Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme
Abstract
:1. Introduction
2. Methods
2.1. Adaptive Sparse S-transform (ASST)
2.2. Improved Centroid Frequency Based on the ASST
3. Results
3.1. Experimental Setup and Co-Polarimetric GPR Data Acquisitions
3.2. Basic Signal Processing and Analysis
3.3. Improved Centroid Frequency Attribute Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grandjean, G.; Paillou, P.; Dubois-Fernandez, P.; August-Bernex, T.; Baghdadi, N.N.; Achache, J. Subsurface structures detection by combining L-band polarimetric SAR and GPR data: Example of the Pyla Dune (France). IEEE. Trans. Geosci. Remote 2001, 39, 1245–1258. [Google Scholar] [CrossRef]
- Gross, R.; Green, A.G.; Horstmeyer, H.; Begg, J.H. Location and geometry of the Wellington Fault (New Zealand) defined by detailed three-dimensional georadar data. J. Geophys. Res. Solid. Earth 2004, 109, B05401. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- He, R.; Nantung, T.; Olek, J.; Lu, N. Field study of the dielectric constant of concrete: A parameter less sensitive to environmental variations than electrical resistivity. J. Build. Eng. 2023, 74, 106938. [Google Scholar] [CrossRef]
- Xie, L.Y.; Xia, Z.H.; Xue, S.T.; Fu, X.L. Detection of setting time during cement hydration using ground penetrating radar. J. Build. Eng. 2022, 60, 105166. [Google Scholar] [CrossRef]
- Klewe, T.; Strangfeld, C.; Kruschwitz, S. Review of moisture measurements in civil engineering with ground penetrating radar—Applied methods and signal features. Constr. Build. Mater. 2021, 278, 122250. [Google Scholar] [CrossRef]
- De Domenico, D.; Campo, D.; Teramo, A. FDTD modelling in high-resolution 2D and 3D GPR surveys on a reinforced concrete column in a double wall of hollow bricks. Near Surf. Geophys. 2012, 11, 29–40. [Google Scholar] [CrossRef]
- Negri, S.; Aiello, M.A. High—Resolution GPR survey for masonry wall diagnostics. J. Build. Eng. 2021, 33, 101817. [Google Scholar] [CrossRef]
- Arosio, D.; Hojat, A.; Munda, S.; Zanzi, L. High-Frequency GPR Investigations in Saint Vigilius Cathedral, Trento. In Proceedings of the 24th European Meeting of Environmental and Engineering Geophysics, Porto, Portugal, 9–12 September 2018; pp. 1–5. [Google Scholar]
- Orlando, L. Detecting steel rods and micro-piles: A case history in a civil engineering application. J. Appl. Geophys. 2012, 81, 130–138. [Google Scholar] [CrossRef]
- Rucka, M.; Lachowicz, J.; Zielinska, M. GPR investigation of the strengthening system of a historic masonry tower. J. Appl. Geophys. 2016, 131, 94–102. [Google Scholar] [CrossRef]
- Cabaleiro, M.; Lindenbergh, R.; Gard, W.F.; Arias, P.; van de Kuilen, J.W.G. Algorithm for automatic detection and analysis of cracks in timber beams from LiDAR data. Constr. Build. Mater. 2017, 130, 41–53. [Google Scholar] [CrossRef]
- Khamzin, A.K.; Varnavina, A.V.; Torgashov, E.V.; Anderson, N.L.; Sneed, L.H. Utilization of air-launched ground penetrating radar (GPR) for pavement condition assessment. Constr. Build. Mater. 2017, 141, 130–139. [Google Scholar] [CrossRef]
- Saarenketo, T.; Scullion, T. Road evaluation with ground penetrating radar. J. Appl. Geophys. 2000, 43, 119–138. [Google Scholar] [CrossRef]
- Wang, S.; Al-Qadi, I.L.; Cao, Q. Factors Impacting Monitoring Asphalt Pavement Density by Ground Penetrating Radar. NDT E Int. 2020, 115, 102296. [Google Scholar] [CrossRef]
- Hui, V.H.Y.; Dérobert, X.; Lai, W.W.L. A study of artificial debond pavement under controlled traffic by Ground Penetrating Radar. J. Appl. Geophys. 2022, 204, 104722. [Google Scholar] [CrossRef]
- Golewski, G.L. Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method. Measurement 2021, 181, 109632. [Google Scholar] [CrossRef]
- Rasol, M.A.; Pérez-Gracia, V.; Fernandes, F.M.; Pais, J.C.; Santos-Assunçao, S.; Santos, C.; Sossa, V. GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Measurement 2020, 158, 107662. [Google Scholar] [CrossRef]
- Zeng, H. Geologic significance of anomalous instantaneous frequency. Geophysics 2010, 75, P23–P30. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the Complex Spectrum: The S Transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Pinnegar, C.R.; Mansinha, L. The S-transform with windows of arbitrary and varying shape. Geophysics 2003, 68, 381–385. [Google Scholar] [CrossRef]
- Li, D.; Castagna, J.; Goloshubin, G. Investigation of generalized S-transform analysis windows for time-frequency analysis of seismic reflection data. Geophysics 2016, 81, V235–V247. [Google Scholar] [CrossRef]
- Liu, L.; Lane, J.W.; Quan, Y. Radar attenuation tomography using the centroid frequency downshift method. J. Appl. Geophys. 1998, 40, 105–116. [Google Scholar] [CrossRef]
- Sattari, H. High-resolution seismic complex trace analysis by adaptive fast sparse S-transform. Geophysics 2017, 82, V51–V67. [Google Scholar] [CrossRef]
