Fürst, J.J.; Frey, H.; Gantayat, P.; Gillet-Chaulet, F.; Girard, C.; Huss, M.; Leclercq, P.W. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 2017, 11, 949–970. [Google Scholar] [CrossRef]
- Haeberli, W.; Hoelzle, M. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Ann. Glaciol. 1995, 21, 206–212. [Google Scholar] [CrossRef]
- Gharehchahi, S.; James, W.H.; Bhardwaj, A.; Jensen, J.L.; Sam, L.; Ballinger, T.J.; Butler, D.R. Glacier Ice Thickness Estimation and Future Lake Formation in Swiss Southwestern Alps—The Upper Rhône Catchment: A VOLTA Application. Remote Sens. 2020, 12, 3443. [Google Scholar] [CrossRef]
- Radić, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Marshall, S.J.; White, E.C.; Demuth, M.N.; Bolch, T.; Wheate, R.; Menounos, B.; Beedle, M.J.; Shea, J.M. Glacier water resources on the eastern slopes of the Canadian Rocky Mountains. Can. Water Resour. J. 2011, 36, 109–134. [Google Scholar] [CrossRef]
- Driedger, C.L.; Kennard, P. Glacier volume estimation on Cascade volcanoes: An analysis and comparison with other methods. Ann. Glaciol. 1986, 8, 59–64. [Google Scholar] [CrossRef]
- Zekollari, H.; Huybrechts, P.; Fürst, J.; Rybak, O.; Eisen, O. Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex, Engadin, Switzerland. Ann. Glaciol. 2013, 54, 343–351. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; He, Y.; Li, Y.; Wang, Y.; Wei, Y.; Che, Y. Estimation of Ice Thickness and the Features of Subglacial Media Detected by Ground Penetrating Radar at the Baishui River Glacier No. 1 in Mt. Yulong, China. Remote Sens. 2020, 12, 4105. [Google Scholar] [CrossRef]
- Magnússon, E.; Pálsson, F.; Gudmundsson, M.T.; Högnadóttir, T.; Rossi, C.; Thorsteinsson, T.; Ófeigsson, B.G.; Sturkell, E.; Jóhannesson, T. Development of a subglacial lake monitored with radio-echo sounding: Case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland. Cryosphere 2021, 15, 3731–3749. [Google Scholar] [CrossRef]
- Pritchard, H.; King, E.; Goodger, D.; McCarthy, M.; Mayer, C.; Kayastha, R. Towards Bedmap Himalayas: Development of an airborne ice-sounding radar for glacier thickness surveys in High-Mountain Asia. Ann. Glaciol. 2020, 61, 35–45. [Google Scholar] [CrossRef]
- Qi, C.; Goldsby, D.L. An experimental investigation of the effect of grain size on “dislocation creep” of ice. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021824. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
Parameter | Distribution | References |
---|---|---|
T | 268–272 | [49,61] |
n | 3 | [56,58,64] |
f | 0.8–1 | [29,56,66] |
β | 0–0.4 | [30,56] |
ρ (kg/m3) | 741–917 | [56,61] |
0.008–0.01 | [30,31,48] | |
0.004–0.006 | [30,31,48] | |
g | 9.79 | —— |
Method | Mean Ice Thickness at Measurement Sites (m) | Volume (km3) | Uncertainty of Volume (%) |
---|---|---|---|
Li | 80.99 | 0.25 | 19.85 |
Glabtop2 | 88.30 | 0.17 | 23.68 |
HF | 84.90 | 0.4 | 22.22 |
ITIBOV | 86.90 | 0.4 | 23.68 |
VWDV | 100.65 | 0.45 | 26.06 |
ES | 78.33 | 0.27 | 18.45 |
Li | Glabtop2 | HF | ITIBOV | VWDV | ES | |
---|---|---|---|---|---|---|
MAE (m) | 6.11 | 16.64 | 7.39 | 11.12 | 19.52 | 4.55 |
R2 | 0.90 | 0.02 | 0.89 | 0.73 | 0.72 | 0.97 |
RMSE (m) | 7.50 | 19.81 | 8.68 | 12.72 | 21.93 | 5.34 |
STD (m) | 4.40 | 10.89 | 4.61 | 6.25 | 10.12 | 2.83 |
NSE | 0.84 | −0.14 | 0.78 | 0.53 | −0.39 | 0.92 |
RE | 0.01 | −0.15 | −0.07 | −0.11 | −0.27 | 0.02 |
Volume (km3) | Maximum Ice Thickness (m) | Mean Ice Thickness (m) | |
---|---|---|---|
F19 | 0.34 | 110.97 | 55.11 |
M22 | 0.40 | 182.11 | 64.83 |
OGGM | 0.27 | —— | 43.76 |
RH10 | 0.45 | —— | 72.93 |
G13 | 0.41 | —— | 66.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, Z.; Wang, F.; Zhao, W.; Mu, J.; Jin, S.; Wang, F.; Zhang, X.; Liang, Q.; Zhan, Z.; et al. Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir. Remote Sens. 2024, 16, 2009. https://doi.org/10.3390/rs16112009
Yang Y, Li Z, Wang F, Zhao W, Mu J, Jin S, Wang F, Zhang X, Liang Q, Zhan Z, et al. Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir. Remote Sensing. 2024; 16(11):2009. https://doi.org/10.3390/rs16112009
Chicago/Turabian StyleYang, Yefei, Zhongqin Li, Feiteng Wang, Weibo Zhao, Jianxin Mu, Shuang Jin, Fanglong Wang, Xin Zhang, Qibin Liang, Zexin Zhan, and et al. 2024. "Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir" Remote Sensing 16, no. 11: 2009. https://doi.org/10.3390/rs16112009
APA StyleYang, Y., Li, Z., Wang, F., Zhao, W., Mu, J., Jin, S., Wang, F., Zhang, X., Liang, Q., Zhan, Z., & Ma, H. (2024). Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir. Remote Sensing, 16(11), 2009. https://doi.org/10.3390/rs16112009