- Quan, Y.; Harris, J.M. Seismic attenuation tomography using the frequency shift method. Geophysics 1997, 62, 895–905. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, X.; Zhou, B.; Dong, Z.; Fang, G.; Zeng, Z.; Liu, C.; Li, Y.; Lu, W. Polarized Orientation Calibration and Processing Strategies for Tianwen-1 Full-Polarimetric Mars Rover Penetrating Radar Data. IEEE. Trans. Geosci. Remote 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, X.; Zhou, H.; Zhang, M.; Liu, Q.; An, Y.; Zhang, Y.; Yang, J.; Liang, W.; Yu, Y.; et al. Super-Resolution Detection of Millimeter-Scale Fractures with Fluid Flow Using Time-Lapse Full-Polarimetric GPR and Anisotropy Analysis. IEEE. Trans. Geosci. Remote 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Zhao, J.-G.; Sato, M. Radar Polarimetry Analysis Applied to Single-Hole Fully Polarimetric Borehole Radar. IEEE. Trans. Geosci. Remote 2006, 44, 3547–3554. [Google Scholar] [CrossRef]
- Sassen, D.S.; Everett, M.E. 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock. Geophysics 2009, 74, J23–J34. [Google Scholar] [CrossRef]
- Zhao, J.G.; Sato, M. A Fully Polarimetric Bobrehole Radar Based Numerical Modelling: Fully Polarimetric Response to Synthetic Fractures and “Fluid Substitution”. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Yu, Y.; Feng, X.; Liu, C.; Lu, Q.; Hu, N.; Ren, Q.; Nilot, E.; You, Z.; Liang, W.; Fang, Y. Radar Polarimetry Analysis Applied to Fully Polarimetric Ground Penetrating Radar. In Proceedings of the 15th International Conference on Ground Penetrating Radar—GPR, Brussels, Belgium, 30 June 2014–4 July 2014. [Google Scholar]
- Pinnegar, C.R.; Mansinha, L. Time-local Fourier analysis with a scalable, phase-modulated analyzing function: The S-transform with a complex window. Signal. Process 2004, 84, 1167–1176. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Li, B.; Feng, X.; Zhou, J.; Yu, Y.; Hu, X. The LPR Instantaneous Centroid Frequency Attribute Based on the 1D Higher-Order Differential Energy Operator. Remote. Sens. 2023, 15, 5305. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, X.; Qiu, Z.; Feng, X.; Qin, Y. Extraction of the GPR instantaneous centroid frequency based on the envelope derivative operator and ICEEMDAN. Remote Sens. Lett. 2023, 14, 469–478. [Google Scholar] [CrossRef]
- Li, J.; Zeng, Z.; Liu, C.; Huai, N.; Wang, K. A Study on Lunar Regolith Quantitative Random Model and Lunar Penetrating Radar Parameter Inversion. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1953–1957. [Google Scholar] [CrossRef]
- Zhang, X.B.; Liu, C.; Feng, X.; Li, B.N.; Li, K.X.; You, Q. The attenuated Ricker wavelet basis for seismic trace decomposition and attenuation analysis. Geophys. Prospect. 2020, 68, 371–381. [Google Scholar] [CrossRef]
- Zhukov, A.D.; Ter-Zakaryan, K.A.; Semenov, V.S. Insulation systems with the expanded polyethylene application. IFAC-Pap. 2018, 51, 803–807. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, J.; Pang, H.; Huang, Z.; Guo, Y.; Wei, J.; Yu, Q. UHPC-XPS insulation composite board reinforced by glass fiber mesh: Effect of structural design on the heat transfer, mechanical properties and impact resistance. J. Build. Eng. 2023, 75, 106935. [Google Scholar] [CrossRef]
- Brown, S.; Caprihan, A.; Hardy, R. Experimental observation of fluid flow channels in a single fracture. J. Geophys. Res. Solid Earth 1998, 103, 5125–5132. [Google Scholar] [CrossRef]
- Qian, Z.; Schlangen, E.; Ye, G.; van Breugel, K. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures. Materials 2017, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Tsoflias, G.P.; Van Gestel, J.P.; Stoffa, P.L.; Blankenship, D.D.; Sen, M. Vertical fracture detection by exploiting the polarization properties of ground-penetrating radar signals. Geophysics 2004, 69, 803–810. [Google Scholar] [CrossRef]
- Radzevicius, S.J.; Daniels, J.J. Ground penetrating radar polarization and scattering from cylinders. J. Appl. Geophys. 2000, 45, 111–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Pei, J.; Sha, X.; Feng, X.; Hu, X.; Chen, C.; Song, Z. Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme. Remote Sens. 2024, 16, 2095. https://doi.org/10.3390/rs16122095
Zhang X, Pei J, Sha X, Feng X, Hu X, Chen C, Song Z. Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme. Remote Sensing. 2024; 16(12):2095. https://doi.org/10.3390/rs16122095
Chicago/Turabian StyleZhang, Xuebing, Junxuan Pei, Xianda Sha, Xuan Feng, Xin Hu, Changle Chen, and Zhengchun Song. 2024. "Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme" Remote Sensing 16, no. 12: 2095. https://doi.org/10.3390/rs16122095
APA StyleZhang, X., Pei, J., Sha, X., Feng, X., Hu, X., Chen, C., & Song, Z. (2024). Experimental Co-Polarimetric GPR Survey on Artificial Vertical Concrete Cracks by the Improved Time-Varying Centroid Frequency Scheme. Remote Sensing, 16(12), 2095. https://doi.org/10.3390/rs16122095